1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
#############################################################
## ##
## Copyright (c) 2007-2017 by The University of Queensland ##
## Centre for Geoscience Computing ##
## http://earth.uq.edu.au/centre-geoscience-computing ##
## ##
## Primary Business: Brisbane, Queensland, Australia ##
## Licensed under the Open Software License version 3.0 ##
## http://www.apache.org/licenses/LICENSE-2.0 ##
## ##
#############################################################
#from __future__ import print_function
from __future__ import division
from gengeo import Sphere, Vector3, Line2D, BoxWithLines2D, MNTable2D, InsertGenerator2D
from random import random
# An example python script to generate a bonded rectangle of particles
# and cluster the particles inside the rectangle
# Define region extremities:
xsize=20.0
ysize=20.0
minPoint = Vector3(0.0,0.0,0.0)
maxPoint = Vector3(xsize,ysize,0.0)
# Define the geometrical constraints for packing
# (e.g. lines bordering a rectangular region in 2D)
top_line = Line2D (
startPoint = Vector3(xsize,0.0,0.0),
endPoint = minPoint
)
bottom_line = Line2D (
startPoint = maxPoint,
endPoint = Vector3(0.0,ysize,0.0)
)
left_line = Line2D (
startPoint = Vector3(xsize,0.0,0.0),
endPoint = maxPoint
)
right_line = Line2D (
startPoint = minPoint,
endPoint = Vector3(0.0,ysize,0.0)
)
# Define the Volume to be filled with spheres:
box = BoxWithLines2D (
minPoint = minPoint,
maxPoint = maxPoint
)
box.addLine(top_line)
box.addLine(bottom_line)
box.addLine(left_line)
box.addLine(right_line)
# Create a multi-group neighbour table to contain the particles:
mntable = MNTable2D (
minPoint = minPoint,
maxPoint = maxPoint,
gridSize = 2.5,
numGroups = 2
)
# Fill the volume with particles:
packer = InsertGenerator2D (
minRadius = 0.1,
maxRadius = 1.0,
insertFails = 1000,
maxIterations = 1000,
tolerance = 1.0e-6,
seed=0
)
packer.generatePacking( volume = box, ntable = mntable, groupID = 0, tag = 0)
# insert zero-radius particles in group 2 as a cluster seeds
# use randomly disturbed square grid
nx=5
ny=5
for i in range(nx):
for j in range(ny):
xpos=(float(i)+random())*xsize/float(nx)
ypos=(float(j)+random())*ysize/float(ny)
cseed=Sphere(Vector3(xpos,ypos,0.0),0.0)
# cseed.setTag(i*ny+j)
cseed.setTag(int(random()*nx*ny))
mntable.insert(
sphere=cseed,
groupID=1
)
#print("xpos: ",xpos)
mntable.tagParticlesToClosest(
groupID1=0,
groupID2=1
)
# create cluster bonds between neighbouring particles
# bonds between particles with the same tag will have bondTag1
# bonds between particles with different tags will have bondTag2
mntable.generateClusterBonds(
groupID = 0,
tolerance = 1.0e-5,
bondTag1 = 0,
bondTag2 = 1,
)
# write a geometry file
mntable.write(
fileName = "temp/cluster.geo",
outputStyle = 1
)
# write a vtk file
mntable.write(
fileName = "temp/cluster.vtu",
outputStyle = 2
)
|