File: computeMatrixOperations.py

package info (click to toggle)
python-deeptools 3.5.6%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 34,456 kB
  • sloc: python: 14,503; xml: 4,212; sh: 33; makefile: 5
file content (852 lines) | stat: -rwxr-xr-x 32,107 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
#!/usr/bin/python3
import deeptools.heatmapper as heatmapper
import deeptoolsintervals.parse as dti
import numpy as np
import argparse
import sys
import os
import csv
from importlib.metadata import version


def parse_arguments():
    parser = argparse.ArgumentParser(
        formatter_class=argparse.RawDescriptionHelpFormatter,
        description="""
This tool performs a variety of operations on files produced by computeMatrix.

detailed help:

  computeMatrixOperations info -h

or

  computeMatrixOperations relabel -h

or

  computeMatrixOperations subset -h

or

  computeMatrixOperations filterStrand -h

or

  computeMatrixOperations filterValues -h

or

  computeMatrixOperations rbind -h

or

  computeMatrixOperations cbind -h

or
  computeMatrixOperations sort -h

or
  computeMatrixOperations dataRange -h

""",
        epilog='example usages:\n'
               'computeMatrixOperations subset -m input.mat.gz -o output.mat.gz --group "group 1" "group 2" --samples "sample 3" "sample 10"\n\n'
               ' \n\n')

    subparsers = parser.add_subparsers(
        title='Commands',
        dest='command',
        metavar='')

    # info
    subparsers.add_parser(
        'info',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        parents=[infoArgs()],
        help="Print group and sample information",
        usage='An example usage is:\n  computeMatrixOperations info -m input.mat.gz\n\n')

    # relabel
    subparsers.add_parser(
        'relabel',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        parents=[infoArgs(), relabelArgs()],
        help="Change sample and/or group label information",
        usage='An example usage is:\n  computeMatrixOperations relabel -m input.mat.gz -o output.mat.gz --sampleLabels "sample 1" "sample 2"\n\n')

    # subset
    subparsers.add_parser(
        'subset',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        parents=[infoArgs(), subsetArgs()],
        help="Actually subset the matrix. The group and sample orders are honored, so one can also reorder files.",
        usage='An example usage is:\n  computeMatrixOperations subset -m '
        'input.mat.gz -o output.mat.gz --groups "group 1" "group 2" '
        '--samples "sample 3" "sample 10"\n\n')

    # filterStrand
    subparsers.add_parser(
        'filterStrand',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        parents=[infoArgs(), filterStrandArgs()],
        help="Filter entries by strand.",
        usage='Example usage:\n  computeMatrixOperations filterStrand -m '
        'input.mat.gz -o output.mat.gz --strand +\n\n')

    # filterValues
    subparsers.add_parser(
        'filterValues',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        parents=[infoArgs(), filterValuesArgs()],
        help="Filter entries by min/max value.",
        usage='Example usage:\n  computeMatrixOperations filterValues -m '
        'input.mat.gz -o output.mat.gz --min 10 --max 1000\n\n')

    # rbind
    subparsers.add_parser(
        'rbind',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        parents=[bindArgs()],
        help="merge multiple matrices by concatenating them head to tail. This assumes that the same samples are present in each in the same order.",
        usage='Example usage:\n  computeMatrixOperations rbind -m '
        'input1.mat.gz input2.mat.gz -o output.mat.gz\n\n')

    # cbind
    subparsers.add_parser(
        'cbind',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        parents=[bindArgs()],
        help="merge multiple matrices by concatenating them left to right. No assumptions are made about the row order. Regions not present in the first file specified are ignored. Regions missing in subsequent files will result in NAs. Regions are matches based on the first 6 columns of the computeMatrix output (essentially the columns in a BED file).",
        usage='Example usage:\n  computeMatrixOperations cbind -m '
        'input1.mat.gz input2.mat.gz -o output.mat.gz\n\n')

    # sort
    subparsers.add_parser(
        'sort',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        parents=[sortArgs()],
        help='Sort a matrix file to correspond to the order of entries in the desired input file(s). The groups of regions designated by the files must be present in the order found in the output of computeMatrix (otherwise, use the subset command first). Note that this subcommand can also be used to remove unwanted regions, since regions not present in the input file(s) will be omitted from the output.',
        usage='Example usage:\n  computeMatrixOperations sort -m input.mat.gz -R regions1.bed regions2.bed regions3.gtf -o input.sorted.mat.gz\n\n')

    # dataRange
    subparsers.add_parser(
        'dataRange',
        formatter_class=argparse.ArgumentDefaultsHelpFormatter,
        parents=[infoArgs()],
        help='Returns the min, max, median, 10th and 90th percentile of the matrix values per sample.',
        usage='Example usage:\n  computeMatrixOperations dataRange -m input.mat.gz\n\n')

    parser.add_argument('--version', action='version',
                        version='%(prog)s {}'.format(version('deeptools')))

    return parser


def bindArgs():
    parser = argparse.ArgumentParser(add_help=False)
    required = parser.add_argument_group('Required arguments')

    required.add_argument('--matrixFile', '-m',
                          help='Matrix files from the computeMatrix tool.',
                          nargs='+',
                          required=True)

    required.add_argument('--outFileName', '-o',
                          help='Output file name',
                          required=True)

    return parser


def infoArgs():
    parser = argparse.ArgumentParser(add_help=False)
    required = parser.add_argument_group('Required arguments')

    required.add_argument('--matrixFile', '-m',
                          help='Matrix file from the computeMatrix tool.',
                          required=True)

    return parser


def relabelArgs():
    parser = argparse.ArgumentParser(add_help=False)
    required = parser.add_argument_group('Required arguments')

    required.add_argument('--outFileName', '-o',
                          help='Output file name',
                          required=True)

    optional = parser.add_argument_group('Optional arguments')

    optional.add_argument('--groupLabels',
                          nargs='+',
                          help="Groups labels. If none are specified then the current labels will be kept.")

    optional.add_argument('--sampleLabels',
                          nargs='+',
                          help="Sample labels. If none are specified then the current labels will be kept.")

    return parser


def subsetArgs():
    parser = argparse.ArgumentParser(add_help=False)
    required = parser.add_argument_group('Required arguments')

    required.add_argument('--outFileName', '-o',
                          help='Output file name',
                          required=True)

    optional = parser.add_argument_group('Optional arguments')

    optional.add_argument('--groups',
                          nargs='+',
                          help="Groups to include. If none are specified then all will be included.")

    optional.add_argument('--samples',
                          nargs='+',
                          help="Samples to include. If none are specified then all will be included.")

    return parser


def filterStrandArgs():
    parser = argparse.ArgumentParser(add_help=False)
    required = parser.add_argument_group('Required arguments')

    required.add_argument('--outFileName', '-o',
                          help='Output file name',
                          required=True)

    required.add_argument('--strand', '-s',
                          help='Strand',
                          choices=['+', '-', '.'],
                          required=True)

    return parser


def filterValuesArgs():
    parser = argparse.ArgumentParser(add_help=False)
    required = parser.add_argument_group('Required arguments')

    required.add_argument('--outFileName', '-o',
                          help='Output file name',
                          required=True)

    optional = parser.add_argument_group('Optional arguments')
    optional.add_argument('--min',
                          help='Minimum value. Any row having a single entry less than this will be excluded. The default is no minimum.',
                          type=float,
                          default=None)

    optional.add_argument('--max',
                          help='Maximum value. Any row having a single entry more than this will be excluded. The default is no maximum.',
                          type=float,
                          default=None)

    return parser


def sortArgs():
    parser = argparse.ArgumentParser(add_help=False)
    required = parser.add_argument_group('Required arguments')

    required.add_argument('--matrixFile', '-m',
                          help='Matrix file from the computeMatrix tool.',
                          required=True)

    required.add_argument('--outFileName', '-o',
                          help='Output file name',
                          required=True)

    required.add_argument('--regionsFileName', '-R',
                          help='File name(s), in BED or GTF format, containing the regions. '
                               'If multiple bed files are given, each one is '
                               'considered a group that can be plotted separately. '
                               'Also, adding a "#" symbol in the bed file causes all '
                               'the regions until the previous "#" to be considered '
                               'one group. Alternatively for BED files, putting '
                               'deepTools_group in the header can be used to indicate a '
                               'column with group labels. Note that these should be '
                               'sorted such that all group entries are together.',
                          required=True,
                          nargs='+')

    optional = parser.add_argument_group('Optional arguments')

    optional.add_argument('--transcriptID',
                          default='transcript',
                          help='When a GTF file is used to provide regions, only '
                          'entries with this value as their feature (column 3) '
                          'will be processed as transcripts. (Default: %(default)s)')

    optional.add_argument('--transcript_id_designator',
                          default='transcript_id',
                          help='Each region has an ID (e.g., ACTB) assigned to it, '
                          'which for BED files is either column 4 (if it exists) '
                          'or the interval bounds. For GTF files this is instead '
                          'stored in the last column as a key:value pair (e.g., as '
                          '\'transcript_id "ACTB"\', for a key of transcript_id '
                          'and a value of ACTB). In some cases it can be '
                          'convenient to use a different identifier. To do so, set '
                          'this to the desired key. (Default: %(default)s)')

    return parser


def printInfo(matrix):
    """
    Print the groups and samples
    """

    print("Groups:")
    for group in matrix.matrix.group_labels:
        print("\t{0}".format(group))

    print("Samples:")
    for sample in matrix.matrix.sample_labels:
        print("\t{0}".format(sample))


def printDataRange(matrix):
    """
    Prints the min, max, median, 10th and 90th percentile of the matrix values per sample.
    """
    print("Samples\tMin\tMax\tMedian\t10th\t90th")
    for i, sample in enumerate(matrix.matrix.sample_labels):
        start = matrix.matrix.sample_boundaries[i]
        end = matrix.matrix.sample_boundaries[i + 1]
        sample_matrix = matrix.matrix.matrix[..., start:end]
        print("{0}\t{1}\t{2}\t{3}\t{4}\t{5}".format(sample, np.amin(sample_matrix),
                                                    np.amax(sample_matrix),
                                                    np.ma.median(sample_matrix),
                                                    np.percentile(sample_matrix, 10),
                                                    np.percentile(sample_matrix, 90)))


def relabelMatrix(matrix, args):
    """
    Relabel the samples and groups in a matrix
    """
    if args.groupLabels:
        if len(args.groupLabels) != len(matrix.matrix.group_labels):
            sys.exit("You specified {} group labels, but {} are required.\n".format(len(args.groupLabels), len(matrix.matrix.group_labels)))
        matrix.matrix.group_labels = args.groupLabels
    if args.sampleLabels:
        if len(args.sampleLabels) != len(matrix.matrix.sample_labels):
            sys.exit("You specified {} sample labels, but {} are required.\n".format(len(args.sampleLabels), len(matrix.matrix.sample_labels)))
        matrix.matrix.sample_labels = args.sampleLabels


def getGroupBounds(args, matrix):
    """
    Given the group labels, return an indexing array and the resulting boundaries
    """
    bounds = matrix.parameters['group_boundaries']
    if args.groups is None:
        return range(0, matrix.matrix.matrix.shape[0]), np.array(bounds)
    else:
        o = list()
        obounds = [0]
        for group in args.groups:
            if group not in matrix.matrix.group_labels:
                sys.exit("Error: '{0}' is not a valid group\n".format(group))
            idx = matrix.matrix.group_labels.index(group)
            o.extend(range(bounds[idx], bounds[idx + 1]))
            obounds.append(bounds[idx + 1] - bounds[idx])
        return o, np.cumsum(obounds)


def getSampleBounds(args, matrix):
    """
    Given the sample labels, return an indexing array
    """
    bounds = matrix.parameters['sample_boundaries']
    if args.samples is None:
        return np.arange(0, matrix.matrix.matrix.shape[1])
    else:
        o = list()
        for sample in args.samples:
            if sample not in matrix.matrix.sample_labels:
                sys.exit("Error: '{0}' is not a valid sample\n".format(sample))
            idx = matrix.matrix.sample_labels.index(sample)
            o.extend(range(bounds[idx], bounds[idx + 1]))
        return o


def subsetRegions(hm, bounds):
    out = []
    for x in bounds:
        reg = hm.matrix.regions[x]
        # we need to add a list of [chrom, [(start, end), (start, end)], name, 0, strand, score)]
        if isinstance(reg, dict):
            # This happens on occasion
            starts = reg["start"].split(",")
            starts = [int(x) for x in starts]
            ends = reg["end"].split(",")
            ends = [int(x) for x in ends]
            regs = [(x, y) for x, y in zip(starts, ends)]
            out.append([reg["chrom"], regs, reg["name"], 0, reg["strand"], reg["score"]])
        else:
            out.append(reg)
    return out


def filterHeatmap(hm, args):
    bounds = [0]
    regions = []
    keep = []
    for region in hm.matrix.regions:
        if region[4] == args.strand:
            keep.append(True)
            regions.append(region)
        else:
            keep.append(False)
    keep = np.array(keep)

    # Get the new bounds
    for idx in range(1, len(hm.matrix.group_boundaries)):
        i = int(np.sum(keep[hm.matrix.group_boundaries[idx - 1]:hm.matrix.group_boundaries[idx]]))
        bounds.append(bounds[idx - 1] + i)

    hm.matrix.group_boundaries = bounds

    # subset the matrix
    hm.matrix.matrix = hm.matrix.matrix[keep, :]
    hm.matrix.regions = regions


def filterHeatmapValues(hm, minVal, maxVal):
    bounds = [0]
    regions = []
    keep = []
    if minVal is None:
        minVal = -np.inf
    if maxVal is None:
        maxVal = np.inf
    np.warnings.filterwarnings('ignore')
    for i, (x, y) in enumerate(zip(np.nanmin(hm.matrix.matrix, axis=1), np.nanmax(hm.matrix.matrix, axis=1))):
        # x/y will be nan iff a row is entirely nan. Don't filter.
        if np.isnan(x) or (x >= minVal and y <= maxVal):
            keep.append(True)
            regions.append(hm.matrix.regions[i])
        else:
            keep.append(False)
    keep = np.array(keep)

    # Get the new bounds
    for idx in range(1, len(hm.matrix.group_boundaries)):
        i = int(np.sum(keep[hm.matrix.group_boundaries[idx - 1]:hm.matrix.group_boundaries[idx]]))
        bounds.append(bounds[idx - 1] + i)

    hm.matrix.group_boundaries = bounds

    # subset the matrix
    hm.matrix.matrix = hm.matrix.matrix[keep, :]
    hm.matrix.regions = regions


def insertMatrix(hm, hm2, groupName):
    """
    Given two heatmapper objects and a region group name, insert the regions and
    values from hm2 for that group to the end of those for hm.
    """
    # get the bounds for hm
    idx = hm.parameters["group_labels"].index(groupName)
    hmEnd = hm.parameters["group_boundaries"][idx + 1]
    # get the bounds for hm2
    idx2 = hm2.parameters["group_labels"].index(groupName)
    hm2Start = hm2.parameters["group_boundaries"][idx2]
    hm2End = hm2.parameters["group_boundaries"][idx2 + 1]

    # Insert the subset hm2 into hm along axis 0
    hm.matrix.matrix = np.insert(hm.matrix.matrix, hmEnd, hm2.matrix.matrix[hm2Start:hm2End, :], axis=0)

    # Insert the regions
    hm.matrix.regions[hmEnd:hmEnd] = hm2.matrix.regions[hm2Start:hm2End]

    # Increase the group boundaries
    bounds = []
    for idx3, bound in enumerate(hm.parameters["group_boundaries"]):
        if idx3 > idx:
            bound += hm2End - hm2Start
        bounds.append(bound)
    hm.parameters["group_boundaries"] = bounds


def appendMatrix(hm, hm2, groupName):
    """
    Given two heatmapper objects and a region group name, append the values from
    that group in hm2 onto the end of hm.
    """
    # get the bounds for hm2
    idx2 = hm2.parameters["group_labels"].index(groupName)
    hm2Start = hm2.parameters["group_boundaries"][idx2]
    hm2End = hm2.parameters["group_boundaries"][idx2 + 1]

    # Append the matrix
    hm.matrix.matrix = np.concatenate([hm.matrix.matrix, hm2.matrix.matrix[hm2Start:hm2End, :]], axis=0)
    # Update the bounds
    hm.parameters["group_boundaries"].append(hm.parameters["group_boundaries"][-1] + hm2End - hm2Start)
    # Append the regions
    hm.matrix.regions.extend(hm2.matrix.regions[hm2Start:hm2End])


def rbindMatrices(hm, args):
    """
    Bind matrices, top to bottom while accounting for the groups.

    It's assumed that the same samples are present in both and in the exact same order
    """
    hm2 = heatmapper.heatmapper()
    hm.read_matrix_file(args.matrixFile[0])
    for idx in range(1, len(args.matrixFile)):
        hm2.read_matrix_file(args.matrixFile[idx])
        for idx, group in enumerate(hm2.parameters["group_labels"]):
            if group in hm.parameters["group_labels"]:
                insertMatrix(hm, hm2, group)
            else:
                appendMatrix(hm, hm2, group)
                hm.parameters["group_labels"].append(group)

    # Update the group boundaries attribute
    hm.matrix.group_labels = hm.parameters['group_labels']
    hm.matrix.group_boundaries = hm.parameters['group_boundaries']


def cbindMatrices(hm, args):
    """
    Bind columns from different matrices according to the group and region names

    Missing regions are left as NA
    """
    hm2 = heatmapper.heatmapper()

    # Make a dict of region name:row associations
    hm.read_matrix_file(args.matrixFile[0])
    d = dict({x: dict() for x in hm.parameters["group_labels"]})
    for idx, group in enumerate(hm.parameters["group_labels"]):
        s = hm.parameters["group_boundaries"][idx]
        e = hm.parameters["group_boundaries"][idx + 1]
        for idx2, reg in enumerate(hm.matrix.regions[s:e]):
            d[group][reg[2]] = idx2 + s

    # Iterate through the other matrices
    for idx in range(1, len(args.matrixFile)):
        hm2.read_matrix_file(args.matrixFile[idx])
        # Add the sample labels
        hm.parameters['sample_labels'].extend(hm2.parameters['sample_labels'])
        # Add the sample boundaries
        lens = [x + hm.parameters['sample_boundaries'][-1] for x in hm2.parameters['sample_boundaries']][1:]
        hm.parameters['sample_boundaries'].extend(lens)

        # Add on additional NA initialized columns
        ncol = hm.matrix.matrix.shape[1]
        hm.matrix.matrix = np.hstack((hm.matrix.matrix, np.empty(hm2.matrix.matrix.shape)))
        hm.matrix.matrix[:, ncol:] = np.nan

        # Update the values
        for idx2, group in enumerate(hm2.parameters["group_labels"]):
            if group not in d:
                continue
            s = hm2.parameters["group_boundaries"][idx2]
            e = hm2.parameters["group_boundaries"][idx2 + 1]
            for idx3, reg in enumerate(hm2.matrix.regions[s:e]):
                if reg[2] not in d[group]:
                    continue
                hm.matrix.matrix[d[group][reg[2]], ncol:] = hm2.matrix.matrix[s + idx3, :]

        # Append the special params
        for s in hm.special_params:
            hm.parameters[s].extend(hm2.parameters[s])

    # Update the sample parameters
    hm.matrix.sample_labels = hm.parameters['sample_labels']
    hm.matrix.sample_boundaries = hm.parameters['sample_boundaries']


def loadBED(line, fp, fname, labelColumn, labels, regions, defaultGroup):
    """
    Given a first line, possibly a label column and a list of labels and regions, add the labels and regions in the file to them
    """

    # This is largely parseBED from deeptoolsintervals
    labelIdx = None
    localRegions = {}

    cols = line.strip().split("\t")
    if labelColumn is not None:
        label = cols.pop(labelColumn)
        if label not in labels:
            labels[label] = len(labels)
        labelIdx = labels[label]
        if labelIdx >= len(regions):
            regions.append(localRegions)
        else:
            localRegions = regions[labelIdx]

    if len(cols) >= 6:
        name = cols[3]
    else:
        name = "{0}:{1}-{2}".format(cols[0], cols[1], cols[2])
    localRegions[name] = len(localRegions)

    for line in fp:
        if line.startswith("#") and labelColumn is None:
            if len(localRegions) > 0:
                label = line[1:].strip()
                if len(label):
                    labels[dti.findRandomLabel(labels, label)] = len(labels)
                else:
                    labels[dti.findRandomLabel(labels, os.path.basename(fname))] = len(labels)
                regions.append(localRegions)
                localRegions = dict()
            continue
        elif line.startswith("#") and labelColumn is not None:
            continue

        cols = line.strip().split("\t")
        if len(cols) < 3:
            continue
        if labelColumn is not None:
            label = cols.pop(labelColumn)
            if label not in labels:
                labels[label] = len(labels)
            labelIdx = labels[label]
            if labelIdx >= len(regions):
                regions.append({})
            localRegions = regions[labelIdx]

        if len(cols) >= 6:
            name = cols[3]
        else:
            name = "{0}:{1}-{2}".format(cols[0], cols[1], cols[2])
        name = dti.findRandomLabel(localRegions, name)
        localRegions[name] = len(localRegions)

    # Handle the last group if there is no label
    if labelIdx is None and len(localRegions) > 0:
        if defaultGroup is not None:
            labels[dti.findRandomLabel(labels, defaultGroup)] = len(labels)
        else:
            labels[dti.findRandomLabel(labels, os.path.basename(fname))] = len(labels)
        regions.append(localRegions)


def loadGTFtranscript(cols, label, defaultGroup, transcript_id_designator):
    s = next(csv.reader([cols[8]], delimiter=' '))
    if "deepTools_group" in s and s[-1] != "deepTools_group":
        label = s[s.index("deepTools_group") + 1].rstrip(";")
    elif defaultGroup is not None:
        label = defaultGroup

    if transcript_id_designator not in s or s[-1] == transcript_id_designator:
        sys.stderr.write("Warning: {0} is malformed!\n".format("\t".join(cols)))
        return None, None

    name = s[s.index(transcript_id_designator) + 1].rstrip(";")
    return label, name


def loadGTF(line, fp, fname, labels, regions, transcriptID, transcript_id_designator, defaultGroup):
    """
    Like loadBED, but for a GTF file

    This is largely a copy of what's in deeptoolsintervals
    """
    file_label = dti.findRandomLabel(labels, os.path.basename(fname))

    # handle the first line
    cols = line.split("\t")
    if cols[2].lower() == transcriptID.lower():
        label, name = loadGTFtranscript(cols, file_label, defaultGroup, transcript_id_designator)
        if label is not None:
            if label not in labels:
                labels[label] = len(labels)
                regions.append(dict())
            labelIdx = labels[label]
            regions[labelIdx][name] = len(regions[labelIdx])

    for line in fp:
        if not isinstance(line, str):
            line = line.decode('ascii')
        if not line.startswith('#'):
            cols = line.strip().split('\t')
            if len(cols) == 0:
                continue
            if cols[2].lower() == transcriptID:
                label, name = loadGTFtranscript(cols, file_label, defaultGroup, transcript_id_designator)
                if label is None:
                    continue
                if label not in labels:
                    labels[label] = len(labels)
                    regions.append(dict())
                labelIdx = labels[label]
                regions[labelIdx][name] = len(regions[labelIdx])


def sortMatrix(hm, regionsFileName, transcriptID, transcript_id_designator, verbose=True):
    """
    Iterate through the files noted by regionsFileName and sort hm accordingly
    """

    labels = dict()
    regions = []
    defaultGroup = None
    if len(regionsFileName) == 1:
        defaultGroup = "genes"
    for fname in regionsFileName:
        fp = dti.openPossiblyCompressed(fname)
        line = dti.getNext(fp)
        labelColumn = None
        while line.startswith("#"):
            if not labelColumn:
                labelColumn = dti.getLabel(line)
            line = dti.getNext(fp)
        while line.startswith("track "):
            line = dti.getNext(fp)

        # Find the label column
        subtract = 0
        if labelColumn is not None:
            subtract = 1

        # Determine the file type and load into a list (or list of lists)
        cols = line.strip().split("\t")
        if len(cols) - subtract < 3:
            raise RuntimeError('{0} does not seem to be a recognized file type!'.format(fname))
        elif len(cols) - subtract <= 6:
            loadBED(line, fp, fname, labelColumn, labels, regions, defaultGroup)
        elif len(cols) and dti.seemsLikeGTF(cols):
            loadGTF(line, fp, fname, labels, regions, transcriptID, transcript_id_designator, defaultGroup)
        else:
            loadBED(line, fp, fname, labelColumn, labels, regions, defaultGroup)
        fp.close()

    # Do some sanity checking on the group labels and region names within them
    s1 = set(hm.parameters['group_labels'])
    if verbose:
        for e in labels:
            if e not in s1:
                sys.exit("The computeMatrix output is missing the '{}' region group. It has {} but the specified regions have {}.\n".format(e, s1, labels.keys()))

    # Make a dictionary out of current labels and regions
    d = dict()
    pos = 0
    groupSizes = dict()
    for idx, label in enumerate(hm.parameters['group_labels']):
        s = hm.parameters['group_boundaries'][idx]
        e = hm.parameters['group_boundaries'][idx + 1]
        if label not in labels:
            continue
        d[label] = dict()
        groupSize = 0
        for reg in hm.matrix.regions[s:e]:
            d[label][reg[2]] = pos
            pos += 1
            groupSize += 1
        groupSizes[label] = groupSize

    # Convert labels to an ordered list
    labelsList = [""] * len(labels)
    for k, v in labels.items():
        labelsList[v] = k

    # Reorder
    order = []
    boundaries = [0]
    for idx, label in enumerate(labelsList):
        # Make an ordered list out of the region names in this region group
        _ = [""] * len(regions[idx])
        for k, v in regions[idx].items():
            _[v] = k
        sz = 0  # Track the number of enries actually matched
        for name in _:
            if name not in d[label]:
                if verbose:
                    sys.stderr.write("Skipping {}, due to being absent in the computeMatrix output.\n".format(name))
                continue
            sz += 1
            order.append(d[label][name])
        if sz == 0 and verbose:
            sys.exit("The region group {} had no matching entries!\n".format(label))
        boundaries.append(sz + boundaries[-1])
    hm.matrix.regions = [hm.matrix.regions[i] for i in order]
    order = np.array(order)
    hm.matrix.matrix = hm.matrix.matrix[order, :]

    # Update the parameters
    hm.parameters["group_labels"] = labelsList
    hm.matrix.group_labels = labelsList
    hm.parameters["group_boundaries"] = boundaries
    hm.matrix.group_boundaries = boundaries


def main(args=None):
    # if args none is need since otherwise pytest passes 'pytest' as sys.argv
    if args is None:
        if len(sys.argv) == 1:
            args = ["-h"]
        if len(sys.argv) == 2:
            args = [sys.argv[1], "-h"]

    args = parse_arguments().parse_args(args)

    hm = heatmapper.heatmapper()
    if not isinstance(args.matrixFile, list):
        hm.read_matrix_file(args.matrixFile)
    if args.command == 'info':
        printInfo(hm)
    elif args.command == 'dataRange':
        printDataRange(hm)
    elif args.command == 'subset':
        sIdx = getSampleBounds(args, hm)
        gIdx, gBounds = getGroupBounds(args, hm)

        # groups
        hm.matrix.regions = subsetRegions(hm, gIdx)
        # matrix
        hm.matrix.matrix = hm.matrix.matrix[gIdx, :]
        hm.matrix.matrix = hm.matrix.matrix[:, sIdx]
        # boundaries
        if args.samples is None:
            args.samples = hm.matrix.sample_labels
        hm.matrix.sample_boundaries = hm.matrix.sample_boundaries[0:len(args.samples) + 1]
        hm.matrix.group_boundaries = gBounds.tolist()
        # special params
        keepIdx = set()
        for _, sample in enumerate(hm.matrix.sample_labels):
            if sample in args.samples:
                keepIdx.add(_)
        for param in hm.special_params:
            hm.parameters[param] = [v for k, v in enumerate(hm.parameters[param]) if k in keepIdx]
        # labels
        hm.matrix.sample_labels = args.samples
        if args.groups is None:
            args.groups = hm.matrix.group_labels
        hm.matrix.group_labels = args.groups
        # save
        hm.save_matrix(args.outFileName)
    elif args.command == 'filterStrand':
        filterHeatmap(hm, args)
        hm.save_matrix(args.outFileName)
    elif args.command == 'filterValues':
        filterHeatmapValues(hm, args.min, args.max)
        hm.save_matrix(args.outFileName)
    elif args.command == 'rbind':
        rbindMatrices(hm, args)
        hm.save_matrix(args.outFileName)
    elif args.command == 'cbind':
        cbindMatrices(hm, args)
        hm.save_matrix(args.outFileName)
    elif args.command == 'sort':
        sortMatrix(hm, args.regionsFileName, args.transcriptID, args.transcript_id_designator)
        hm.save_matrix(args.outFileName)
    elif args.command == 'relabel':
        relabelMatrix(hm, args)
        hm.save_matrix(args.outFileName)
    else:
        sys.exit("Unknown command {0}!\n".format(args.command))