1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import os
import sys
import argparse
import numpy as np
import deeptools.countReadsPerBin as countR
from deeptools import parserCommon
from deeptools.utilities import smartLabels
from importlib.metadata import version
old_settings = np.seterr(all='ignore')
def parse_arguments(args=None):
parser = \
argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="""
``multiBamSummary`` computes the read coverages for genomic regions for typically two or more BAM files.
The analysis can be performed for the entire genome by running the program in 'bins' mode.
If you want to count the read coverage for specific regions only, use the ``BED-file`` mode instead.
The standard output of ``multiBamSummary`` is a compressed numpy array (``.npz``).
It can be directly used to calculate and visualize pairwise correlation values between the read coverages using the tool 'plotCorrelation'.
Similarly, ``plotPCA`` can be used for principal component analysis of the read coverages using the .npz file.
Note that using a single bigWig file is only recommended if you want to produce a bedGraph file (i.e., with the ``--outRawCounts`` option; the default output file cannot be used by ANY deepTools program if only a single file was supplied!).
A detailed sub-commands help is available by typing:
multiBamSummary bins -h
multiBamSummary BED-file -h
""",
epilog='example usages:\n'
'multiBamSummary bins --bamfiles file1.bam file2.bam -o results.npz \n\n'
'multiBamSummary BED-file --BED selection.bed --bamfiles file1.bam file2.bam \n'
'-o results.npz'
' \n\n',
conflict_handler='resolve')
parser.add_argument('--version', action='version',
version='%(prog)s {}'.format(version('deeptools')))
subparsers = parser.add_subparsers(
title="commands",
dest='command',
description='subcommands',
help='subcommands',
metavar='')
parent_parser = parserCommon.getParentArgParse(binSize=False)
read_options_parser = parserCommon.read_options()
# bins mode options
subparsers.add_parser(
'bins',
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
parents=[bamcorrelate_args(case='bins'),
parent_parser, read_options_parser,
parserCommon.gtf_options(suppress=True)
],
help="The coverage calculation is done for consecutive bins of equal "
"size (10 kilobases by default). This mode is useful to assess the "
"genome-wide similarity of BAM files. The bin size and "
"distance between bins can be adjusted.",
add_help=False,
usage='%(prog)s '
'--bamfiles file1.bam file2.bam '
'-o results.npz \n'
'help: multiBamSummary bins -h / multiBamSummary bins --help\n')
# BED file arguments
subparsers.add_parser(
'BED-file',
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
parents=[bamcorrelate_args(case='BED-file'),
parent_parser, read_options_parser,
parserCommon.gtf_options()
],
help="The user provides a BED file that contains all regions "
"that should be considered for the coverage analysis. A "
"common use is to compare ChIP-seq coverages between two "
"different samples for a set of peak regions.",
usage='%(prog)s --BED selection.bed --bamfiles file1.bam file2.bam -o results.npz\n'
'help: multiBamSummary BED-file -h / multiBamSummary bins --help\n',
add_help=False)
return parser
def bamcorrelate_args(case='bins'):
parser = argparse.ArgumentParser(add_help=False)
required = parser.add_argument_group('Required arguments')
# define the arguments
required.add_argument('--bamfiles', '-b',
metavar='FILE1 FILE2',
help='List of indexed bam files separated by spaces.',
nargs='+',
required=True)
required.add_argument('--outFileName', '-out', '-o',
help='File name to save the coverage matrix. This matrix '
'can be subsequently plotted using plotCorrelation or '
'or plotPCA.',
type=parserCommon.writableFile)
optional = parser.add_argument_group('Optional arguments')
optional.add_argument("--help", "-h", action="help",
help="show this help message and exit")
optional.add_argument('--labels', '-l',
metavar='sample1 sample2',
help='User defined labels instead of default labels from '
'file names. '
'Multiple labels have to be separated by a space, e.g. '
'--labels sample1 sample2 sample3',
nargs='+')
optional.add_argument('--smartLabels',
action='store_true',
help='Instead of manually specifying labels for the input '
'BAM files, this causes deepTools to use the file name '
'after removing the path and extension.')
optional.add_argument('--genomeChunkSize',
type=int,
default=None,
help='Manually specify the size of the genome provided to each processor. '
'The default value of None specifies that this is determined by read '
'density of the BAM file.')
if case == 'bins':
optional.add_argument('--binSize', '-bs',
metavar='INT',
help='Length in bases of the window used '
'to sample the genome. (Default: %(default)s)',
default=10000,
type=int)
optional.add_argument('--distanceBetweenBins', '-n',
metavar='INT',
help='By default, multiBamSummary considers consecutive '
'bins of the specified --binSize. However, to '
'reduce the computation time, a larger distance '
'between bins can by given. Larger distances '
'result in fewer bins considered. (Default: %(default)s)',
default=0,
type=int)
required.add_argument('--BED',
help=argparse.SUPPRESS,
default=None)
else:
optional.add_argument('--binSize', '-bs',
help=argparse.SUPPRESS,
default=10000,
type=int)
optional.add_argument('--distanceBetweenBins', '-n',
help=argparse.SUPPRESS,
metavar='INT',
default=0,
type=int)
required.add_argument('--BED',
help='Limits the coverage analysis to '
'the regions specified in these files.',
metavar='FILE1.bed FILE2.bed',
nargs='+',
required=True)
group = parser.add_argument_group('Output optional options')
group.add_argument('--outRawCounts',
help='Save the counts per region to a tab-delimited file.',
type=parserCommon.writableFile,
metavar='FILE')
group.add_argument('--scalingFactors',
help='Compute scaling factors (in the DESeq2 manner) '
'compatible for use with bamCoverage and write them to a '
'file. The file has tab-separated columns "sample" and '
'"scalingFactor".',
type=parserCommon.writableFile,
metavar='FILE')
return parser
def process_args(args=None):
args = parse_arguments().parse_args(args)
if len(sys.argv) == 1:
parse_arguments().print_help()
sys.exit()
if args.labels and len(args.bamfiles) != len(args.labels):
print("The number of labels does not match the number of bam files.")
exit(0)
if not args.labels:
if args.smartLabels:
args.labels = smartLabels(args.bamfiles)
else:
args.labels = [os.path.basename(x) for x in args.bamfiles]
return args
def main(args=None):
"""
1. get read counts at different positions either
all of same length or from genomic regions from the BED file
2. save data for further plotting
"""
args = process_args(args)
if 'BED' in args:
bed_regions = args.BED
else:
bed_regions = None
if len(args.bamfiles) == 1 and not (args.outRawCounts or args.scalingFactors):
sys.stderr.write("You've input a single BAM file and not specified "
"--outRawCounts or --scalingFactors. The resulting output will NOT be "
"useful with any deepTools program!\n")
stepsize = args.binSize + args.distanceBetweenBins
c = countR.CountReadsPerBin(
args.bamfiles,
args.binSize,
numberOfSamples=None,
genomeChunkSize=args.genomeChunkSize,
numberOfProcessors=args.numberOfProcessors,
verbose=args.verbose,
region=args.region,
bedFile=bed_regions,
blackListFileName=args.blackListFileName,
extendReads=args.extendReads,
minMappingQuality=args.minMappingQuality,
ignoreDuplicates=args.ignoreDuplicates,
center_read=args.centerReads,
samFlag_include=args.samFlagInclude,
samFlag_exclude=args.samFlagExclude,
minFragmentLength=args.minFragmentLength,
maxFragmentLength=args.maxFragmentLength,
stepSize=stepsize,
zerosToNans=False,
out_file_for_raw_data=args.outRawCounts)
num_reads_per_bin = c.run(allArgs=args)
sys.stderr.write("Number of bins "
"found: {}\n".format(num_reads_per_bin.shape[0]))
if num_reads_per_bin.shape[0] < 2:
exit("ERROR: too few non zero bins found.\n"
"If using --region please check that this "
"region is covered by reads.\n")
# numpy will append .npz to the file name if we don't do this...
if args.outFileName:
f = open(args.outFileName, "wb")
np.savez_compressed(f,
matrix=num_reads_per_bin,
labels=args.labels)
f.close()
if args.scalingFactors:
f = open(args.scalingFactors, 'w')
f.write("sample\tscalingFactor\n")
scalingFactors = countR.estimateSizeFactors(num_reads_per_bin)
for sample, scalingFactor in zip(args.labels, scalingFactors):
f.write("{}\t{:6.4f}\n".format(sample, scalingFactor))
f.close()
if args.outRawCounts:
# append to the generated file the
# labels
header = "#'chr'\t'start'\t'end'\t"
header += "'" + "'\t'".join(args.labels) + "'\n"
f = open(args.outRawCounts, 'r+')
content = f.read()
f.seek(0, 0)
f.write(header + content)
f.close()
if __name__ == "__main__":
main()
|