1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
#############################################################
## ##
## Copyright (c) 2007-2017 by The University of Queensland ##
## Centre for Geoscience Computing ##
## http://earth.uq.edu.au/centre-geoscience-computing ##
## ##
## Primary Business: Brisbane, Queensland, Australia ##
## Licensed under the Open Software License version 3.0 ##
## http://www.apache.org/licenses/LICENSE-2.0 ##
## ##
#############################################################
from gengeo import *
#An example python script to generate a union/intersection of two volumes
# Define region extremities:
maxRadius = 1.0
size = 20.0
minPoint = Vector3(0.0,0.0,0.0)
maxPoint = Vector3(size,size,size)
minPt = Vector3(0,0,0)
maxPt = Vector3(size,0.5*size,size)
# Define the first volume to be filled with spheres:
box = BoxWithPlanes3D (
minPoint = minPt,
maxPoint = maxPt
)
box.addPlane(
Plane(
origin = minPt,
normal = Vector3(1.0,0.0,0.0)
)
)
#or the compact form:
box.addPlane(Plane(minPt, Vector3(0.0,1.0,0.0)))
box.addPlane(Plane(minPt, Vector3(0.0,0.0,1.0)))
box.addPlane(Plane(maxPt, Vector3(-1.0,0.0,0.0)))
box.addPlane(Plane(maxPt, Vector3(0.0,-1.0,0.0)))
box.addPlane(Plane(maxPt, Vector3(0.0,0.0,-1.0)))
sphere = SphereVol (
centre = Vector3(0.5*size,0.5*size,0.5*size),
radius = 0.5*size
)
sphere1 = SphereVol (
centre = Vector3(0.5*size,0.75*size,0.5*size),
radius = 0.5*size
)
sphere2 = SphereVol (
centre = Vector3(0.5*size,0.25*size,0.5*size),
radius = 0.5*size
)
cylinder = CylinderVol (
origin = Vector3 (0.5*size,0,0.5*size),
axis = Vector3 (0,1,0),
length = 0.5*size,
radius = 0.5*size
)
cylinder2 = CylinderVol (
origin = Vector3 (0.5*size,0,0.5*size),
axis = Vector3 (0,1,0),
length = 0.5*size,
radius = 0.4*size
)
cylinder3 = CylinderVol (
origin = Vector3 (0.5*size,0.25*size,0.5*size),
axis = Vector3 (0,1,0),
length = 0.5*size,
radius = 0.3*size
)
unionVol = UnionVol (
volume1 = sphere,
volume2 = cylinder
)
intersectionVol = IntersectionVol (
volume1 = sphere1,
volume2 = sphere2
)
differenceVol = DifferenceVol (
volume1 = cylinder,
volume2 = cylinder2
)
differenceVol2 = DifferenceVol (
volume1 = cylinder,
volume2 = sphere1
)
differenceVol3 = DifferenceVol (
volume1 = cylinder,
volume2 = cylinder3
)
# Create a multi-group neighbour table to contain the particles:
mntable = MNTable3D (
minPoint = minPoint,
maxPoint = maxPoint,
gridSize = 2.5*maxRadius
)
# Fill the volume with particles:
packer = InsertGenerator3D (
minRadius = 0.2,
maxRadius = maxRadius,
insertFails = 1000,
maxIterations = 1000,
tolerance = 1.0e-6
)
packer.generatePacking(
# volume = unionVol,
# volume = intersectionVol,
# volume = differenceVol,
volume = differenceVol2,
# volume = differenceVol3,
# volume = cylinder,
ntable = mntable
)
# create bonds between neighbouring particles:
mntable.generateBonds(
tolerance = 1.0e-5,
bondID = 0
)
mntable.tagParticlesInVolume (
volume = differenceVol,
tag = 12345
)
# write a geometry file
mntable.write(
fileName = "temp/geo_example10.vtu",
outputStyle = 2
)
mntable.write(
fileName = "temp/geo_example10.raw",
outputStyle = 0
)
mntable.write(
fileName = "temp/geo_example10.geo",
outputStyle = 1
)
|