1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
/////////////////////////////////////////////////////////////
// //
// Copyright (c) 2007-2014 by The University of Queensland //
// Centre for Geoscience Computing //
// http://earth.uq.edu.au/centre-geoscience-computing //
// //
// Primary Business: Brisbane, Queensland, Australia //
// Licensed under the Open Software License version 3.0 //
// http://www.opensource.org/licenses/osl-3.0.php //
// //
/////////////////////////////////////////////////////////////
#ifndef __VECTOR3_HH
#define __VECTOR3_HH
//#include "Foundation/Matrix3.h"
//the error...
/*
VECTOR3_INLINE VecErr::VecErr(const string& m):MError(m)
{
message.insert(0,"Vector3 ");
}
*/
// constructors
VECTOR3_INLINE Vector3::Vector3()
{
data[0]=0;
data[1]=0;
data[2]=0;
}
VECTOR3_INLINE Vector3::Vector3(double s)
{
data[0]=s;
data[1]=s;
data[2]=s;
}
VECTOR3_INLINE Vector3::Vector3(double a,double b,double c)
{
data[0]=a;
data[1]=b;
data[2]=c;
}
VECTOR3_INLINE Vector3::Vector3(const Vector3& rhs)
{
data[0]=rhs.data[0];
data[1]=rhs.data[1];
data[2]=rhs.data[2];
}
// operators
VECTOR3_INLINE Vector3& Vector3::operator=(const Vector3& rhs)
{
data[0]=rhs.data[0];
data[1]=rhs.data[1];
data[2]=rhs.data[2];
return *this;
}
VECTOR3_INLINE Vector3& Vector3::operator=(double s)
{
data[0]=s;
data[1]=s;
data[2]=s;
return *this;
}
VECTOR3_INLINE Vector3& Vector3::operator-=(const Vector3& rhs)
{
data[0]-=rhs.data[0];
data[1]-=rhs.data[1];
data[2]-=rhs.data[2];
return *this;
}
VECTOR3_INLINE Vector3& Vector3::operator+=(const Vector3& rhs)
{
data[0]+=rhs.data[0];
data[1]+=rhs.data[1];
data[2]+=rhs.data[2];
return *this;
}
VECTOR3_INLINE Vector3 Vector3::operator+(const Vector3& rhs) const
{
return Vector3(data[0]+rhs.data[0], data[1]+rhs.data[1], data[2]+rhs.data[2]);
}
VECTOR3_INLINE Vector3 Vector3::operator-(const Vector3& rhs) const
{
return Vector3(data[0]-rhs.data[0], data[1]-rhs.data[1], data[2]-rhs.data[2]);
}
VECTOR3_INLINE Vector3 Vector3::operator-() const
{
return Vector3( -data[0],-data[1],-data[2] );
}
/*
VECTOR3_INLINE Vector3 Vector3::operator*(const Matrix3 &m) const
{
const double x = m(0,0)*data[0] + m(1,0)*data[1] + m(2,0)*data[2];
const double y = m(0,1)*data[0] + m(1,1)*data[1] + m(2,1)*data[2];
const double z = m(0,2)*data[0] + m(1,2)*data[1] + m(2,2)*data[2];
return Vector3(x,y,z);
}
*/
VECTOR3_INLINE double Vector3::operator*(const Vector3& rhs) const
{
return data[0]*rhs.data[0]+data[1]*rhs.data[1]+data[2]*rhs.data[2];
}
VECTOR3_INLINE Vector3 Vector3::operator*(double s) const
{
return Vector3(data[0]*s,data[1]*s,data[2]*s) ;
}
VECTOR3_INLINE Vector3& Vector3::operator*=(double rhs)
{
data[0]*=rhs;
data[1]*=rhs;
data[2]*=rhs;
return *this;
}
VECTOR3_INLINE Vector3& Vector3::operator/=(double c)
{
data[0] /= c;
data[1] /= c;
data[2] /= c;
return *this;
}
VECTOR3_INLINE Vector3 Vector3::operator/(double s) const
{
return Vector3(data[0]/s,data[1]/s,data[2]/s) ;
}
VECTOR3_INLINE Vector3 Vector3::operator+(double s) const
{
return Vector3(data[0]+s, data[1]+s, data[2]+s) ;
}
VECTOR3_INLINE Vector3 Vector3::operator-(double s) const
{
return Vector3(data[0]-s, data[1]-s, data[2]-s);
}
VECTOR3_INLINE Vector3 Vector3::rotate(const Vector3 &axis, const Vector3 &axisPt) const
{
const double phi = axis.norm();
if (phi > 0.0)
{
const Vector3 r = *this - axisPt;
const Vector3 n = axis/phi;
const double cosPhi = cos(phi);
const Vector3 rotatedR =
r*cosPhi + n*((dot(n, r))*(1-cosPhi)) + cross(r, n)*sin(phi);
return rotatedR + axisPt;
}
return *this;
}
VECTOR3_INLINE Vector3 &Vector3::operator+=(double s)
{
data[0] += s;
data[1] += s;
data[2] += s;
return *this;
}
VECTOR3_INLINE Vector3 &Vector3::operator-=(double s)
{
data[0] -= s;
data[1] -= s;
data[2] -= s;
return *this;
}
// vector product
// 9 Flops ( 6 mult, 3 sub )
VECTOR3_INLINE Vector3 cross(const Vector3& lhs,const Vector3& rhs)
{
return Vector3(lhs.data[1]*rhs.data[2]-lhs.data[2]*rhs.data[1],
lhs.data[2]*rhs.data[0]-lhs.data[0]*rhs.data[2],
lhs.data[0]*rhs.data[1]-lhs.data[1]*rhs.data[0]);
}
// dot product
VECTOR3_INLINE double dot(const Vector3& v1, const Vector3& v2)
{
return v1.data[0] * v2.data[0] +
v1.data[1] * v2.data[1] +
v1.data[2] * v2.data[2];
}
VECTOR3_INLINE Vector3 operator*(double f,const Vector3& rhs)
{
return Vector3(f*rhs.data[0], f*rhs.data[1], f*rhs.data[2]);
}
// euclidian norm
// 6 Flops ( 3 mult, 2 add, 1 sqrt )
VECTOR3_INLINE double Vector3::norm() const
{
return sqrt(data[0]*data[0]+data[1]*data[1]+data[2]*data[2]);
}
// weighted euclidian norm
VECTOR3_INLINE double Vector3::wnorm(double wx, double wy, double wz) const
{
double dx=data[0]/wx;
double dy=data[1]/wy;
double dz=data[2]/wz;
return sqrt(dx*dx+dy*dy+dz*dz);
}
// square of weighted euclidian norm
VECTOR3_INLINE double Vector3::wnorm2(double wx, double wy, double wz) const
{
double dx=data[0]/wx;
double dy=data[1]/wy;
double dz=data[2]/wz;
return dx*dx+dy*dy+dz*dz;
}
// square of the euclidian norm
// 5 Flops ( 3 mult, 2 add)
VECTOR3_INLINE double Vector3::norm2() const
{
return data[0]*data[0]+data[1]*data[1]+data[2]*data[2];
}
// returns unit vector in direction of the original vector
// 9 Flops ( 3 mult, 2 add, 3 div, 1 sqrt )
VECTOR3_INLINE Vector3 Vector3::unit() const
{
return (*this)/norm();
}
// per element min/max
VECTOR3_INLINE Vector3 cmax(const Vector3& v1,const Vector3& v2)
{
Vector3 res;
res.data[0]=v1.data[0]>v2.data[0] ? v1.data[0] : v2.data[0];
res.data[1]=v1.data[1]>v2.data[1] ? v1.data[1] : v2.data[1];
res.data[2]=v1.data[2]>v2.data[2] ? v1.data[2] : v2.data[2];
return res;
}
VECTOR3_INLINE Vector3 cmin(const Vector3& v1,const Vector3& v2)
{
Vector3 res;
res.data[0]=v1.data[0]<v2.data[0] ? v1.data[0] : v2.data[0];
res.data[1]=v1.data[1]<v2.data[1] ? v1.data[1] : v2.data[1];
res.data[2]=v1.data[2]<v2.data[2] ? v1.data[2] : v2.data[2];
return res;
}
// save version, throws exception if norm()==0
/*
VECTOR3_INLINE Vector3 Vector3::unit_s() const
{
double n=norm();
if(n==0) throw VecErr("norm() of data[2]ero-vector");
Vector3 res(data[0],data[1],data[2]);
return res/n;
}
*/
VECTOR3_INLINE double Vector3::max() const
{
double m = ( data[0]>data[1] ? data[0] : data[1] );
return ( m>data[2] ? m : data[2] );
}
VECTOR3_INLINE double Vector3::min() const
{
double m = ( data[0]<data[1] ? data[0] : data[1] );
return ( m<data[2] ? m : data[2] );
}
VECTOR3_INLINE bool Vector3::operator==(const Vector3& V) const
{
return((data[0]==V.data[0])&&(data[1]==V.data[1])&&(data[2]==V.data[2]));
}
VECTOR3_INLINE bool Vector3::operator!=(const Vector3& V) const
{
return((data[0]!=V.data[0])||(data[1]!=V.data[1])||(data[2]!=V.data[2]));
}
// per component min/max
VECTOR3_INLINE Vector3 comp_max(const Vector3& V1,const Vector3& V2)
{
double x=(V1.x() > V2.x()) ? V1.x() : V2.x();
double y=(V1.y() > V2.y()) ? V1.y() : V2.y();
double z=(V1.z() > V2.z()) ? V1.z() : V2.z();
return Vector3(x,y,z);
}
VECTOR3_INLINE Vector3 comp_min(const Vector3& V1,const Vector3& V2)
{
double x=(V1.x() < V2.x()) ? V1.x() : V2.x();
double y=(V1.y() < V2.y()) ? V1.y() : V2.y();
double z=(V1.z() < V2.z()) ? V1.z() : V2.z();
return Vector3(x,y,z);
}
// in/output
VECTOR3_INLINE std::ostream& operator << (std::ostream& ostr,const Vector3& V)
{
const char delimiter = ' ';
ostr
<< V.data[0] << delimiter
<< V.data[1] << delimiter
<< V.data[2];
return ostr;
}
VECTOR3_INLINE std::istream& operator >> (std::istream& istr,Vector3& V)
{
istr
>> V.data[0]
>> V.data[1]
>> V.data[2];
return istr;
}
#endif // __VECTOR3_HH
|