1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
#!/usr/bin/env python
from deeptoolsintervals import tree
from deeptoolsintervals.parse import GTF, openPossiblyCompressed
import sys
from os.path import basename
import csv
class Enrichment(GTF):
"""
This is like the GTF object, but has no groups or exons (but a "features" list). BED files are given a 'peaks' feature and GTF files use column 3.
"""
def parseBEDcore(self, line, ncols, feature):
strand = 3
cols = line.split("\t")
if int(cols[1]) < 0:
cols[1] = 0
if int(cols[1]) >= int(cols[2]):
sys.stderr.write("Warning: {0}:{1}-{2} is an invalid BED interval! Ignoring it.\n".format(cols[0], cols[1], cols[2]))
return
# BED6/BED12: set name and strand
score = '.'
if ncols > 3:
if cols[5] == '+':
strand = 0
elif cols[5] == '-':
strand = 1
score = cols[4]
if ncols != 12 or self.keepExons is False:
self.tree.addEnrichmentEntry(self.mungeChromosome(cols[0]), int(cols[1]), int(cols[2]), strand, score, feature)
else:
starts = cols[11].strip(",").split(",")
widths = cols[10].strip(",").split(",")
starts = [int(x) + int(cols[1]) for x in starts]
ends = [x + int(y) for x, y in zip(starts, widths)]
for x, y in zip(starts, ends):
self.tree.addEnrichmentEntry(self.mungeChromosome(cols[0]), x, y, strand, score, feature)
def parseBED(self, fp, line, ncols=3, feature='peaks', labelColumn=None):
"""
parse a BED file. The default feature label is 'peaks'
fp: A python file pointer
line: The first line
ncols: The number of columns to care about
feature: The feature label
labelColumn: If this isn't None, it overrides the 'feature' option
>>> from deeptoolsintervals import enrichment
>>> from os.path import dirname
>>> gtf = enrichment.Enrichment("{0}/test/GRCh38.84.bed".format(dirname(enrichment.__file__)), keepExons=True)
>>> o = gtf.findOverlaps("1", [(1, 3000000)])
>>> assert(o == frozenset(['GRCh38.84.bed']))
>>> o = gtf.findOverlaps("chr1", [(1, 3000000)])
>>> assert(o == frozenset(['GRCh38.84.bed']))
>>> gtf = enrichment.Enrichment("{0}/test/GRCh38.84.bed".format(dirname(enrichment.__file__)), keepExons=True, attributeKey="gene_biotype")
>>> o = gtf.findOverlaps("1", [(1, 3000000)])
>>> assert(o == frozenset(['None']))
"""
# Handle the first line
if labelColumn is not None:
cols = line.split("\t")
feature = cols.pop(labelColumn)
line = "\t".join(cols)
self.parseBEDcore(line, ncols, feature)
if feature not in self.features:
self.features.append(feature)
# iterate over the remaining lines
for line in fp:
if not isinstance(line, str):
line = line.decode('ascii')
line = line.strip()
if len(line) == 0:
# Apparently this happens, some people seem to like trying to break things
continue
if line.startswith("#"):
continue
else:
if labelColumn is not None:
cols = line.split("\t")
feature = cols.pop(labelColumn)
line = "\t".join(cols)
self.parseBEDcore(line, ncols, feature)
if feature not in self.features:
self.features.append(feature)
def parseGTF(self, fp, line):
"""
>>> from deeptoolsintervals import enrichment
>>> from os.path import dirname
>>> gtf = enrichment.Enrichment("{0}/test/GRCh38.84.gtf.gz".format(dirname(enrichment.__file__)), keepExons=True)
>>> o = gtf.findOverlaps("1", [(0, 2000000)])
>>> assert(o == frozenset(['start_codon', 'exon', 'stop_codon', 'CDS', 'gene', 'transcript', 'group 1', 'group 2']))
>>> gtf = enrichment.Enrichment("{0}/test/GRCh38.84.gtf.gz".format(dirname(enrichment.__file__)), keepExons=True, attributeKey="gene_biotype")
>>> o = gtf.findOverlaps("1", [(0, 2000000)])
>>> assert(o == frozenset(['miRNA', 'group 1', 'group 2', 'transcribed_unprocessed_pseudogene', 'processed_pseudogene', 'lincRNA', 'unprocessed_pseudogene', 'protein_coding']))
"""
# Handle the first line
cols = line.split("\t")
strand = 3
if cols[6] == '+':
strand = 0
elif cols[6] == '-':
strand = 1
feature = cols[2]
if self.attributeKey:
feature = "None"
if self.attributeKey in cols[8]:
s = next(csv.reader([cols[8]], delimiter=' '))
if s[-1] != self.attributeKey:
feature = s[s.index(self.attributeKey) + 1].rstrip(";")
if "deepTools_group" in cols[8]:
s = next(csv.reader([cols[8]], delimiter=' '))
if s[-1] != "deepTools_group":
feature = s[s.index("deepTools_group") + 1].rstrip(";")
self.tree.addEnrichmentEntry(self.mungeChromosome(cols[0]), int(cols[3]) - 1, int(cols[4]), strand, cols[5], feature)
if feature not in self.features:
self.features.append(feature)
# Handle the remaining lines
for line in fp:
if not isinstance(line, str):
line = line.decode('ascii')
if not line.startswith('#'):
cols = line.split("\t")
if len(cols) == 0:
continue
strand = 3
if cols[6] == '+':
strand = 0
elif cols[6] == '-':
strand = 1
feature = cols[2]
if self.attributeKey:
feature = "None"
if self.attributeKey in cols[8]:
s = next(csv.reader([cols[8]], delimiter=' '))
if s[-1] != self.attributeKey:
feature = s[s.index(self.attributeKey) + 1].rstrip(";")
if "deepTools_group" in cols[8]:
s = next(csv.reader([cols[8]], delimiter=" "))
if s[-1] != "deepTools_group":
feature = s[s.index("deepTools_group") + 1].rstrip(";")
self.tree.addEnrichmentEntry(self.mungeChromosome(cols[0]), int(cols[3]) - 1, int(cols[4]), strand, cols[5], feature)
if feature not in self.features:
self.features.append(feature)
def __init__(self, fnames, keepExons=False, attributeKey=None, labels=None, verbose=False):
"""
Driver function to actually parse files. The steps are as follows:
1) skip to the first non-comment line
2) Infer the type from that
3) Call a type-specific processing function accordingly
* These call the underlying C code for storage
* These handle chromsome name conversions (python-level)
Required inputs are as follows:
fnames: A list of (possibly compressed with gzip or bzip2) GTF or BED files.
Optional input is:
keepExons: For BED12 files, exons are ignored by default.
attributeKey: If specified, ignore the "feature" column and instead parse the value of
the given attribute key. This can be used to allow computing overlaps of
gene_biotype and other generic tags. If the tag is missing, "None" is used.
Note that the presence of a deepTools_group tag will always override this!
labels: Override the feature labels supplied in the file(s).
Note that this might instead be replaced later in the .features attribute.
verbose: Whether to print warnings (default: False)
"""
self.fname = []
self.filename = ""
self.chroms = []
self.features = []
self.tree = tree.initTree()
self.keepExons = keepExons
self.verbose = verbose
self.attributeKey = attributeKey
if not isinstance(fnames, list):
fnames = [fnames]
# Load the files
for labelIdx, fname in enumerate(fnames):
self.filename = fname
fp = openPossiblyCompressed(fname)
line, labelColumn = self.firstNonComment(fp)
if line is None:
# This will only ever happen if a file is empty or just has a header/comment
continue
line = line.strip()
ftype = self.inferType(fp, line, labelColumn)
if ftype != 'GTF' and labels is not None:
assert(len(labels) > labelIdx)
bname = labels[labelIdx]
else:
bname = basename(fname)
feature = "None" if attributeKey is not None else bname
if ftype == 'GTF':
self.parseGTF(fp, line)
elif ftype == 'BED3':
self.parseBED(fp, line, 3, feature=feature, labelColumn=labelColumn)
elif ftype == 'BED6':
self.parseBED(fp, line, 6, feature=feature, labelColumn=labelColumn)
else:
self.parseBED(fp, line, 12, feature=feature, labelColumn=labelColumn)
fp.close()
# Sanity check
if self.tree.countEntries() == 0:
raise RuntimeError("None of the input BED/GTF files had valid regions")
if len(self.features) == 0:
raise RuntimeError("There were no valid feature labels!")
# vine -> tree
self.tree.finish()
# findOverlaps()
def findOverlaps(self, chrom, blocks, strand=".", matchType=0, strandType=0):
"""
Given a chromosome and start/end coordinates with an optional strand,
return a frozenset of the overlap features.
If there are no overlaps, return None. This function allows stranded
searching, though the default is to ignore strand!
The non-obvious options are defined in gtf.h:
matchType: 0, GTF_MATCH_ANY
1, GTF_MATCH_EXACT
2, GTF_MATCH_CONTAIN
3, GTF_MATCH_WITHIN
4, GTF_MATCH_START
5, GTF_MATCH_END
strandType: 0, GTF_IGNORE_STRAND
1, GTF_SAME_STRAND
2, GTF_OPPOSITE_STRAND
3, GTF_EXACT_SAME_STRAND
"""
chrom = self.mungeChromosome(chrom, append=False)
if not chrom:
return None
# Ensure that this is a tree and has entries
if self.tree.countEntries() == 0:
return None
if not self.tree.isTree():
raise RuntimeError('The GTFtree is actually a vine! There must have been an error during creation (this shouldn\'t happen)...')
# Convert the strand to a number
if strand == '+':
strand = 1
elif strand == '-':
strand = 2
else:
strand = 0
oset = frozenset()
for block in blocks:
overlaps = self.tree.findOverlappingFeatures(chrom, int(block[0]), int(block[1]), strand, matchType, strandType)
if overlaps is not None:
oset = oset.union(frozenset(overlaps))
return oset
|