1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
|
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import sys
import argparse
import numpy as np
import matplotlib
matplotlib.use('Agg')
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['svg.fonttype'] = 'none'
from deeptools import cm # noqa: F401
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import plotly.offline as py
import plotly.graph_objs as go
from deeptools.mapReduce import mapReduce, getUserRegion, blSubtract
from deeptools.getFragmentAndReadSize import get_read_and_fragment_length
from deeptools.utilities import getCommonChrNames, mungeChromosome, getTLen, smartLabels
from deeptools.bamHandler import openBam
from deeptoolsintervals import Enrichment, GTF
from deeptools.countReadsPerBin import CountReadsPerBin as cr
from deeptools import parserCommon
old_settings = np.seterr(all='ignore')
def parse_arguments(args=None):
basic_args = plot_enrichment_args()
# --region, --blackListFileName, -p and -v
parent_parser = parserCommon.getParentArgParse(binSize=False)
# --extend reads and such
read_options = parserCommon.read_options()
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="""
Tool for calculating and plotting the signal enrichment in either regions in BED
format or feature types (column 3) in GTF format. The underlying datapoints can also be output.
Metrics are plotted as a fraction of total reads. Regions in a BED file are assigned to the 'peak' feature.
detailed help:
plotEnrichment -h
""",
epilog='example usages:\n'
'plotEnrichment -b file1.bam file2.bam --BED peaks.bed -o enrichment.png\n\n'
' \n\n',
parents=[basic_args, parent_parser, read_options],
usage='plotEnrichment -b sample1.bam sample2.bam --BED peaks.bed -o enrichment.png\n'
'help: plotEnrichment -h / plotEnrichment --help\n')
return parser
def plot_enrichment_args():
parser = argparse.ArgumentParser(add_help=False)
required = parser.add_argument_group('Required arguments')
# define the arguments
required.add_argument('--bamfiles', '-b',
metavar='file1.bam file2.bam',
help='List of indexed bam files separated by spaces.',
nargs='+',
required=True)
required.add_argument('--BED',
help='Limits the enrichment analysis to '
'the regions specified in these BED/GTF files. Enrichment '
'is calculated as the number of reads overlapping each '
'feature type. The feature type is column 3 in a GTF file '
'and "peak" for BED files.',
metavar='FILE1.bed FILE2.bed',
nargs='+',
required=True)
optional = parser.add_argument_group('Optional arguments')
optional.add_argument('--plotFile', '-o',
help='File to save the plot to. The file extension determines the format, '
'so heatmap.pdf will save the heatmap in PDF format. '
'The available formats are: .png, '
'.eps, .pdf and .svg.',
type=parserCommon.writableFile,
metavar='FILE')
optional.add_argument('--attributeKey',
help='Instead of deriving labels from the feature column in a GTF file, '
'use the given attribute key, such as gene_biotype. For BED files or '
'entries without the attribute key, None is used as the label.')
optional.add_argument('--labels', '-l',
metavar='sample1 sample2',
help='User defined labels instead of default labels from '
'file names. '
'Multiple labels have to be separated by spaces, e.g. '
'--labels sample1 sample2 sample3',
nargs='+')
optional.add_argument('--smartLabels',
action='store_true',
help='Instead of manually specifying labels for the input '
'BAM/BED/GTF files, this causes deepTools to use the file name '
'after removing the path and extension. For BED/GTF files, the '
'eventual region name will be overriden if specified inside '
'the file.')
optional.add_argument('--regionLabels',
metavar="region1 region2",
help="For BED files, the label given to its region is "
"the file name, but this can be overridden by providing "
"a custom label. For GTF files this is ignored. Note "
"that if you provide labels, you MUST provide one for each "
"BED/GTF file, even though it will be ignored for GTF files.",
nargs='+')
optional.add_argument('--plotTitle', '-T',
help='Title of the plot, to be printed on top of '
'the generated image. Leave blank for no title. (Default: %(default)s)',
default='')
optional.add_argument('--plotFileFormat',
metavar='FILETYPE',
help='Image format type. If given, this option '
'overrides the image format based on the plotFile '
'ending. The available options are: png, '
'eps, pdf, plotly and svg.',
choices=['png', 'pdf', 'svg', 'eps', 'plotly'])
optional.add_argument('--outRawCounts',
help='Save the counts per region to a tab-delimited file.',
type=parserCommon.writableFile,
metavar='FILE')
optional.add_argument('--perSample',
help='Group the plots by sample, rather than by feature type (the default).',
action='store_true')
optional.add_argument('--variableScales',
help='By default, the y-axes are always 0-100. This allows the axis range to be restricted.',
action='store_true')
optional.add_argument('--plotHeight',
help='Plot height in cm. (Default: %(default)s)',
type=float,
default=20)
optional.add_argument('--plotWidth',
help='Plot width in cm. The minimum value is 1 cm. (Default: %(default)s)',
type=float,
default=20)
optional.add_argument('--colors',
help='List of colors to use '
'for the plotted lines. Color names '
'and html hex strings (e.g., #eeff22) '
'are accepted. The color names should '
'be space separated. For example, '
'--colors red blue green ',
nargs='+')
optional.add_argument('--numPlotsPerRow',
help='Number of plots per row (Default: %(default)s)',
type=int,
default=4)
optional.add_argument('--alpha',
default=0.9,
type=parserCommon.check_float_0_1,
help='The alpha channel (transparency) to use for the bars. '
'The default is 0.9 and values must be between 0 and 1.')
optional.add_argument('--Offset',
help='Uses this offset inside of each read as the signal. This is useful in '
'cases like RiboSeq or GROseq, where the signal is 12, 15 or 0 bases past the '
'start of the read. This can be paired with the --filterRNAstrand option. '
'Note that negative values indicate offsets from the end of each read. A value '
'of 1 indicates the first base of the alignment (taking alignment orientation '
'into account). Likewise, a value of -1 is the last base of the alignment. An '
'offset of 0 is not permitted. If two values are specified, then they will be '
'used to specify a range of positions. Note that specifying something like '
'--Offset 5 -1 will result in the 5th through last position being used, which '
'is equivalent to trimming 4 bases from the 5-prime end of alignments.',
metavar='INT',
type=int,
nargs='+',
required=False)
bed12 = parser.add_argument_group('BED12 arguments')
bed12.add_argument('--keepExons',
help="For BED12 files, use each exon as a region, rather than columns 2/3",
action="store_true")
return parser
def getBAMBlocks(read, defaultFragmentLength, centerRead, offset=None):
"""
This is basically get_fragment_from_read from countReadsPerBin
"""
blocks = None
maxPairedFragmentLength = 0
if defaultFragmentLength != "read length":
maxPairedFragmentLength = 4 * defaultFragmentLength
if defaultFragmentLength == 'read length':
blocks = read.get_blocks()
else:
if cr.is_proper_pair(read, maxPairedFragmentLength):
if read.is_reverse:
fragmentStart = read.next_reference_start
fragmentEnd = read.reference_end
else:
fragmentStart = read.reference_start
# the end of the fragment is defined as
# the start of the forward read plus the insert length
fragmentEnd = read.reference_start + abs(read.template_length)
# Extend using the default fragment length
else:
if read.is_reverse:
fragmentStart = read.reference_end - defaultFragmentLength
fragmentEnd = read.reference_end
else:
fragmentStart = read.reference_start
fragmentEnd = read.reference_start + defaultFragmentLength
if centerRead:
fragmentCenter = fragmentEnd - (fragmentEnd - fragmentStart) / 2
fragmentStart = fragmentCenter - read.infer_query_length(always=False) / 2
fragmentEnd = fragmentStart + read.infer_query_length(always=False)
assert fragmentStart < fragmentEnd, "fragment start greater than fragment" \
"end for read {}".format(read.query_name)
blocks = [(int(fragmentStart), int(fragmentEnd))]
# Handle read offsets, if needed
if offset is not None:
rv = [(None, None)]
if len(offset) > 1:
if offset[0] > 0:
offset[0] -= 1
if offset[1] < 0:
offset[1] += 1
else:
if offset[0] > 0:
offset[0] -= 1
offset = [offset[0], offset[0] + 1]
else:
offset = [offset[0], None]
if offset[1] == 0:
# -1 gets switched to 0, which screws things up
offset = (offset[0], None)
stretch = []
# For the sake of simplicity, convert [(10, 20), (30, 40)] to [10, 11, 12, 13, ..., 40]
# Then subset accordingly
for block in blocks:
stretch.extend(range(block[0], block[1]))
if read.is_reverse:
stretch = stretch[::-1]
try:
foo = stretch[offset[0]:offset[1]]
except:
return rv
if len(foo) == 0:
return rv
if read.is_reverse:
foo = foo[::-1]
# Convert the stretch back to a list of tuples
foo = np.array(foo)
d = foo[1:] - foo[:-1]
idx = np.argwhere(d > 1).flatten().tolist() # This now holds the interval bounds as a list
idx.append(-1)
last = 0
blocks = []
for i in idx:
blocks.append((foo[last].astype("int"), foo[i].astype("int") + 1))
last = i + 1
return blocks
def getEnrichment_worker(arglist):
"""
This is the worker function of plotEnrichment.
In short, given a region, iterate over all reads **starting** in it.
Filter/extend them as requested and check each for an overlap with
findOverlaps. For each overlap, increment the counter for that feature.
"""
chrom, start, end, args, defaultFragmentLength = arglist
if args.verbose:
sys.stderr.write("Processing {}:{}-{}\n".format(chrom, start, end))
olist = []
total = [0] * len(args.bamfiles)
for idx, f in enumerate(args.bamfiles):
odict = dict()
for x in gtf.features:
odict[x] = 0
fh = openBam(f)
chrom = mungeChromosome(chrom, fh.references)
lpos = None
prev_pos = set()
for read in fh.fetch(chrom, start, end):
# Filter
if read.pos < start:
# Ensure that a given alignment is processed only once
continue
if read.flag & 4:
continue
if args.minMappingQuality and read.mapq < args.minMappingQuality:
continue
if args.samFlagInclude and read.flag & args.samFlagInclude != args.samFlagInclude:
continue
if args.samFlagExclude and read.flag & args.samFlagExclude != 0:
continue
tLen = getTLen(read)
if args.minFragmentLength > 0 and tLen < args.minFragmentLength:
continue
if args.maxFragmentLength > 0 and tLen > args.maxFragmentLength:
continue
if args.ignoreDuplicates:
# Assuming more or less concordant reads, use the fragment bounds, otherwise the start positions
if tLen >= 0:
s = read.pos
e = s + tLen
else:
s = read.pnext
e = s - tLen
if read.reference_id != read.next_reference_id:
e = read.pnext
if lpos is not None and lpos == read.reference_start \
and (s, e, read.next_reference_id, read.is_reverse) in prev_pos:
continue
if lpos != read.reference_start:
prev_pos.clear()
lpos = read.reference_start
prev_pos.add((s, e, read.next_reference_id, read.is_reverse))
total[idx] += 1
# Get blocks, possibly extending
features = gtf.findOverlaps(chrom, getBAMBlocks(read, defaultFragmentLength, args.centerReads, args.Offset))
if features is not None and len(features) > 0:
for x in features:
odict[x] += 1
olist.append(odict)
return olist, gtf.features, total
def plotEnrichment(args, featureCounts, totalCounts, features):
# get the number of rows and columns
if args.perSample:
totalPlots = len(args.bamfiles)
barsPerPlot = len(features)
else:
totalPlots = len(features)
barsPerPlot = len(args.bamfiles)
cols = min(args.numPlotsPerRow, totalPlots)
rows = np.ceil(totalPlots / float(args.numPlotsPerRow)).astype(int)
# Handle the colors
if not args.colors:
cmap_plot = plt.get_cmap('jet')
args.colors = cmap_plot(np.arange(barsPerPlot, dtype=float) / float(barsPerPlot))
if args.plotFileFormat == 'plotly':
args.colors = range(barsPerPlot)
elif len(args.colors) < barsPerPlot:
sys.exit("Error: {0} colors were requested, but {1} were needed!".format(len(args.colors), barsPerPlot))
data = []
if args.plotFileFormat == 'plotly':
fig = go.Figure()
fig['layout'].update(title=args.plotTitle)
domainWidth = .9 / cols
domainHeight = .9 / rows
bufferHeight = 0.0
if rows > 1:
bufferHeight = 0.1 / (rows - 1)
bufferWidth = 0.0
if cols > 1:
bufferWidth = 0.1 / (cols - 1)
else:
grids = gridspec.GridSpec(rows, cols)
plt.rcParams['font.size'] = 10.0
# convert cm values to inches
fig = plt.figure(figsize=(args.plotWidth / 2.54, args.plotHeight / 2.54))
fig.suptitle(args.plotTitle, y=(1 - (0.06 / args.plotHeight)))
for i in range(totalPlots):
col = i % cols
row = np.floor(i / float(args.numPlotsPerRow)).astype(int)
if args.perSample:
xlabels = features
ylabel = "% alignments in {0}".format(args.labels[i])
vals = [featureCounts[i][foo] for foo in features]
vals = 100 * np.array(vals, dtype='float64') / totalCounts[i]
else:
xlabels = args.labels
ylabel = "% {0}".format(features[i])
vals = [foo[features[i]] for foo in featureCounts]
vals = 100 * np.array(vals, dtype='float64') / np.array(totalCounts, dtype='float64')
if args.plotFileFormat == 'plotly':
xanchor = 'x{}'.format(i + 1)
yanchor = 'y{}'.format(i + 1)
base = row * (domainHeight + bufferHeight)
domain = [base, base + domainHeight]
fig['layout']['xaxis{}'.format(i + 1)] = {'domain': domain, 'anchor': yanchor}
base = col * (domainWidth + bufferWidth)
domain = [base, base + domainWidth]
fig['layout']['yaxis{}'.format(i + 1)] = {'domain': domain, 'anchor': xanchor, 'title': ylabel}
if args.variableScales is False:
fig['layout']['yaxis{}'.format(i + 1)].update(range=[0, 100])
trace = go.Bar(x=xlabels,
y=vals,
opacity=args.alpha,
orientation='v',
showlegend=False,
xaxis=xanchor,
yaxis=yanchor,
name=ylabel,
marker={'color': args.colors, 'line': {'color': args.colors}})
data.append(trace)
else:
ax = plt.subplot(grids[row, col])
ax.bar(np.arange(vals.shape[0]), vals, width=1.0, bottom=0.0, align='center', color=args.colors, edgecolor=args.colors, alpha=args.alpha)
ax.set_ylabel(ylabel)
ax.set_xticks(np.arange(vals.shape[0]))
ax.set_xticklabels(xlabels, rotation='vertical')
if args.variableScales is False:
ax.set_ylim(0.0, 100.0)
if args.plotFileFormat == 'plotly':
fig.add_traces(data)
py.plot(fig, filename=args.plotFile, auto_open=False)
# colors
else:
plt.subplots_adjust(wspace=0.05, hspace=0.3, bottom=0.15, top=0.80)
plt.tight_layout()
plt.savefig(args.plotFile, dpi=200, format=args.plotFileFormat)
plt.close()
def getChunkLength(args, chromSize):
"""
There's no point in parsing the GTF time over and over again needlessly.
Emprically, it seems that adding ~4x the number of workers is ideal, since
coverage is non-uniform. This is a heuristic way of approximating that.
Note that if there are MANY small contigs and a few large ones (e.g., the
max and median lengths are >10x different, then it's best to take a
different tack.
"""
if args.region:
chromSize, region_start, region_end, genomeChunkLength = getUserRegion(chromSize, args.region)
rv = np.ceil((region_start - region_end) / float(4 * args.numberOfProcessors)).astype(int)
return max(1, rv)
bl = None
if args.blackListFileName:
bl = GTF(args.blackListFileName)
lengths = []
for k, v in chromSize:
regs = blSubtract(bl, k, [0, v])
for reg in regs:
lengths.append(reg[1] - reg[0])
if len(lengths) >= 4 * args.numberOfProcessors:
rv = np.median(lengths).astype(int)
# In cases like dm6 or GRCh38, there are a LOT of really small contigs, which will cause the median to be small and performance to tank
if np.max(lengths) >= 10 * rv:
rv = np.ceil(np.sum(lengths) / (4.0 * args.numberOfProcessors)).astype(int)
else:
rv = np.ceil(np.sum(lengths) / (4.0 * args.numberOfProcessors)).astype(int)
return max(1, rv)
def main(args=None):
args = parse_arguments().parse_args(args)
if not args.outRawCounts and not args.plotFile:
sys.exit("Error: You need to specify at least one of --plotFile or --outRawCounts!\n")
if args.labels is None:
args.labels = args.bamfiles
if args.smartLabels:
args.labels = smartLabels(args.bamfiles)
if len(args.labels) != len(args.bamfiles):
sys.exit("Error: The number of labels ({0}) does not match the number of BAM files ({1})!".format(len(args.labels), len(args.bamfiles)))
# Ensure that if we're given an attributeKey that it's not empty
if args.attributeKey and args.attributeKey == "":
args.attributeKey = None
global gtf
if not args.regionLabels and args.smartLabels:
args.regionLabels = smartLabels(args.BED)
gtf = Enrichment(args.BED, keepExons=args.keepExons, labels=args.regionLabels, attributeKey=args.attributeKey)
# Get fragment size and chromosome dict
fhs = [openBam(x) for x in args.bamfiles]
chromSize, non_common_chr = getCommonChrNames(fhs, verbose=args.verbose)
for fh in fhs:
fh.close()
frag_len_dict, read_len_dict = get_read_and_fragment_length(args.bamfiles[0],
return_lengths=False,
blackListFileName=args.blackListFileName,
numberOfProcessors=args.numberOfProcessors,
verbose=args.verbose)
if args.extendReads:
if args.extendReads is True:
# try to guess fragment length if the bam file contains paired end reads
if frag_len_dict:
defaultFragmentLength = frag_len_dict['median']
else:
sys.exit("*ERROR*: library is not paired-end. Please provide an extension length.")
if args.verbose:
print("Fragment length based on paired en data "
"estimated to be {0}".format(frag_len_dict['median']))
elif args.extendReads < read_len_dict['median']:
sys.stderr.write("*WARNING*: read extension is smaller than read length (read length = {}). "
"Reads will not be extended.\n".format(int(read_len_dict['median'])))
defaultFragmentLength = 'read length'
elif args.extendReads > 2000:
sys.exit("*ERROR*: read extension must be smaller that 2000. Value give: {} ".format(args.extendReads))
else:
defaultFragmentLength = args.extendReads
else:
defaultFragmentLength = 'read length'
# Get the chunkLength
chunkLength = getChunkLength(args, chromSize)
# Map reduce to get the counts/file/feature
res = mapReduce([args, defaultFragmentLength],
getEnrichment_worker,
chromSize,
genomeChunkLength=chunkLength,
region=args.region,
blackListFileName=args.blackListFileName,
numberOfProcessors=args.numberOfProcessors,
verbose=args.verbose)
features = res[0][1]
featureCounts = []
for i in list(range(len(args.bamfiles))):
d = dict()
for x in features:
d[x] = 0
featureCounts.append(d)
# res is a list, with each element a list (length len(args.bamfiles)) of dicts
totalCounts = [0] * len(args.bamfiles)
for x in res:
for i, y in enumerate(x[2]):
totalCounts[i] += y
for i, y in enumerate(x[0]):
for k, v in y.items():
featureCounts[i][k] += v
# Make a plot
if args.plotFile:
plotEnrichment(args, featureCounts, totalCounts, features)
# Raw counts
if args.outRawCounts:
of = open(args.outRawCounts, "w")
of.write("file\tfeatureType\tpercent\tfeatureReadCount\ttotalReadCount\n")
for i, x in enumerate(args.labels):
for k, v in featureCounts[i].items():
of.write("{0}\t{1}\t{2:5.2f}\t{3}\t{4}\n".format(x, k, (100.0 * v) / totalCounts[i], v, totalCounts[i]))
of.close()
|