1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973
|
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import sys
import argparse
import numpy as np
from math import ceil
import matplotlib
matplotlib.use('Agg')
matplotlib.rcParams['pdf.fonttype'] = 42
matplotlib.rcParams['svg.fonttype'] = 'none'
import deeptools.cm # noqa: F401
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from matplotlib import colors as pltcolors
import matplotlib.gridspec as gridspec
import plotly.offline as py
import plotly.graph_objs as go
# own modules
from deeptools import parserCommon
from deeptools import heatmapper
from deeptools.heatmapper_utilities import plot_single, plotly_single, getProfileTicks
from deeptools.computeMatrixOperations import filterHeatmapValues
debug = 0
old_settings = np.seterr(all='ignore')
plt.ioff()
def parse_arguments(args=None):
parser = argparse.ArgumentParser(
parents=[parserCommon.heatmapperMatrixArgs(),
parserCommon.heatmapperOutputArgs(mode='profile'),
parserCommon.heatmapperOptionalArgs(mode='profile')],
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description='This tool creates a profile plot for '
'scores over sets of genomic regions. '
'Typically, these regions are genes, but '
'any other regions defined in BED '
' will work. A matrix generated '
'by computeMatrix is required.',
epilog='An example usage is: plotProfile -m matrix.gz',
add_help=False,
usage='plotProfile -m matrix.gz\n'
'help: plotProfile -h / plotProfile --help')
return parser
def process_args(args=None):
args = parse_arguments().parse_args(args)
# Ensure that yMin/yMax are there and a list
try:
assert args.yMin is not None
except:
args.yMin = [None]
try:
assert args.yMax is not None
except:
args.yMax = [None]
# Sometimes Galaxy sends --yMax '' and --yMin ''
if args.yMin == ['']:
args.yMin = [None]
if args.yMax == ['']:
args.yMax = [None]
# Convert to floats
if args.yMin != [None]:
foo = [float(x) for x in args.yMin]
args.yMin = foo
if args.yMax != [None]:
foo = [float(x) for x in args.yMax]
args.yMax = foo
if args.plotHeight < 0.5:
args.plotHeight = 0.5
elif args.plotHeight > 100:
args.plotHeight = 100
return args
class Profile(object):
def __init__(self, hm, out_file_name,
plot_title='', y_axis_label='',
y_min=None, y_max=None,
averagetype='median',
reference_point_label=None,
start_label='TSS', end_label='TES',
plot_height=7,
plot_width=11,
per_group=False,
plot_type='lines',
image_format=None,
color_list=None,
legend_location='best',
plots_per_row=8,
label_rotation=0,
dpi=200):
"""
Using the hm matrix, makes a line plot
either per group or per sample
using the specified parameters.
Args:
hm: heatmapper object
out_file_name: string
plot_title: string
y_axis_label: list
y_min: list
y_max: list
averagetype: mean, sum, median
reference_point_label: string
start_label: string
end_label: string
plot_height: in cm
plot_width: in cm
per_group: bool
plot_type: string
image_format: string
color_list: list
legend_location:
plots_per_row: int
label_rotation: float
Returns:
"""
self.hm = hm
self.out_file_name = out_file_name
self.plot_title = plot_title
self.y_axis_label = y_axis_label
self.y_min = y_min
self.y_max = y_max
self.averagetype = averagetype
self.reference_point_label = reference_point_label
self.start_label = start_label
self.end_label = end_label
self.plot_height = plot_height
self.plot_width = plot_width
self.per_group = per_group
self.plot_type = plot_type
self.image_format = image_format
self.color_list = color_list
self.legend_location = legend_location
self.plots_per_row = plots_per_row
self.label_rotation = label_rotation
self.dpi = dpi
# Honor reference point labels from computeMatrix
if reference_point_label is None:
self.reference_point_label = hm.parameters['ref point']
# decide how many plots are needed
if self.per_group:
self.numplots = self.hm.matrix.get_num_groups()
self.numlines = self.hm.matrix.get_num_samples()
else:
self.numplots = self.hm.matrix.get_num_samples()
self.numlines = self.hm.matrix.get_num_groups()
if self.numplots > self.plots_per_row:
rows = np.ceil(self.numplots / float(self.plots_per_row)).astype(int)
cols = self.plots_per_row
else:
rows = 1
cols = self.numplots
self.grids = gridspec.GridSpec(rows, cols)
plt.rcParams['font.size'] = 10.0
self.font_p = FontProperties()
self.font_p.set_size('small')
# convert cm values to inches
plot_height_inches = rows * self.cm2inch(self.plot_height)[0]
self.fig = plt.figure(figsize=self.cm2inch(cols * self.plot_width, rows * self.plot_height))
self.fig.suptitle(self.plot_title, y=(1 - (0.06 / plot_height_inches)))
# Ensure that the labels are vectors
nSamples = len(self.hm.matrix.sample_labels)
if not isinstance(self.reference_point_label, list):
self.reference_point_label = [self.reference_point_label] * nSamples
if not isinstance(self.start_label, list):
self.start_label = [self.start_label] * nSamples
if not isinstance(self.end_label, list):
self.end_label = [self.end_label] * nSamples
def getTicks(self, idx):
"""
This is essentially a wrapper around getProfileTicks to accomdate the fact that each column has its own ticks.
"""
xticks, xtickslabel = getProfileTicks(self.hm, self.reference_point_label[idx], self.start_label[idx], self.end_label[idx], idx)
return xticks, xtickslabel
@staticmethod
def cm2inch(*tupl):
inch = 2.54
if isinstance(tupl[0], tuple):
return tuple(i / inch for i in tupl[0])
else:
return tuple(i / inch for i in tupl)
def plot_hexbin(self):
from matplotlib import cm
cmap = cm.coolwarm
cmap.set_bad('black')
if self.image_format == "plotly":
return self.plotly_hexbin()
for plot in range(self.numplots):
col = plot % self.plots_per_row
row = int(plot / float(self.plots_per_row))
localYMin = None
localYMax = None
# split the ax to make room for the colorbar and for each of the
# groups
sub_grid = gridspec.GridSpecFromSubplotSpec(self.numlines, 2, subplot_spec=self.grids[row, col],
width_ratios=[0.92, 0.08], wspace=0.05, hspace=0.1)
ax = self.fig.add_subplot(sub_grid[0, 0])
ax.tick_params(
axis='y',
which='both',
left=False,
right=False,
labelleft=True)
if self.per_group:
title = self.hm.matrix.group_labels[plot]
else:
title = self.hm.matrix.sample_labels[plot]
vmin = np.inf
vmax = -np.inf
for data_idx in range(self.numlines):
# get the max and min
if self.per_group:
_row, _col = plot, data_idx
else:
_row, _col = data_idx, plot
sub_matrix = self.hm.matrix.get_matrix(_row, _col)
ma = sub_matrix['matrix']
x_values = np.tile(np.arange(ma.shape[1]), (ma.shape[0], 1))
img = ax.hexbin(x_values.flatten(), ma.flatten(), cmap=cmap, mincnt=1)
_vmin, _vmax = img.get_clim()
if _vmin < vmin:
vmin = _vmin
if _vmax > vmax:
vmax = _vmax
if localYMin is None or self.y_min[col % len(self.y_min)] < localYMin:
localYMin = self.y_min[col % len(self.y_min)]
if localYMax is None or self.y_max[col % len(self.y_max)] > localYMax:
localYMax = self.y_max[col % len(self.y_max)]
self.fig.delaxes(ax)
# iterate again after having computed the vmin and vmax
ax_list = []
for data_idx in range(self.numlines)[::-1]:
ax = self.fig.add_subplot(sub_grid[data_idx, 0])
if data_idx == 0:
ax.set_title(title)
if data_idx != self.numlines - 1:
plt.setp(ax.get_xticklabels(), visible=False)
if self.per_group:
_row, _col = plot, data_idx
else:
_row, _col = data_idx, plot
sub_matrix = self.hm.matrix.get_matrix(_row, _col)
if self.per_group:
label = sub_matrix['sample']
else:
label = sub_matrix['group']
ma = sub_matrix['matrix']
try:
# matplotlib 2.0
ax.set_facecolor('black')
except:
# matplotlib <2.0
ax.set_axis_bgcolor('black')
x_values = np.tile(np.arange(ma.shape[1]), (ma.shape[0], 1))
img = ax.hexbin(x_values.flatten(), ma.flatten(), cmap=cmap, mincnt=1, vmin=vmin, vmax=vmax)
if plot == 0:
ax.axes.set_ylabel(label)
ax_list.append(ax)
lims = ax.get_ylim()
if localYMin is not None:
lims = (localYMin, lims[1])
if localYMax is not None:
lims = (lims[0], localYMax)
if lims[0] >= lims[1]:
lims = (lims[0], lims[0] + 1)
ax.set_ylim(lims)
xticks, xtickslabel = self.getTicks(plot)
if np.ceil(max(xticks)) != float(ma.shape[1] - 1):
tickscale = float(sub_matrix['matrix'].shape[1]) / max(xticks)
xticks_use = [x * tickscale for x in xticks]
ax_list[0].axes.set_xticks(xticks_use)
else:
ax_list[0].axes.set_xticks(xticks)
ax_list[0].axes.set_xticklabels(xtickslabel, rotation=self.label_rotation)
# align the first and last label
# such that they don't fall off
# the heatmap sides
ticks = ax_list[-1].xaxis.get_major_ticks()
ticks[0].label1.set_horizontalalignment('left')
ticks[-1].label1.set_horizontalalignment('right')
cax = self.fig.add_subplot(sub_grid[:, 1])
self.fig.colorbar(img, cax=cax)
plt.subplots_adjust(wspace=0.05, hspace=0.3)
plt.tight_layout()
plt.savefig(self.out_file_name, dpi=self.dpi, format=self.image_format)
plt.close()
def plotly_hexbin(self):
"""plot_hexbin, but for plotly. it's annoying that we have to have sub-subplots"""
fig = go.Figure()
cols = self.plots_per_row if self.numplots > self.plots_per_row else self.numplots
rows = np.ceil(self.numplots / float(cols)).astype(int)
fig['layout'].update(title=self.plot_title)
domainWidth = .9 / cols
domainHeight = .9 / rows
bufferHeight = 0.0
if rows > 1:
bufferHeight = 0.1 / (rows - 1)
else:
domainHeight = 1.0
bufferWidth = 0.0
if cols > 1:
bufferWidth = 0.1 / (cols - 1)
else:
domainWidth = 1.0
subHeight = domainHeight / float(self.numlines)
if self.per_group:
sideLabels = self.hm.matrix.sample_labels
else:
sideLabels = self.hm.matrix.group_labels
data = []
annos = []
vmin = np.inf
vmax = -np.inf
for i in range(self.numplots):
row = rows - i / self.plots_per_row - 1
col = i % self.plots_per_row
if self.per_group:
title = self.hm.matrix.group_labels[i]
else:
title = self.hm.matrix.sample_labels[i]
base = row * (domainHeight + bufferHeight)
domain = [base, base + domainHeight]
titleY = base + domainHeight
base = col * (domainWidth + bufferWidth)
domain = [base, base + domainWidth]
titleX = base + 0.5 * domainWidth
xanchor = 'x{}'.format(i + 1)
fig['layout']['xaxis{}'.format(i + 1)] = dict(domain=domain)
annos.append({'yanchor': 'bottom', 'xref': 'paper', 'xanchor': 'center', 'yref': 'paper', 'text': title, 'y': titleY, 'x': titleX, 'font': {'size': 16}, 'showarrow': False})
# set yMin/yMax
yMin = np.inf
yMax = -np.inf
for j in range(self.numlines):
# get the max and min
if self.per_group:
_row, _col = i, j
else:
_row, _col = j, i
ma = self.hm.matrix.get_matrix(_row, _col)['matrix']
if np.min(ma) < yMin:
yMin = np.min(ma)
if np.max(ma) > yMax:
yMax = np.max(ma)
if self.y_min[i % len(self.y_min)] is not None:
yMin = self.y_min[i % len(self.y_min)]
if self.y_max[i % len(self.y_max)] is not None:
yMax = self.y_max[i % len(self.y_max)]
for j in range(self.numlines):
if self.per_group:
_row, _col = i, j
else:
_row, _col = j, i
foo = i * self.numlines + j + 1
yanchor = 'y{}'.format(foo)
base = row * (domainHeight + bufferHeight) + j * subHeight
domain = [base, base + subHeight]
fig['layout']['yaxis{}'.format(foo)] = {'domain': domain, 'title': self.y_axis_label, 'anchor': xanchor, 'range': [yMin, yMax]}
if j == 0:
_ = "xaxis{}".format(xanchor[1:])
fig['layout'][_].update(anchor='y{}'.format(foo))
if col == 0:
titleY = base + 0.5 * subHeight
annos.append({'yanchor': 'middle', 'xref': 'paper', 'xanchor': 'left', 'yref': 'paper', 'text': sideLabels[j], 'y': titleY, 'x': -0.03, 'font': {'size': 16}, 'showarrow': False, 'textangle': -90})
sub_matrix = self.hm.matrix.get_matrix(_row, _col)
ma = self.hm.matrix.get_matrix(_row, _col)['matrix']
fig['layout']['xaxis{}'.format(i + 1)].update(range=[0, ma.shape[1]])
if self.per_group:
label = sub_matrix['sample']
else:
label = sub_matrix['group']
# Manually compute the 2D histogram with 100x100 bins
x_values = np.tile(np.arange(ma.shape[1]), (ma.shape[0], 1))
z, xe, ye = np.histogram2d(x_values.flatten(), ma.flatten(), bins=100, range=[[0, ma.shape[1]], [yMin, yMax]])
_vmin = np.min(z)
_vmax = np.max(z)
if _vmin < vmin:
vmin = _vmin
if _vmax > vmax:
vmax = _vmax
trace = go.Contour(z=z.T, x=xe, y=ye, xaxis=xanchor, yaxis=yanchor, name=label, connectgaps=False)
data.append(trace)
# Assume the bounds for the last graph are correct
totalWidth = ma.shape[1]
xticks, xtickslabel = self.getTicks(i)
if np.ceil(max(xticks)) != float(totalWidth):
tickscale = float(totalWidth) / max(xticks)
xticks_use = [x * tickscale for x in xticks]
else:
xticks_use = xticks
xticks_use = [np.ceil(x) for x in xticks_use]
fig['layout']['xaxis{}'.format(i + 1)].update(tickmode='array', tickvals=xticks_use, ticktext=xtickslabel, tickangle=self.label_rotation)
for trace in data:
trace.update(zmin=vmin, zmax=vmax)
fig.add_traces(data)
fig['layout']['annotations'] = annos
py.plot(fig, filename=self.out_file_name, auto_open=False)
def plot_heatmap(self):
cmap = ['RdYlBu_r']
if self.color_list is not None: # check the length to be equal to the numebr of plots otherwise multiply it!
cmap = self.color_list
if len(cmap) < self.numplots:
all_colors = cmap
for i in range(ceil(self.numplots / len(cmap))):
cmap.extend(all_colors)
matrix_flatten = None
if self.y_min == [None]:
matrix_flatten = self.hm.matrix.flatten()
# try to avoid outliers by using np.percentile
self.y_min = [np.percentile(matrix_flatten, 1.0)]
if np.isnan(self.y_min[0]):
self.y_min = [None]
if self.y_max == [None]:
if matrix_flatten is None:
matrix_flatten = self.hm.matrix.flatten()
# try to avoid outliers by using np.percentile
self.y_max = [np.percentile(matrix_flatten, 98.0)]
if np.isnan(self.y_max[0]):
self.y_max = [None]
if self.image_format == "plotly":
return self.plotly_heatmap()
ax_list = []
# turn off y ticks
for plot in range(self.numplots):
labels = []
col = plot % self.plots_per_row
row = int(plot / float(self.plots_per_row))
localYMin = None
localYMax = None
# split the ax to make room for the colorbar
sub_grid = gridspec.GridSpecFromSubplotSpec(1, 2, subplot_spec=self.grids[row, col],
width_ratios=[0.92, 0.08], wspace=0.05)
ax = self.fig.add_subplot(sub_grid[0])
cax = self.fig.add_subplot(sub_grid[1])
ax.tick_params(
axis='y',
which='both',
left=False,
right=False,
labelleft=True)
if self.per_group:
title = self.hm.matrix.group_labels[plot]
tickIdx = plot % self.hm.matrix.get_num_samples()
else:
title = self.hm.matrix.sample_labels[plot]
tickIdx = plot
ax.set_title(title)
mat = [] # when drawing a heatmap (in contrast to drawing lines)
for data_idx in range(self.numlines):
if self.per_group:
row, col = plot, data_idx
else:
row, col = data_idx, plot
if localYMin is None or self.y_min[col % len(self.y_min)] < localYMin:
localYMin = self.y_min[col % len(self.y_min)]
if localYMax is None or self.y_max[col % len(self.y_max)] > localYMax:
localYMax = self.y_max[col % len(self.y_max)]
sub_matrix = self.hm.matrix.get_matrix(row, col)
if self.per_group:
label = sub_matrix['sample']
else:
label = sub_matrix['group']
labels.append(label)
mat.append(np.ma.__getattribute__(self.averagetype)(sub_matrix['matrix'], axis=0))
img = ax.imshow(np.vstack(mat), interpolation='nearest',
cmap=cmap[plot], aspect='auto', vmin=localYMin, vmax=localYMax)
self.fig.colorbar(img, cax=cax)
totalWidth = np.vstack(mat).shape[1]
xticks, xtickslabel = self.getTicks(tickIdx)
if np.ceil(max(xticks)) != float(totalWidth - 1):
tickscale = float(totalWidth) / max(xticks)
xticks_use = [x * tickscale for x in xticks]
ax.axes.set_xticks(xticks_use)
else:
ax.axes.set_xticks(xticks)
ax.axes.set_xticklabels(xtickslabel, rotation=self.label_rotation)
# align the first and last label
# such that they don't fall off
# the heatmap sides
ticks = ax.xaxis.get_major_ticks()
ticks[0].label1.set_horizontalalignment('left')
ticks[-1].label1.set_horizontalalignment('right')
# add labels as y ticks labels
ymin, ymax = ax.axes.get_ylim()
pos, distance = np.linspace(ymin, ymax, len(labels), retstep=True, endpoint=False)
d_half = float(distance) / 2
yticks = [x + d_half for x in pos]
# TODO: make rotation a parameter
# ax.axes.set_yticklabels(labels[::-1], rotation='vertical')
if plot == 0:
ax.axes.set_yticks(yticks)
ax.axes.set_yticklabels(labels[::-1])
else:
ax.axes.set_yticklabels([])
# matplotlib 3.1.1 (and likely some earlier versions) will change the ylim if you change the tick locations!
ax.axes.set_ylim([ymin, ymax])
ax_list.append(ax)
plt.subplots_adjust(wspace=0.05, hspace=0.3)
plt.tight_layout()
plt.savefig(self.out_file_name, dpi=self.dpi, format=self.image_format)
plt.close()
def plotly_heatmap(self):
"""plot_heatmap, but with plotly output"""
fig = go.Figure()
cols = self.plots_per_row if self.numplots > self.plots_per_row else self.numplots
rows = np.ceil(self.numplots / float(cols)).astype(int)
fig['layout'].update(title=self.plot_title)
domainWidth = .9 / cols
domainHeight = .9 / rows
bufferHeight = 0.0
if rows > 1:
bufferHeight = 0.1 / (rows - 1)
else:
domainHeight = 1.0
bufferWidth = 0.0
if cols > 1:
bufferWidth = 0.1 / (cols - 1)
else:
domainWidth = 1.0
data = []
annos = []
zmin = np.inf
zmax = -np.inf
for i in range(self.numplots):
row = rows - i / self.plots_per_row - 1
col = i % self.plots_per_row
if self.per_group:
title = self.hm.matrix.group_labels[i]
else:
title = self.hm.matrix.sample_labels[i]
base = row * (domainHeight + bufferHeight)
domain = [base, base + domainHeight]
titleY = base + domainHeight
xanchor = 'x{}'.format(i + 1)
yanchor = 'y{}'.format(i + 1)
visible = False
if col == 0:
visible = True
fig['layout']['yaxis{}'.format(i + 1)] = {'domain': domain, 'anchor': xanchor, 'visible': visible}
base = col * (domainWidth + bufferWidth)
domain = [base, base + domainWidth]
titleX = base + 0.5 * domainWidth
fig['layout']['xaxis{}'.format(i + 1)] = {'domain': domain, 'anchor': yanchor}
annos.append({'yanchor': 'bottom', 'xref': 'paper', 'xanchor': 'center', 'yref': 'paper', 'text': title, 'y': titleY, 'x': titleX, 'font': {'size': 16}, 'showarrow': False})
mat = []
labels = []
for j in range(self.numlines):
if self.per_group:
row, col = i, j
else:
row, col = j, i
sub_matrix = self.hm.matrix.get_matrix(row, col)
if self.per_group:
label = sub_matrix['sample']
else:
label = sub_matrix['group']
labels.append(label)
mat.append(np.ma.__getattribute__(self.averagetype)(sub_matrix['matrix'], axis=0))
if np.min(mat[-1]) < zmin:
zmin = np.min(mat[-1])
if np.max(mat[-1]) > zmax:
zmax = np.max(mat[-1])
totalWidth = len(mat[-1])
trace = go.Heatmap(name=title, z=mat, x=range(totalWidth + 1), y=labels, xaxis=xanchor, yaxis=yanchor)
data.append(trace)
# Add ticks
xticks, xtickslabel = self.getTicks(i)
if np.ceil(max(xticks)) != float(totalWidth):
tickscale = float(totalWidth) / max(xticks)
xticks_use = [x * tickscale for x in xticks]
else:
xticks_use = xticks
xticks_use = [np.ceil(x) for x in xticks_use]
fig['layout']['xaxis{}'.format(i + 1)].update(tickmode='array', tickvals=xticks_use, ticktext=xtickslabel, tickangle=self.label_rotation)
# Adjust color scale limits
for i, trace in enumerate(data):
zminUse = zmin
zmaxUse = zmax
if self.y_min[i % len(self.y_min)] is not None:
zminUse = self.y_min[i % len(self.y_min)]
if self.y_max[i % len(self.y_max)] is not None:
zmaxUse = self.y_max[i % len(self.y_max)]
trace.update(zmin=zminUse, zmax=zmaxUse)
fig.add_traces(data)
fig['layout']['annotations'] = annos
py.plot(fig, filename=self.out_file_name, auto_open=False)
def plot_profile(self):
if self.y_min is None:
self.y_min = [None]
if self.y_max is None:
self.y_max = [None]
if not self.color_list:
cmap_plot = plt.get_cmap('jet')
if self.numlines > 1:
# kmeans, so we need to color by cluster
self.color_list = cmap_plot(np.arange(self.numlines, dtype=float) / float(self.numlines))
else:
self.color_list = cmap_plot(np.arange(self.numplots, dtype=float) / float(self.numplots))
if (self.numlines > 1 and len(self.color_list) < self.numlines) or\
(self.numlines == 1 and len(self.color_list) < self.numplots):
sys.exit("\nThe given list of colors is too small, "
"at least {} colors are needed\n".format(self.numlines))
for color in self.color_list:
if not pltcolors.is_color_like(color):
sys.exit("\nThe color name {} is not valid. Check "
"the name or try with a html hex string "
"for example #eeff22".format(color))
if self.image_format == "plotly":
return self.plotly_profile()
first = True
ax_list = []
globalYmin = np.inf
globalYmax = -np.inf
for plot in range(self.numplots):
localYMin = None
localYMax = None
col = plot % self.plots_per_row
row = int(plot / float(self.plots_per_row))
if (row == 0 and col == 0) or len(self.y_min) > 1 or len(self.y_max) > 1:
ax = self.fig.add_subplot(self.grids[row, col])
else:
ax = self.fig.add_subplot(self.grids[row, col])
if self.per_group:
title = self.hm.matrix.group_labels[plot]
if row != 0 and len(self.y_min) == 1 and len(self.y_max) == 1:
plt.setp(ax.get_yticklabels(), visible=False)
tickIdx = plot % self.hm.matrix.get_num_samples()
else:
title = self.hm.matrix.sample_labels[plot]
if col != 0 and len(self.y_min) == 1 and len(self.y_max) == 1:
plt.setp(ax.get_yticklabels(), visible=False)
tickIdx = plot
ax.set_title(title)
for data_idx in range(self.numlines):
if self.per_group:
_row, _col = plot, data_idx
else:
_row, _col = data_idx, plot
if localYMin is None or self.y_min[col % len(self.y_min)] < localYMin:
localYMin = self.y_min[col % len(self.y_min)]
if localYMax is None or self.y_max[col % len(self.y_max)] > localYMax:
localYMax = self.y_max[col % len(self.y_max)]
sub_matrix = self.hm.matrix.get_matrix(_row, _col)
if self.per_group:
label = sub_matrix['sample']
else:
label = sub_matrix['group']
if self.numlines > 1:
coloridx = data_idx
else:
coloridx = plot
plot_single(ax, sub_matrix['matrix'],
self.averagetype,
self.color_list[coloridx],
label,
plot_type=self.plot_type)
globalYmin = min(float(globalYmin), ax.get_ylim()[0])
globalYmax = max(globalYmax, ax.get_ylim()[1])
# Exclude ticks from all but one subplot by default
if col > 0 and len(self.y_min) == 1 and len(self.y_max) == 1:
plt.setp(ax.get_yticklabels(), visible=False)
totalWidth = sub_matrix['matrix'].shape[1]
xticks, xtickslabel = self.getTicks(tickIdx)
if np.ceil(max(xticks)) != float(totalWidth - 1):
tickscale = float(totalWidth) / max(xticks)
xticks_use = [x * tickscale for x in xticks]
ax.axes.set_xticks(xticks_use)
else:
ax.axes.set_xticks(xticks)
ax.axes.set_xticklabels(xtickslabel, rotation=self.label_rotation)
# align the first and last label
# such that they don't fall off
# the heatmap sides
ticks = ax.xaxis.get_major_ticks()
ticks[0].label1.set_horizontalalignment('left')
ticks[-1].label1.set_horizontalalignment('right')
if first and self.y_axis_label != '':
ax.set_ylabel(self.y_axis_label)
if first and self.plot_type not in ['heatmap', 'overlapped_lines']:
ax.legend(loc=self.legend_location.replace('-', ' '),
ncol=1, prop=self.font_p,
frameon=False, markerscale=0.5)
if len(self.y_min) == 1 and len(self.y_max) == 1:
first = False
ax_list.append(ax)
# It turns out that set_ylim only takes float64s
for sample_id, subplot in enumerate(ax_list):
localYMin = self.y_min[sample_id % len(self.y_min)]
localYMax = self.y_max[sample_id % len(self.y_max)]
lims = [globalYmin, globalYmax]
if localYMin is not None:
if localYMax is not None:
lims = (float(localYMin), float(localYMax))
else:
lims = (float(localYMin), lims[1])
elif localYMax is not None:
lims = (lims[0], float(localYMax))
if lims[0] >= lims[1]:
lims = (lims[0], lims[0] + 1)
ax_list[sample_id].set_ylim(lims)
plt.subplots_adjust(wspace=0.05, hspace=0.3)
plt.tight_layout()
plt.savefig(self.out_file_name, dpi=self.dpi, format=self.image_format)
plt.close()
def plotly_profile(self):
"""
plot_profile for plotly output
y_min, y_max, and color_list are set already
"""
fig = go.Figure()
cols = self.plots_per_row if self.numplots > self.plots_per_row else self.numplots
rows = np.ceil(self.numplots / float(cols)).astype(int)
fig['layout'].update(title=self.plot_title)
domainWidth = .9 / cols
domainHeight = .9 / rows
bufferHeight = 0.0
if rows > 1:
bufferHeight = 0.1 / (rows - 1)
bufferWidth = 0.0
if cols > 1:
bufferWidth = 0.1 / (cols - 1)
data = []
annos = []
yMin = None
yMax = None
for i in range(self.numplots):
row = np.floor(i / self.plots_per_row)
# row = rows - i / self.plots_per_row - 1
col = i % self.plots_per_row
xanchor = 'x{}'.format(i + 1)
yanchor = 'y{}'.format(i + 1)
base = row * (domainHeight + bufferHeight)
domain = [base, base + domainHeight]
titleY = base + domainHeight
fig['layout']['yaxis{}'.format(i + 1)] = {'domain': domain, 'title': self.y_axis_label, 'anchor': xanchor, 'autorange': False}
base = col * (domainWidth + bufferWidth)
domain = [base, base + domainWidth]
titleX = base + 0.5 * domainWidth
fig['layout']['xaxis{}'.format(i + 1)] = {'domain': domain, 'anchor': yanchor}
if self.per_group:
title = self.hm.matrix.group_labels[i]
else:
title = self.hm.matrix.sample_labels[i]
annos.append({'yanchor': 'bottom', 'xref': 'paper', 'xanchor': 'center', 'yref': 'paper', 'text': title, 'y': titleY, 'x': titleX, 'font': {'size': 16}, 'showarrow': False})
for j in range(self.numlines):
if self.per_group:
_row, _col = i, j
else:
_row, _col = j, i
sub_matrix = self.hm.matrix.get_matrix(_row, _col)
fig['layout']['xaxis{}'.format(i + 1)].update(range=[0, sub_matrix['matrix'].shape[1]])
if self.per_group:
label = sub_matrix['sample']
else:
label = sub_matrix['group']
if self.numlines > 1:
coloridx = j
else:
coloridx = i
color = self.color_list[coloridx]
traces = plotly_single(sub_matrix['matrix'],
self.averagetype,
color,
label,
plot_type=self.plot_type)
for trace in traces:
trace.update(xaxis=xanchor, yaxis=yanchor)
if yMin is None or min(trace['y']) < yMin:
yMin = min(trace['y'])
if yMax is None or max(trace['y']) > yMax:
yMax = max(trace['y'])
if row == col == 0:
traces[0].update(showlegend=True)
data.extend(traces)
totalWidth = sub_matrix['matrix'].shape[1]
xticks, xtickslabel = self.getTicks(i)
if np.ceil(max(xticks)) != float(totalWidth):
tickscale = float(totalWidth) / max(xticks)
xticks_use = [x * tickscale for x in xticks]
else:
xticks_use = xticks
xticks_use = [np.ceil(x) for x in xticks_use]
fig['layout']['xaxis{}'.format(i + 1)].update(tickmode='array', tickvals=xticks_use, ticktext=xtickslabel, tickangle=self.label_rotation)
# Set the y limits
for i in range(self.numplots):
yaxis = 'yaxis{}'.format(i + 1)
yRange = [yMin, yMax]
if self.y_min[i % len(self.y_min)] is not None:
yRange[0] = self.y_min[i % len(self.y_min)]
if self.y_max[i % len(self.y_max)] is not None:
yRange[1] = self.y_max[i % len(self.y_max)]
fig['layout'][yaxis].update(range=yRange)
fig.add_traces(data)
fig['layout']['annotations'] = annos
py.plot(fig, filename=self.out_file_name, auto_open=False)
def main(args=None):
args = process_args(args)
hm = heatmapper.heatmapper()
matrix_file = args.matrixFile.name
args.matrixFile.close()
hm.read_matrix_file(matrix_file)
if hm.parameters['min threshold'] is not None or hm.parameters['max threshold'] is not None:
filterHeatmapValues(hm, hm.parameters['min threshold'], hm.parameters['max threshold'])
if args.kmeans is not None:
hm.matrix.hmcluster(args.kmeans, method='kmeans', clustering_samples=args.clusterUsingSamples)
else:
if args.hclust is not None:
print("Performing hierarchical clustering."
"Please note that it might be very slow for large datasets.\n")
hm.matrix.hmcluster(args.hclust, method='hierarchical', clustering_samples=args.clusterUsingSamples)
group_len_ratio = np.diff(hm.matrix.group_boundaries) / float(len(hm.matrix.regions))
if np.any(group_len_ratio < 5.0 / 1000):
problem = np.flatnonzero(group_len_ratio < 5.0 / 1000)
sys.stderr.write("WARNING: Group '{}' is too small for plotting, you might want to remove it. \n".format(hm.matrix.group_labels[problem[0]]))
if args.regionsLabel:
hm.matrix.set_group_labels(args.regionsLabel)
if args.samplesLabel and len(args.samplesLabel):
hm.matrix.set_sample_labels(args.samplesLabel)
if args.outFileNameData:
hm.save_tabulated_values(args.outFileNameData, reference_point_label=args.refPointLabel,
start_label=args.startLabel,
end_label=args.endLabel,
averagetype=args.averageType)
if args.outFileSortedRegions:
hm.save_BED(args.outFileSortedRegions)
prof = Profile(hm, args.outFileName,
plot_title=args.plotTitle,
y_axis_label=args.yAxisLabel,
y_min=args.yMin, y_max=args.yMax,
averagetype=args.averageType,
reference_point_label=args.refPointLabel,
start_label=args.startLabel,
end_label=args.endLabel,
plot_height=args.plotHeight,
plot_width=args.plotWidth,
per_group=args.perGroup,
plot_type=args.plotType,
image_format=args.plotFileFormat,
color_list=args.colors,
legend_location=args.legendLocation,
plots_per_row=args.numPlotsPerRow,
label_rotation=args.label_rotation,
dpi=args.dpi)
if args.plotType == 'heatmap':
prof.plot_heatmap()
elif args.plotType == 'overlapped_lines':
prof.plot_hexbin()
else:
prof.plot_profile()
|