File: PKG-INFO

package info (click to toggle)
python-dendropy 4.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 68,392 kB
  • ctags: 3,947
  • sloc: python: 41,840; xml: 1,400; makefile: 15
file content (135 lines) | stat: -rw-r--r-- 5,584 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
Metadata-Version: 1.1
Name: DendroPy
Version: 4.2.0
Summary: A Python library for phylogenetics and phylogenetic computing: reading, writing, simulation, processing and manipulation of phylogenetic trees (phylogenies) and characters.
Home-page: http://packages.python.org/DendroPy/
Author: Jeet Sukumaran and Mark T. Holder
Author-email: jeetsukumaran@gmail.com and mtholder@ku.edu
License: BSD
Description: .. image:: https://raw.githubusercontent.com/jeetsukumaran/DendroPy/DendroPy4/doc/source/_static/dendropy_logo.png
           :align: right
           :alt: DendroPy
        
        DendroPy is a Python library for phylogenetic computing.
        It provides classes and functions for the simulation, processing, and
        manipulation of phylogenetic trees and character matrices, and supports the
        reading and writing of phylogenetic data in a range of formats, such as NEXUS,
        NEWICK, NeXML, Phylip, FASTA, etc.  Application scripts for performing some
        useful phylogenetic operations, such as data conversion and tree posterior
        distribution summarization, are also distributed and installed as part of the
        libary.  DendroPy can thus function as a stand-alone library for phylogenetics,
        a component of more complex multi-library phyloinformatic pipelines, or as a
        scripting "glue" that assembles and drives such pipelines.
        
        The primary home page for DendroPy, with detailed tutorials and documentation, is at:
        
            http://dendropy.org/
        
        DendroPy is also hosted in the official Python repository:
        
            http://packages.python.org/DendroPy/
        
        Requirements and Installation
        =============================
        
        DendroPy 4.x runs under Python 3 (all versions > 3.1) and Python 2 (Python 2.7 only).
        
        You can install DendroPy by running::
        
            $ sudo pip install dendropy
        
        More information is available here:
        
            http://dendropy.org/downloading.html
        
        Documentation
        =============
        
        Full documentation is available here:
        
            http://dendropy.org/
        
        This includes:
        
            -   `A comprehensive "getting started" primer <http://dendropy.org/primer/index.html>`_ .
            -   `API documentation <http://dendropy.org/library/index.html>`_ .
            -   `Descriptions of data formats supported for reading/writing <http://dendropy.org/schemas/index.html>`_ .
        
        and more.
        
        Testing
        =======
        
        .. note::
        
            Note that some tests rely on PAUP* being available on your system.
            You will need to set the environmental variable ``DENDROPY_PAUP_EXECUTABLE_PATH`` to the path
            of the PAUP* executable for these tests to be run, e.g.::
        
                DENDROPY_PAUP_EXECUTABLE_PATH=/usr/local/bin/paup python setup.py test
        
            or::
        
                DENDROPY_PAUP_EXECUTABLE_PATH=/usr/local/bin/paup python -m dendropy.test
        
            If this variable is not set or set to "NONE", then any tests that rely on
            PAUP* will NOT be run.
        
        Tests can be run by typing::
        
            $ python -m dendropy.test
        
        By default, all tests are run. You can run specific by providing the
        fully-qualified name of the modules, test cases, or specific test methods to
        run, e.g.::
        
            $ python -m dendropy.test test_tokenizer
            $ python -m dendropy.test test_tokenizer.TestCase
            $ python -m dendropy.test test_tokenizer.TestCase.test1
            $ python -m dendropy.test test_tokenizer test_datamodel_taxon
        
        Or special pre-defined sub-groups of tests, e.g.::
        
            $ python -m dendropy.test @datamodel
            $ python -m dendropy.test @dataio
            $ python -m dendropy.test @datamodel @newick
        
        A list of all available sub-groups can be seen by::
        
            $ python -m dendropy.test --help-testgroups
        
        For any tests run, you can set the level at which the test progress is logged
        by::
        
            $ python -m dendropy.test -l DEBUG all
        
        For all options, type::
        
            $ python -m dendropy.test --help
        
        License and Warranty
        ====================
        
        Please see the file "LICENSE.rst" for details.
        
        Current Release
        ===============
        
        The current release of DendroPy is version 4.2.0 (master-5051a46, 2016-12-28 13:25:19).
        
        
Keywords: phylogenetics phylogeny phylogenies phylogeography evolution evolutionary biology systematics coalescent population genetics phyloinformatics bioinformatics
Platform: UNKNOWN
Classifier: Intended Audience :: Developers
Classifier: Intended Audience :: Science/Research
Classifier: License :: OSI Approved :: BSD License
Classifier: Natural Language :: English
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python :: 2.7
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3.1
Classifier: Programming Language :: Python :: 3.2
Classifier: Programming Language :: Python :: 3.3
Classifier: Programming Language :: Python :: 3.4
Classifier: Programming Language :: Python
Classifier: Topic :: Scientific/Engineering :: Bio-Informatics