File: phylogeneticdistance.py

package info (click to toggle)
python-dendropy 4.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 68,392 kB
  • ctags: 3,947
  • sloc: python: 41,840; xml: 1,400; makefile: 15
file content (1569 lines) | stat: -rw-r--r-- 65,601 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
#! /usr/bin/env python

##############################################################################
##  DendroPy Phylogenetic Computing Library.
##
##  Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
##  All rights reserved.
##
##  See "LICENSE.rst" for terms and conditions of usage.
##
##  If you use this work or any portion thereof in published work,
##  please cite it as:
##
##     Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
##     for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################

"""
Taxon-to-taxon phylogenetic distances.
"""

import math
import collections
import csv
from dendropy.calculate import statistics
from dendropy.utility import GLOBAL_RNG
from dendropy.utility import container
from dendropy.utility import error
import dendropy

class PhylogeneticDistanceMatrix(object):
    """
    Calculates and maintains patristic distance information of taxa on a tree.
    """

    @classmethod
    def from_tree(cls, tree):
        """
        Creates and returns a |PhylogeneticDistanceMatrix| based
        on the given tree.

        Note that this creates a "snapshot" of the current state of the tree.
        Subsequent changes to the tree will not be reflected in
        |PhylogeneticDistanceMatrix| instances previously created.

        Also note that syntactically you may prefer to use::

            pdm = tree.phylogenetic_distance_matrix()

        instead of::

            pdm = PhylogeneticDistanceMatrix.from_tree(tree)

        Parameters
        ----------
        tree : a |Tree| instance
            The |Tree| from which to get the phylogenetic distances.

        Returns
        -------
        pdm : A |PhylogeneticDistanceMatrix| instance

        Examples
        --------

        ::

            import dendropy
            tree = dendropy.Tree.get(path="tree.nex",
                    schema="nexus")
            pdm1 = dendropy.PhylogeneticDistanceMatrix.from_tree(tree)

            # following is equivalent to above and probably preferred:
            pdm2 = tree.phylogenetic_distance_matrix()

        """
        pdm = cls()
        pdm.compile_from_tree(tree=tree)
        return pdm

    @classmethod
    def from_csv(cls,
            src,
            taxon_namespace=None,
            is_allow_new_taxa=None,
            is_first_row_column_names=True,
            is_first_column_row_names=True,
            default_data_type=float,
            label_transform_fn=None,
            **csv_reader_kwargs
            ):
        """
        Instantiates a new PhylogeneticDistanceMatrix instance with data
        from an external source.

        Parameters
        ----------
        src : file or file-like
            Source of data. This is a token delimited-file (e.g., a
            comma-delimited or tab-delimited file) providing a table which
            lists taxon labels in both rows and columns. The cells of the table
            are numeric (typically real) values that indicate the distance
            between the taxa of the current row and column. Note that *only*
            the upper right section of the table is considered. The diagonals
            values are typically zeroes and, in either case, ignored along with
            the lower diagonal. Despite being ignored by the
            PhylogeneticDistanceMatrix object, the values are parsed by the
            underlying reader and thus have to be valid numerical values.
        taxon_namespace : |TaxonNamespace| instance
            The taxon namespace with which to manage taxa. If this has
            not already been pre-populated with the taxon names, then
            ``is_allow_new_taxa`` should be set to |True|.
        is_allow_new_taxa : bool
            If |False|: we do *not* expect to encounter any new taxa in the
            data file, and it is an error if we do. If |True|: we do expect to
            encounter new taxa in the data file. The default value of this
            depends on the value passed to ``taxon_namespace``. If
            ``taxon_namespace`` is ``None`` or an empty |TaxonNamespace|
            instance, then unless explicitly set to |False|,
            ``is_allow_new_taxa`` will default to |True|: allowing of creation
            of new taxa corresponding to labels found in the data source. On
            the other hand, if ``taxon_namespace`` is not None and its value is
            a |TaxonNamespace| instance with at least one taxon, unless
            explicitly set to |True|, ``is_allow_new_taxa`` will default to
            |False|, and it will be an error if taxon labels are found in the
            data source that do not correspond (exactly) to |Taxon| objects
            defined in the taxon namespace.  This is to err on the side of
            caution, to avoid (or rather, highlight) problems due to incorrect
            or mismatching labels between the data source and the current taxon
            namespace.
        is_first_row_column_names : bool
            By default |True|: assumes that first row lists the taxon names.
            Set to |False| if there is no header row.
        is_first_column_row_names : bool
            By default |True|: assumes that first column lists the taxon names.
            Set to |False| if there is now row name column.
        label_transform_fn : function object
            If not None, this should be a function object that takes a string
            as an argument and returns another string. This function will be
            applied to row and column labels before they are matched to taxon
            labels in the |TaxonNamespace| instance given by
            ``taxon_namespace``.
        \*\*csv_reader_kwargs : keyword arguments
            This arguments will be passed to the underlying CSV reader.
            The most important one is probably 'delimiter'.

        Returns
        -------
        pdm : A |PhylogeneticDistanceMatrix| instance

        Examples
        --------

        ::

            import dendropy
            pdm1 = dendropy.PhylogeneticDistanceMatrix.from_csv(
                    src=open("data.csv"),
                    delimiter=",")
            pdm2 = dendropy.PhylogeneticDistanceMatrix.from_csv(
                    src=open("data.tsv"),
                    delimiter="\t")

        """
        if taxon_namespace is None:
            taxon_namespace = dendropy.TaxonNamespace()
        if len(taxon_namespace) == 0 and is_allow_new_taxa is None:
            is_allow_new_taxa = True
        old_taxon_namespace_mutability = taxon_namespace.is_mutable
        taxon_namespace.is_mutable = is_allow_new_taxa
        data_table = container.DataTable.from_csv(
                src,
                is_first_row_column_names=is_first_row_column_names,
                is_first_column_row_names=is_first_column_row_names,
                default_data_type=default_data_type,
                label_transform_fn=label_transform_fn,
                **csv_reader_kwargs
                )
        if not is_first_row_column_names and not is_first_column_row_names:
            distances = {}
            seen_row_labels = set()
            seen_row_taxa_labels = set()
            for i1, t1_label in enumerate(data_table.row_name_iter()):
                if len(taxon_namespace) <= i1:
                    t1 = taxon_namespace.require_taxon(label=t1_label)
                else:
                    t1 = taxon_namespace[i1]
                seen_row_labels.add(t1_label)
                assert t1.label not in seen_row_taxa_labels
                seen_row_taxa_labels.add(t1.label)
                distances[t1] = {}
                for i2, t2_label in enumerate(data_table.column_name_iter()):
                    if t2_label in seen_row_labels:
                        continue
                    if len(taxon_namespace) <= i2:
                        t2 = taxon_namespace.require_taxon(label=t2_label)
                    else:
                        t2 = taxon_namespace[i2]
                    distances[t1][t2] = data_table[t1_label, t2_label]
        else:
            distances = {}
            seen_taxa = set()
            taxa = []
            if is_first_column_row_names:
                name_iter = data_table.row_name_iter()
            else:
                name_iter = data_table.column_name_iter()
            for label in name_iter:
                t1 = taxon_namespace.require_taxon(label=label)
                assert t1 not in seen_taxa
                seen_taxa.add(t1)
                taxa.append(t1)
            seen_row_taxa = set()
            for i1, t1 in enumerate(taxa):
                assert t1 in seen_taxa
                seen_row_taxa.add(t1)
                distances[t1] = {}
                for i2, t2 in enumerate(taxa):
                    if t2 in seen_row_taxa:
                        continue
                    distances[t1][t2] = data_table[i1, i2]
        # else:
            # raise NotImplementedError()

        taxon_namespace.is_mutable = old_taxon_namespace_mutability
        pdm = cls()
        pdm.compile_from_dict(
                distances=distances,
                taxon_namespace=taxon_namespace)
        return pdm

    def __init__(self):
        self.clear()

    def clear(self):
        self.taxon_namespace = None
        self._mapped_taxa = set()
        self._all_distinct_mapped_taxa_pairs = set()
        self._tree_length = None
        self._num_edges = None
        self._taxon_phylogenetic_distances = {}
        self._taxon_phylogenetic_path_steps = {}
        self._mrca = {}

    def compile_from_tree(self, tree):
        """
        Calculates the distances. Note that the path length (in number of
        steps) between taxa that span the root will be off by one if
        the tree is unrooted.
        """
        self.clear()
        self.taxon_namespace = tree.taxon_namespace
        # for i1, t1 in enumerate(self.taxon_namespace):
        #     self._taxon_phylogenetic_distances[t1] = {}
        #     self._taxon_phylogenetic_path_steps[t1] = {}
        #     self._mrca[t1] = {}
        self._tree_length = 0.0
        self._num_edges = 0
        for node in tree.postorder_node_iter():
            try:
                self._tree_length += node.edge.length
            except TypeError: # None for edge length
                pass
            self._num_edges += 1
            children = node.child_nodes()
            if len(children) == 0:
                node.desc_paths = {node : (0,0)}
            else:
                node.desc_paths = {}
                for cidx1, c1 in enumerate(children):
                    for desc1, (desc1_plen, desc1_psteps) in c1.desc_paths.items():
                        if c1.edge_length is None:
                            c1_edge_length = 0.0
                        else:
                            c1_edge_length = c1.edge.length
                        node.desc_paths[desc1] = (desc1_plen + c1_edge_length, desc1_psteps + 1)
                        assert desc1.taxon is not None
                        if desc1.taxon not in self._taxon_phylogenetic_distances:
                            self._mapped_taxa.add(desc1.taxon)
                            self._taxon_phylogenetic_distances[desc1.taxon] = {}
                            self._taxon_phylogenetic_distances[desc1.taxon][desc1.taxon] = 0.0
                            self._taxon_phylogenetic_path_steps[desc1.taxon] = {}
                            self._taxon_phylogenetic_path_steps[desc1.taxon][desc1.taxon] = 0
                            self._mrca[desc1.taxon] = {desc1.taxon: desc1}
                        for c2 in children[cidx1+1:]:
                            for desc2, (desc2_plen, desc2_psteps) in c2.desc_paths.items():
                                self._mapped_taxa.add(desc2.taxon)
                                self._mrca[desc1.taxon][desc2.taxon] = c1.parent_node
                                # self._all_distinct_mapped_taxa_pairs.add( tuple([desc1.taxon, desc2.taxon]) )
                                self._all_distinct_mapped_taxa_pairs.add( frozenset([desc1.taxon, desc2.taxon]) )
                                if c2.edge_length is None:
                                    c2_edge_length = 0.0
                                else:
                                    c2_edge_length = c2.edge.length
                                pat_dist = node.desc_paths[desc1][0] + desc2_plen + c2_edge_length
                                self._taxon_phylogenetic_distances[desc1.taxon][desc2.taxon] = pat_dist
                                path_steps = node.desc_paths[desc1][1] + desc2_psteps + 1
                                self._taxon_phylogenetic_path_steps[desc1.taxon][desc2.taxon] = path_steps
                    del(c1.desc_paths)
        self._mirror_lookups()
        # assert self._tree_length == tree.length()

    def compile_from_dict(self, distances, taxon_namespace):
        self.clear()
        self.taxon_namespace = taxon_namespace
        for t1 in distances:
            self._mapped_taxa.add(t1)
            self._taxon_phylogenetic_distances[t1] = {}
            for t2 in distances[t1]:
                self._taxon_phylogenetic_distances[t1][t2] = distances[t1][t2]
        self._mirror_lookups()

    def _mirror_lookups(self):
        for ddata in (
                self._taxon_phylogenetic_distances,
                self._taxon_phylogenetic_path_steps,
                self._mrca,
                ):
            for taxon1 in ddata:
                for taxon2 in ddata[taxon1]:
                    # assert taxon1 is not taxon2
                    if taxon2 not in ddata:
                        ddata[taxon2] = {}
                    ddata[taxon2][taxon1] = ddata[taxon1][taxon2]

    def __eq__(self, o):
        if self.taxon_namespace is not o.taxon_namespace:
            return False
        return (True
                and (self._mapped_taxa == o._mapped_taxa)
                and (self._all_distinct_mapped_taxa_pairs == o._all_distinct_mapped_taxa_pairs)
                and (self._taxon_phylogenetic_distances == o._taxon_phylogenetic_distances)
                and (self._taxon_phylogenetic_path_steps == o._taxon_phylogenetic_path_steps)
                and (self._mrca == o._mrca)
                and (self._tree_length == o._tree_length)
                and (self._num_edges == o._num_edges)
                )

    def __hash__(self):
        return id(self)

    def __call__(self, taxon1, taxon2):
        return self.patristic_distance(taxon1, taxon2)

    def __copy__(self):
        return self.clone()

    def __iter__(self):
        for taxon in self._taxon_phylogenetic_distances:
            yield taxon

    def clone(self):
        o = self.__class__()
        o.taxon_namespace = self.taxon_namespace
        o._mapped_taxa = set(self._mapped_taxa)
        o._all_distinct_mapped_taxa_pairs = set(self._all_distinct_mapped_taxa_pairs)
        o._tree_length = self._tree_length
        o._num_edges = self._num_edges
        for src, dest in (
                (self._taxon_phylogenetic_distances, o._taxon_phylogenetic_distances,),
                (self._taxon_phylogenetic_path_steps, o._taxon_phylogenetic_path_steps,),
                (self._mrca, o._mrca,),
                ):
            for t1 in src:
                dest[t1] = {}
                for t2 in src[t1]:
                    dest[t1][t2] = src[t1][t2]
        return o

    def mrca(self, taxon1, taxon2):
        """
        Returns MRCA of two taxon objects.
        """
        return self._mrca[taxon1][taxon2]

    def distance(self,
            taxon1,
            taxon2,
            is_weighted_edge_distances=True,
            is_normalize_by_tree_size=False):
        """
        Returns distance between taxon1 and taxon2.
        """
        if is_weighted_edge_distances:
            return self.patristic_distance(taxon1, taxon2, is_normalize_by_tree_size=is_normalize_by_tree_size)
        else:
            return self.path_edge_count(taxon1, taxon2, is_normalize_by_tree_size=is_normalize_by_tree_size)

    def patristic_distance(self, taxon1, taxon2, is_normalize_by_tree_size=False):
        """
        Returns patristic distance between two taxon objects.
        """
        if taxon1 is taxon2:
            return 0.0
        d = self._taxon_phylogenetic_distances[taxon1][taxon2]
        if is_normalize_by_tree_size:
            return d / self._tree_length
        else:
            return d

    def path_edge_count(self, taxon1, taxon2, is_normalize_by_tree_size=False):
        """
        Returns the number of edges between two taxon objects.
        """
        if taxon1 is taxon2:
            return 0
        d = self._taxon_phylogenetic_path_steps[taxon1][taxon2]
        if is_normalize_by_tree_size:
            return float(d) / self._num_edges
        else:
            return d

    def distances(self,
            is_weighted_edge_distances=True,
            is_normalize_by_tree_size=False):
        """
        Returns list of patristic distances.
        """
        dmatrix, normalization_factor = self._get_distance_matrix_and_normalization_factor(
                is_weighted_edge_distances=is_weighted_edge_distances,
                is_normalize_by_tree_size=is_normalize_by_tree_size,
                )
        results = []
        for t1, t2 in self._all_distinct_mapped_taxa_pairs:
            results.append(dmatrix[t1][t2]/normalization_factor)
        return results

    def max_pairwise_distance_taxa(self,
            is_weighted_edge_distances=True):
        if is_weighted_edge_distances:
            dists = self._taxon_phylogenetic_distances
        else:
            dists = self._taxon_phylogenetic_path_steps
        max_dist = None
        max_dist_taxa = None
        for t1, t2 in self._all_distinct_mapped_taxa_pairs:
            pat_dist = dists[t1][t2]
            if max_dist is None or pat_dist > max_dist:
                max_dist = pat_dist
                max_dist_taxa = (t1, t2)
        return max_dist_taxa

    def sum_of_distances(self,
            is_weighted_edge_distances=True,
            is_normalize_by_tree_size=False):
        """
        Returns sum of patristic distances on tree.
        """
        return sum(self.distances(is_weighted_edge_distances=is_weighted_edge_distances,is_normalize_by_tree_size=is_normalize_by_tree_size))

    def taxon_iter(self, filter_fn=None):
        """
        Iterates over taxa in matrix. Note that this could be a subset of the taxa in
        the associated taxon namespace.
        """
        for t1 in self._mapped_taxa:
            if not filter_fn or filter_fn(t1):
                yield t1

    def distinct_taxon_pair_iter(self, filter_fn=None):
        """
        Iterates over all distinct pairs of taxa in matrix.
        """
        for t1, t2 in self._all_distinct_mapped_taxa_pairs:
            if not filter_fn or (filter_fn(t1) and filter_fn(t2)):
                yield t1, t2

    def mean_pairwise_distance(self,
            filter_fn=None,
            is_weighted_edge_distances=True,
            is_normalize_by_tree_size=False):
        """
        Calculates the phylogenetic ecology statistic "MPD"[1,2] for the tree
        (only considering taxa for which ``filter_fn`` returns True when
        applied if ``filter_fn`` is specified).

        The mean pairwise distance (mpd) is given by:

            .. math::
                mpd = \\frac{ \\sum_{i}^{n} \\sum_{j}^{n} \\delta_{i,j} }{n \\choose 2},

        where :math:`i \\neq j`, :math:`\\delta_{i,j}` is the phylogenetic
        distance between species :math:`i` and :math:`j`, and :math:`n` is the number
        of species in the sample.

        Parameters
        ----------
        filter_fn : function object or None
            If |None|, then all leaves will be considered. Otherwise should
            be a function object that takes a Taxon instance as an argument and
            returns |True| if it is to be included in the calculation or
            |False| otherwise.
            In trees sampled from multiple communites, ``filter_fn`` can be
            used to restrict the calculation to only one community based on
            some criteria.
        is_weighted_edge_distances : bool
            If |True| then the edge-weighted distance, i.e., considering edge
            lengths, is returned. Otherwise the the path steps or the number of
            edges rather then the sum of is_weighted_edge_distances edges, connecting two
            taxa is considered.
        is_normalize_by_tree_size : bool
            If |True| then the results are normalized by the total tree length
            or steps/edges (depending on whether edge-weighted or unweighted
            distances are used, respectively). Otherwise, raw distances are
            used.

        Returns
        -------
        mpd : float
            The Mean Pairwise Distance (MPD) statistic for the daata.

        Examples
        --------

        ::

            import dendropy
            tree = dendropy.Tree.get(path="data.nex",
                    schema="nexus")
            pdm = dendropy.PhylogeneticDistanceMatrix(tree)

            # consider all tips
            mpd1 = pdm.mean_pairwise_distance()

            # only tips within the same community, based on the node annotation
            # "community"
            mpds_by_community = {}
            for community_label in ("1", "2", "3",):
                filter_fn = lambda x: x.annotations["community"] == community_label
                mpd = pdm.mean_pairwise_distance(filter_fn=filter_fn)
                mpds_by_community[community_label] = mpd

        References
        ----------

        [1] Webb, C.O. 2000. Exploring the phylogenetic structure of
        ecological communities: An example for rainforest trees. The
        American Naturalist 156: 145-155.

        [2] Swenson, N.G. Functional and Phylogenetic Ecology in R.


        """
        comparison_regime = self.distinct_taxon_pair_iter(filter_fn=filter_fn)
        return self._calculate_mean_pairwise_distance(
                comparison_regime=comparison_regime,
                is_weighted_edge_distances=is_weighted_edge_distances,
                is_normalize_by_tree_size=is_normalize_by_tree_size,
                )

    def mean_nearest_taxon_distance(self,
            filter_fn=None,
            is_weighted_edge_distances=True,
            is_normalize_by_tree_size=False):
        """
        Calculates the phylogenetic ecology statistic "MNTD"[1,2] for the tree
        (only considering taxa for which ``filter_fn`` returns True when
        applied if ``filter_fn`` is specified).

        The mean nearest taxon distance (mntd) is given by:

            .. math::
                mntd = \\frac{ \\sum_{i}^{n} min(\\delta_{i,j}) }{n},

        where :math:`i \\neq j`, :math:`\\delta_{i,j}` is the phylogenetic
        distance between species :math:`i` and :math:`j`, and :math:`n` is the number
        of species in the sample.

        Parameters
        ----------
        filter_fn : function object or None
            If |None|, then all leaves will be considered. Otherwise should
            be a function object that takes a Taxon instance as an argument and
            returns |True| if it is to be included in the calculation or
            |False| otherwise.
            In trees sampled from multiple communites, ``filter_fn`` can be
            used to restrict the calculation to only one community based on
            some criteria.
        is_weighted_edge_distances : bool
            If |True| then the edge-weighted distance, i.e., considering edge
            lengths, is returned. Otherwise the the path steps or the number of
            edges rather then the sum of is_weighted_edge_distances edges, connecting two
            taxa is considered.
        is_normalize_by_tree_size : bool
            If |True| then the results are normalized by the total tree length
            or steps/edges (depending on whether edge-weighted or unweighted
            distances are used, respectively). Otherwise, raw distances are
            used.

        Returns
        -------
        mntd : float
            The Mean Nearest Taxon Distance (MNTD) statistic for the daata.

        Examples
        --------

        ::

            import dendropy
            tree = dendropy.Tree.get(path="data.nex",
                    schema="nexus")
            pdm = dendropy.PhylogeneticDistanceMatrix(tree)

            # consider all tips
            mntd = pdm.mean_nearest_taxon_distance()

            # only tips within the same community, based on the node annotation
            # "community"
            mntds_by_community = {}
            for community_label in ("1", "2", "3",):
                filter_fn = lambda x: x.annotations["community"] == community_label
                mntd = pdm.mean_pairwise_distance(filter_fn=filter_fn)
                mntds_by_community[community_label] = mntd

        References
        ----------

        [1] Webb, C.O. 2000. Exploring the phylogenetic structure of
        ecological communities: An example for rainforest trees. The
        American Naturalist 156: 145-155.

        [2] Swenson, N.G. Functional and Phylogenetic Ecology in R.

        """
        comparison_regime = self._get_taxon_to_all_other_taxa_comparisons(filter_fn=filter_fn)
        return self._calculate_mean_nearest_taxon_distance(
                comparison_regime=comparison_regime,
                is_weighted_edge_distances=is_weighted_edge_distances,
                is_normalize_by_tree_size=is_normalize_by_tree_size,)

    def standardized_effect_size_mean_pairwise_distance(self,
            assemblage_memberships,
            num_randomization_replicates=1000,
            is_weighted_edge_distances=True,
            is_normalize_by_tree_size=False,
            is_skip_single_taxon_assemblages=False,
            null_model_type="taxa.label",
            rng=None):
        """
        Returns the standardized effect size value for the MPD statistic under
        a null model under various community compositions.

        The S.E.S. is given by:

            .. math::
                SES(statistic) = \\frac{observed - mean(model_{null})}{sd(model_{null})}

        This removes any bias associated with the decrease in variance in the
        MPD statistic value as species richness increases to the point where
        communities become saturated. Equivalent to -1 times the Nearest
        Relative Index (NRI) when using phylogenetic distances.

        In contrast to the function calculating the non-standardized effect
        size version of this statistic, which uses filter function to specify
        the subset of taxa to be considerd, here a collection of (multiple)
        sets of taxa constituting a community is specified. This to allow
        calculation of the null model statistic across all community sets for
        each randomization replicate.

        Parameters
        ----------
        assemblage_memberships : iterable of iterable of |Taxon| objects
            A collection of collections, e.g. a list of sets, with the elements
            of each set being |Taxon| instances. Each set specifies the
            composition of a community. The standardized effect size of this
            statistic will be calculated for each community as specified by a
            set of |Taxon| instances.
        num_randomization_replicates : int
            Number of randomization replicates.
        is_weighted_edge_distances: bool
            If ``True`` then edge lengths will be considered for distances.
            Otherwise, just the number of edges.

        Returns
        -------
        r : list of results
            A list of results, with each result corresponding to a community
            set given in ``assemblage_memberships``. Each result consists of a named
            tuple with the following elements:

                -   obs       : the observed value of the statistic
                -   null_model_mean : the mean value of the statistic under the null
                                model
                -   null_model_sd   : the standard deviation of the statistic under
                                the null model
                -   z         : the standardized effect value of the statistic
                                (= SES as defined in [1] above)
                -   p         : the p-value of the observed value of the

        Examples
        --------

        ::

            import dendropy
            tree = dendropy.Tree.get_from_path(
                    src="data/community.tree.newick",
                    schema="newick",
                    rooting="force-rooted")
            pdm = tree.phylogenetic_distance_matrix()
            assemblage_membership_definitions = pdm.assemblage_membership_definitions_from_csv("data/comm1.csv")
            results = pdm.standardized_effect_size_mean_pairwise_distance(assemblage_memberships=assemblage_membership_definitions.values())
            print(results)

        """
        if assemblage_memberships is None:
            assemblage_memberships = [ set(self._mapped_taxa) ]
        comparison_regimes = []
        for idx, assemblage_membership in enumerate(assemblage_memberships):
            if len(assemblage_membership) == 1:
                if is_skip_single_taxon_assemblages:
                    continue
                else:
                    raise error.SingleTaxonAssemblageException("{}: {}".format(idx, assemblage_membership))
            filter_fn = lambda taxon: taxon in assemblage_membership
            comparison_regime = list(self.distinct_taxon_pair_iter(filter_fn=filter_fn))
            comparison_regimes.append(comparison_regime)
        results = self._calculate_standardized_effect_size(
                statisticf_name="_calculate_mean_pairwise_distance",
                is_weighted_edge_distances=is_weighted_edge_distances,
                is_normalize_by_tree_size=is_normalize_by_tree_size,
                comparison_regimes=comparison_regimes,
                null_model_type=null_model_type,
                num_randomization_replicates=num_randomization_replicates,
                rng=rng)
        return results

    def standardized_effect_size_mean_nearest_taxon_distance(self,
            assemblage_memberships,
            num_randomization_replicates=1000,
            is_weighted_edge_distances=True,
            is_normalize_by_tree_size=False,
            is_skip_single_taxon_assemblages=False,
            null_model_type="taxa.label",
            rng=None):
        """
        Returns the standardized effect size value for the MNTD statistic under
        a null model under various community compositions.

        The S.E.S. is given by:

            .. math::
                SES(statistic) = \\frac{observed - mean(model_{null})}{sd(model_{null})}

        This removes any bias associated with the decrease in variance in the
        MPD statistic value as species richness increases to the point where
        communities become saturated. Equivalent to -1 times the Nearest Taxon
        Index when using phylogenetic distances.

        In contrast to the function calculating the non-standardized effect
        size version of this statistic, which uses filter function to specify
        the subset of taxa to be considerd, here a collection of (multiple)
        sets of taxa constituting a community is specified. This to allow
        calculation of the null model statistic across all community sets for
        each randomization replicate.

        Parameters
        ----------
        assemblage_memberships : iterable of iterable of |Taxon| objects
            A collection of collections, e.g. a list of sets, with the elements
            of each set being |Taxon| instances. Each set specifies the
            composition of a community. The standardized effect size of this
            statistic will be calculated for each community as specified by a
            set of |Taxon| instances.
        num_randomization_replicates : int
            Number of randomization replicates.
        is_weighted_edge_distances: bool
            If ``True`` then edge lengths will be considered for distances.
            Otherwise, just the number of edges.

        Returns
        -------
        r : list of results
            A list of results, with each result corresponding to a community
            set given in ``assemblage_memberships``. Each result consists of a named
            tuple with the following elements:

                -   obs       : the observed value of the statistic
                -   null_model_mean : the mean value of the statistic under the null
                                model
                -   null_model_sd   : the standard deviation of the statistic under
                                the null model
                -   z         : the standardized effect value of the statistic
                                (= SES as defined in [1] above)
                -   p         : the p-value of the observed value of the
                                statistic under the null model.
        Examples
        --------

        ::

            import dendropy
            tree = dendropy.Tree.get_from_path(
                    src="data/community.tree.newick",
                    schema="newick",
                    rooting="force-rooted")
            pdm = dendropy.PhylogeneticDistanceMatrix.from_tree(tree)
            assemblage_memberships = pdm.assemblage_membership_definitions_from_csv("data/comm1.csv")
            results = pdm.standardized_effect_size_mean_nearest_taxon_distance(assemblage_memberships=assemblage_memberships)
            print(results)

        """
        if assemblage_memberships is None:
            assemblage_memberships = [ set(self._mapped_taxa) ]
        comparison_regimes = []
        for idx, assemblage_membership in enumerate(assemblage_memberships):
            if len(assemblage_membership) == 1:
                if is_skip_single_taxon_assemblages:
                    continue
                else:
                    raise error.SingleTaxonAssemblageException("{}: {}".format(idx, assemblage_membership))
            filter_fn = lambda taxon: taxon in assemblage_membership
            comparison_regime = self._get_taxon_to_all_other_taxa_comparisons(filter_fn=filter_fn)
            comparison_regimes.append(comparison_regime)
        results = self._calculate_standardized_effect_size(
                statisticf_name="_calculate_mean_nearest_taxon_distance",
                comparison_regimes=comparison_regimes,
                is_weighted_edge_distances=is_weighted_edge_distances,
                is_normalize_by_tree_size=is_normalize_by_tree_size,
                null_model_type=null_model_type,
                num_randomization_replicates=num_randomization_replicates,
                rng=rng)
        return results

    def shuffle_taxa(self,
            is_shuffle_phylogenetic_distances=True,
            is_shuffle_phylogenetic_path_steps=True,
            is_shuffle_mrca=True,
            rng=None):
        """
        Randomly shuffles taxa in-situ.
        """
        if rng is None:
            rng = GLOBAL_RNG
        reordered_taxa = list(self._mapped_taxa)
        rng.shuffle(reordered_taxa)
        current_to_shuffled_taxon_map = dict(zip(self._mapped_taxa, reordered_taxa))
        to_shuffle = []
        if is_shuffle_phylogenetic_distances:
            to_shuffle.append("_taxon_phylogenetic_distances")
        if is_shuffle_phylogenetic_path_steps:
            to_shuffle.append("_taxon_phylogenetic_path_steps")
        if is_shuffle_mrca:
            to_shuffle.append("_mrca")
        for attr_name in to_shuffle:
            src = getattr(self, attr_name)
            dest = {}

            ## 5m8.076s
            # for t1, t2 in self._all_distinct_mapped_taxa_pairs:
            #     x1 = current_to_shuffled_taxon_map[t1]
            #     x2 = current_to_shuffled_taxon_map[t2]
            #     d = src[t1][t2]
            #     try:
            #         dest[x1][x2] = d
            #     except KeyError:
            #         dest[x1] = {x2: d}
            #         if t1 in src[t1]:
            #             dest[x1][x1] = src[t1][t1]
            #     try:
            #         dest[x2][x1] = d
            #     except KeyError:
            #         dest[x2] = {x1: d}
            #         if t2 in src[t2]:
            #             dest[x2][x2] = src[t2][t2]
            # setattr(self, attr_name, dest)

            # 4m48.025s
            for t1 in src:
                x1 = current_to_shuffled_taxon_map[t1]
                dest[x1] = {}
                for t2 in src[t1]:
                    x2 = current_to_shuffled_taxon_map[t2]
                    dest[x1][x2] = src[t1][t2]
            setattr(self, attr_name, dest)

        return current_to_shuffled_taxon_map

    def nj_tree(self,
            is_weighted_edge_distances=True,
            tree_factory=None,
            ):
        """
        Returns an Neighbor-Joining (NJ) tree based on the distances in the matrix.

        Calculates and returns a tree under the Neighbor-Joining algorithm of
        Saitou and Nei (1987) for the data in the matrix.

        Parameters
        ----------
        is_weighted_edge_distances: bool
            If ``True`` then edge lengths will be considered for distances.
            Otherwise, just the number of edges.

        Returns
        -------
        t : |Tree|
            A |Tree| instance corresponding to the Neighbor-Joining (NJ) tree
            for this data.

        Examples
        --------

        ::

            import dendropy

            # Read data from a CSV file into a PhylogeneticDistanceMatrix
            # object
            with open("distance_matrix.csv") as src:
                pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
                        src,
                        is_first_row_column_names=True,
                        is_first_column_row_names=True,
                        is_allow_new_taxa=True,
                        delimiter=",",
                        )

            # Calculate the tree
            nj_tree = pdm.nj_tree()

            # Print it
            print(nj_tree.as_string("nexus"))


        References
        ----------
        Saitou, N. and Nei, M. (1987) The neighbor-joining method: a new method
        for reconstructing phylogenetic trees. Molecular Biology and Evolution,
        4: 406-425.

        """

        if is_weighted_edge_distances:
            original_dmatrix = self._taxon_phylogenetic_distances
        else:
            original_dmatrix = self._taxon_phylogenetic_path_steps
        if tree_factory is None:
            tree_factory = dendropy.Tree
        tree = tree_factory(taxon_namespace=self.taxon_namespace)
        tree.is_rooted = False

        # initialize node pool
        node_pool = []
        for t1 in self._mapped_taxa:
            nd = tree.node_factory()
            nd.taxon = t1
            nd._nj_distances = {}
            node_pool.append(nd)

        # initialize factor
        n = len(self._mapped_taxa)

        # cache calculations
        for nd1 in node_pool:
            nd1._nj_xsub = 0.0
            for nd2 in node_pool:
                if nd1 is nd2:
                    continue
                d = original_dmatrix[nd1.taxon][nd2.taxon]
                nd1._nj_distances[nd2] = d
                nd1._nj_xsub += d

        while n > 1:

            # calculate the Q-matrix
            min_q = None
            nodes_to_join = None
            for idx1, nd1 in enumerate(node_pool[:-1]):
                for idx2, nd2 in enumerate(node_pool[idx1+1:]):
                    v1 = (n - 2) * nd1._nj_distances[nd2]
                    qvalue = v1 - nd1._nj_xsub - nd2._nj_xsub
                    if min_q is None or qvalue < min_q:
                        min_q = qvalue
                        nodes_to_join = (nd1, nd2)

            # create the new node
            new_node = tree.node_factory()

            # attach it to the tree
            for node_to_join in nodes_to_join:
                new_node.add_child(node_to_join)
                node_pool.remove(node_to_join)

            # calculate the distances for the new node
            new_node._nj_distances = {}
            new_node._nj_xsub = 0.0
            for node in node_pool:
                # actual node-to-node distances
                v1 = 0.0
                for node_to_join in nodes_to_join:
                    v1 += node._nj_distances[node_to_join]
                v3 = nodes_to_join[0]._nj_distances[nodes_to_join[1]]
                dist = 0.5 * (v1 - v3)
                new_node._nj_distances[node] = dist
                node._nj_distances[new_node] = dist

                # Adjust/recalculate the values needed for the Q-matrix
                # calculations
                new_node._nj_xsub += dist
                node._nj_xsub += dist
                for node_to_join in nodes_to_join:
                    node._nj_xsub -= node_to_join._nj_distances[node]

            # calculate the branch lengths
            if n > 2:
                v1 = 0.5 * nodes_to_join[0]._nj_distances[nodes_to_join[1]]
                v4  = 1.0/(2*(n-2)) * (nodes_to_join[0]._nj_xsub - nodes_to_join[1]._nj_xsub)
                delta_f = v1 + v4
                delta_g = nodes_to_join[0]._nj_distances[nodes_to_join[1]] - delta_f
                nodes_to_join[0].edge.length = delta_f
                nodes_to_join[1].edge.length = delta_g
            else:
                d = nodes_to_join[0]._nj_distances[nodes_to_join[1]]
                nodes_to_join[0].edge.length = d / 2
                nodes_to_join[1].edge.length = d / 2

            # clean up
            for node_to_join in nodes_to_join:
                del node_to_join._nj_distances
                del node_to_join._nj_xsub

            # add the new node to the pool of nodes
            node_pool.append(new_node)

            # adjust count
            n -= 1

        tree.seed_node = node_pool[0]
        del tree.seed_node._nj_distances
        del tree.seed_node._nj_xsub
        return tree

    def upgma_tree(self,
            is_weighted_edge_distances=True,
            tree_factory=None,
            ):
        """
        Returns an Unweighted Pair Group Method with Arithmetic Mean (UPGMA) tree
        based on the distances in the matrix.

        Parameters
        ----------
        is_weighted_edge_distances: bool
            If ``True`` then edge lengths will be considered for distances.
            Otherwise, just the number of edges.

        Returns
        -------
        t : |Tree|
            A |Tree| instance corresponding to the UPGMA tree
            for this data.

        Examples
        --------

        ::

            import dendropy

            # Read data from a CSV file into a PhylogeneticDistanceMatrix
            # object
            with open("distance_matrix.csv") as src:
                pdm = dendropy.PhylogeneticDistanceMatrix.from_csv(
                        src,
                        is_first_row_column_names=True,
                        is_first_column_row_names=True,
                        is_allow_new_taxa=True,
                        delimiter=",",
                        )

            # Calculate the tree
            upgma_tree = pdm.upgma_tree()

            # Print it
            print(upgma_tree.as_string("nexus"))

        """

        if is_weighted_edge_distances:
            original_dmatrix = self._taxon_phylogenetic_distances
        else:
            original_dmatrix = self._taxon_phylogenetic_path_steps
        if tree_factory is None:
            tree_factory = dendropy.Tree
        tree = tree_factory(taxon_namespace=self.taxon_namespace)
        tree.is_rooted = True
        node_pool = []
        for t1 in self._mapped_taxa:
            nd = tree.node_factory()
            nd.taxon = t1
            nd._upgma_cluster = set([nd])
            nd._upgma_distance_from_tip = 0.0
            nd._upgma_distances = {}
            node_pool.append(nd)
        for idx1, nd1 in enumerate(node_pool[:-1]):
            for idx2, nd2 in enumerate(node_pool[idx1+1:]):
                d = original_dmatrix[nd1.taxon][nd2.taxon]
                nd1._upgma_distances[nd2] = d
                nd2._upgma_distances[nd1] = d
        while len(node_pool) > 1:
            min_distance = None
            nodes_to_join = None
            for idx1, nd1 in enumerate(node_pool[:-1]):
                for idx2, nd2 in enumerate(node_pool[idx1+1:]):
                    d = nd1._upgma_distances[nd2]
                    if min_distance is None or d < min_distance:
                        nodes_to_join = (nd1, nd2)
                        min_distance = d
            new_node = tree.node_factory()
            new_node._upgma_cluster = set()
            new_node._upgma_distances = {}
            elen = min_distance / 2.0
            for node_to_join in nodes_to_join:
                new_node.add_child(node_to_join)
                new_node._upgma_cluster.update(node_to_join._upgma_cluster)
                node_to_join.edge.length = elen - node_to_join._upgma_distance_from_tip
                node_pool.remove(node_to_join)
            new_node._upgma_distance_from_tip = nodes_to_join[0].edge.length + nodes_to_join[0]._upgma_distance_from_tip
            for idx1, nd1 in enumerate(node_pool):
                d1 = 0.0
                count = 0.0
                for node_to_join in nodes_to_join:
                    d2 = node_to_join._upgma_distances[nd1]
                    xc = len(node_to_join._upgma_cluster)
                    d1 += (d2 * xc)
                    count += xc
                d = d1 / count
                nd1._upgma_distances[new_node] = d
                new_node._upgma_distances[nd1] = d
            for node_to_join in nodes_to_join:
                del node_to_join._upgma_cluster
                del node_to_join._upgma_distance_from_tip
                del node_to_join._upgma_distances
            node_pool.append(new_node)
        tree.seed_node = node_pool[0]
        del tree.seed_node._upgma_cluster
        del tree.seed_node._upgma_distance_from_tip
        del tree.seed_node._upgma_distances
        return tree

    def as_data_table(self, is_weighted_edge_distances=True):
        """
        Returns this as a table.
        """
        if is_weighted_edge_distances:
            df = self.patristic_distance
        else:
            df = self.path_edge_count
        dt = container.DataTable()
        for t1 in self._mapped_taxa:
            dt.add_row(row_name=t1.label)
            dt.add_column(column_name=t1.label)
        for t1 in self._mapped_taxa:
            for t2 in self._mapped_taxa:
                dt[t1.label, t2.label] = df(t1, t2)
        return dt

    def write_csv(self,
            out,
            is_first_row_column_names=True,
            is_first_column_row_names=True,
            is_weighted_edge_distances=True,
            is_normalize_by_tree_size=True,
            label_transform_fn=None,
            **csv_writer_kwargs
            ):
        if isinstance(out, str):
            dest = open(out, "w")
        else:
            dest = out
        if label_transform_fn is None:
            label_transform_fn = lambda x: x
        dmatrix, normalization_factor = self._get_distance_matrix_and_normalization_factor(
                is_weighted_edge_distances=is_weighted_edge_distances,
                is_normalize_by_tree_size=is_normalize_by_tree_size,
                )
        if "delimiter" not in csv_writer_kwargs:
            csv_writer_kwargs["delimiter"] = ","
        writer = csv.writer(dest, csv_writer_kwargs)
        if is_first_row_column_names:
            row = []
            if is_first_column_row_names:
                row.append("")
            for taxon in self._mapped_taxa:
                row.append(label_transform_fn(taxon.label))
            writer.writerow(row)
            # dest.write(delimiter.join(row))
            # dest.write("\n")
        for taxon1 in self._mapped_taxa:
            row = []
            if is_first_column_row_names:
                row.append(label_transform_fn(taxon1.label))
            for taxon2 in self._mapped_taxa:
                d = dmatrix[taxon1][taxon2] / normalization_factor
                row.append("{}".format(d))
            writer.writerow(row)
            # dest.write(delimiter.join(row))
            # dest.write("\n")

    def assemblage_membership_definitions_from_csv(
            self,
            src,
            default_data_type=float,
            **csv_reader_kwargs):
        """
        Convenience method to return list of community sets from a delimited
        file that lists taxon (labels) in columns and community
        presence/absences or abundances in rows.
        """
        if isinstance(src, str):
            with open(src) as srcf:
                data_table = container.DataTable.from_csv(
                        src,
                        default_data_type=default_data_type,
                        **csv_reader_kwargs
                        )
        else:
            data_table = container.DataTable.from_csv(
                    src,
                    default_data_type=default_data_type,
                    **csv_reader_kwargs
                    )
        mapped_taxon_labels = set([taxon.label for taxon in self.taxon_iter()])
        for column_name in data_table.column_name_iter():
            assert column_name in mapped_taxon_labels
        assemblage_memberships = collections.OrderedDict()
        for row_name in data_table.row_name_iter():
            assemblage_membership = set()
            for taxon in self.taxon_iter():
                if data_table[row_name, taxon.label] > 0:
                    assemblage_membership.add(taxon)
            assemblage_memberships[row_name] = assemblage_membership
        return assemblage_memberships

    def _get_taxon_to_all_other_taxa_comparisons(self, filter_fn=None):
        permutations = collections.defaultdict(list)
        for taxon1 in self._mapped_taxa:
            # permutations[taxon1] = []
            if filter_fn and not filter_fn(taxon1):
                continue
            for taxon2 in self._mapped_taxa:
                if taxon1 is taxon2:
                    continue
                if filter_fn and not filter_fn(taxon2):
                    continue
                permutations[taxon1].append(taxon2)
        return permutations

    def _get_distance_matrix_and_normalization_factor(self,
            is_weighted_edge_distances,
            is_normalize_by_tree_size):
        if is_weighted_edge_distances:
            dmatrix = self._taxon_phylogenetic_distances
            if is_normalize_by_tree_size:
                normalization_factor = self._tree_length
            else:
                normalization_factor = 1.0
        else:
            dmatrix = self._taxon_phylogenetic_path_steps
            if is_normalize_by_tree_size:
                normalization_factor = float(self._num_edges)
            else:
                normalization_factor = 1.0
        return dmatrix, normalization_factor

    def _calculate_mean_pairwise_distance(self,
            comparison_regime,
            is_weighted_edge_distances,
            is_normalize_by_tree_size):
        dmatrix, normalization_factor = self._get_distance_matrix_and_normalization_factor(
                is_weighted_edge_distances=is_weighted_edge_distances,
                is_normalize_by_tree_size=is_normalize_by_tree_size,)
        distances = []
        for taxon1, taxon2 in comparison_regime:
            distances.append(dmatrix[taxon1][taxon2])
        if distances:
            return (sum(distances) / normalization_factor) / (len(distances) * 1.0)
        else:
            raise error.NullAssemblageException("No taxa in assemblage")

    def _calculate_mean_nearest_taxon_distance(self,
            comparison_regime,
            is_weighted_edge_distances,
            is_normalize_by_tree_size):
        dmatrix, normalization_factor = self._get_distance_matrix_and_normalization_factor(
                is_weighted_edge_distances=is_weighted_edge_distances,
                is_normalize_by_tree_size=is_normalize_by_tree_size,)
        distances = []
        for taxon1 in comparison_regime:
            # subdistances = [dmatrix[taxon1][taxon2] for taxon2 in comparison_regime[taxon1]]
            # distances.append(min(subdistances))
            min_distance = dmatrix[taxon1][comparison_regime[taxon1][0]]
            for taxon2 in comparison_regime[taxon1][1:]:
                d = dmatrix[taxon1][taxon2]
                if d < min_distance:
                    min_distance = d
            distances.append(min_distance)
        if distances:
            return (sum(distances) / normalization_factor) / (len(distances) * 1.0)
        else:
            raise error.NullAssemblageException("No taxa in assemblage")

    def _calculate_standardized_effect_size(self,
            statisticf_name,
            comparison_regimes,
            is_weighted_edge_distances,
            is_normalize_by_tree_size,
            null_model_type="taxa.label",
            num_randomization_replicates=1000,
            rng=None):
        result_type = collections.namedtuple("PhylogeneticCommunityStandardizedEffectSizeStatisticCalculationResult",
                ["obs", "null_model_mean", "null_model_sd", "z", "rank", "p",])
        statisticf_kwargs={
            "is_weighted_edge_distances": is_weighted_edge_distances,
            "is_normalize_by_tree_size": is_normalize_by_tree_size
        }
        observed_stat_values = {}
        null_model_stat_values = {}
        null_model_matrix = self.clone()
        assert null_model_matrix == self
        if is_weighted_edge_distances:
            is_shuffle_phylogenetic_distances = True
            is_shuffle_phylogenetic_path_steps = False
        else:
            is_shuffle_phylogenetic_distances = False
            is_shuffle_phylogenetic_path_steps = True
        for rep_idx in range(num_randomization_replicates):
            null_model_matrix.shuffle_taxa(
                    is_shuffle_phylogenetic_distances=is_shuffle_phylogenetic_distances,
                    is_shuffle_phylogenetic_path_steps=is_shuffle_phylogenetic_distances,
                    is_shuffle_mrca=False,
                    rng=rng)
            for comparison_regime_idx, comparison_regime in enumerate(comparison_regimes):
                statisticf_kwargs["comparison_regime"] = comparison_regime
                if rep_idx == 0:
                    observed_stat_values[comparison_regime_idx] = getattr(self, statisticf_name)(**statisticf_kwargs)
                    null_model_stat_values[comparison_regime_idx] = []
                stat_value = getattr(null_model_matrix, statisticf_name)(**statisticf_kwargs)
                null_model_stat_values[comparison_regime_idx].append(stat_value)
        results = []
        for comparison_regime_idx, comparison_regime in enumerate(comparison_regimes):
            obs_value = observed_stat_values[comparison_regime_idx]
            stat_values = null_model_stat_values[comparison_regime_idx]
            null_model_mean, null_model_var = statistics.mean_and_sample_variance(stat_values)
            rank = statistics.rank(
                    value_to_be_ranked=obs_value,
                    value_providing_rank=stat_values)
            if null_model_var > 0:
                null_model_sd = math.sqrt(null_model_var)
                z = (obs_value - null_model_mean) / null_model_sd
            else:
                null_model_sd = 0.0
                z = None
            p = float(rank) / len(stat_values)
            result = result_type(
                    obs=obs_value,
                    null_model_mean=null_model_mean,
                    null_model_sd=null_model_sd,
                    z=z,
                    rank=rank,
                    p=p)
            results.append(result)
        return results

class NodeDistanceMatrix(object):

    @classmethod
    def from_tree(cls, tree):
        ndm = cls()
        ndm.compile_from_tree(tree=tree)
        return ndm

    def __init__(self):
        self.clear()

    def clear(self):
        self._tree_length = None
        self._num_edges = None
        self._node_phylogenetic_distances = {}
        self._node_phylogenetic_path_steps = {}
        self._mrca = {}

    def compile_from_tree(self, tree):
        self.clear()
        self._tree_length = 0.0
        self._num_edges = 0
        for node1 in tree.postorder_node_iter():
            try:
                self._tree_length += node1.edge.length
            except TypeError: # None for edge length
                pass
            self._num_edges += 1
            if node1 not in self._node_phylogenetic_distances:
                self._node_phylogenetic_distances[node1] = {node1: 0.0}
                self._node_phylogenetic_path_steps[node1] = {node1: 0}
                self._mrca[node1] = {node1: node1}
            children = node1.child_nodes()
            for ch_idx, ch1 in enumerate(children):
                ch1_elen = ch1.edge.length if ch1.edge.length is not None else 0.0
                for ch1_subtree_node in list(self._node_phylogenetic_distances[ch1].keys()):
                    if ch1_subtree_node not in self._node_phylogenetic_distances[node1]:
                        d = self._node_phylogenetic_distances[ch1][ch1_subtree_node] + ch1_elen
                        d2 = self._node_phylogenetic_path_steps[ch1][ch1_subtree_node] + 1
                        self._node_phylogenetic_distances[node1][ch1_subtree_node] = d
                        self._node_phylogenetic_distances[ch1_subtree_node][node1] = d
                        self._node_phylogenetic_path_steps[node1][ch1_subtree_node] = d2
                        self._node_phylogenetic_path_steps[ch1_subtree_node][node1] = d2
                self._node_phylogenetic_distances[node1][ch1] = ch1_elen
                self._node_phylogenetic_distances[ch1][node1] = ch1_elen
                self._node_phylogenetic_path_steps[node1][ch1] = 1
                self._node_phylogenetic_path_steps[ch1][node1] = 1
                for ch2 in children[ch_idx+1:]:
                    self._mrca[ch1][ch2] = node1
                    self._mrca[ch2][ch1] = node1
                    ch2_elen = ch2.edge.length if ch2.edge.length is not None else 0.0
                    d = ch1_elen + ch2_elen
                    self._node_phylogenetic_distances[ch1][ch2] = d
                    self._node_phylogenetic_distances[ch2][ch1] = d
                    self._node_phylogenetic_path_steps[ch1][ch2] = 2
                    self._node_phylogenetic_path_steps[ch2][ch1] = 2
            # Below is ugly, ugly, ugly. Basic idea is to link nodes of each
            # the subtrees of each of the child nodes of node1. Assumes
            # that any pairwise comparison of nodes descending from node1
            # (as given by nodes in a pairwise comparison with node1) not
            # already made have their MRCA at node1.
            for snd1 in self._node_phylogenetic_distances[node1]:
                for snd2 in self._node_phylogenetic_distances[node1]:
                    if snd1 is snd2:
                        continue
                    if snd1 not in self._node_phylogenetic_distances:
                        self._node_phylogenetic_distances[snd1] = {}
                        self._node_phylogenetic_path_steps[snd1] = {}
                    if snd2 not in self._node_phylogenetic_distances:
                        self._node_phylogenetic_distances[snd2] = {}
                        self._node_phylogenetic_path_steps[snd2] = {}
                    if snd2 not in self._node_phylogenetic_distances[snd1]:
                        self._node_phylogenetic_distances[snd1][snd2] = self._node_phylogenetic_distances[node1][snd1] + self._node_phylogenetic_distances[node1][snd2]
                        self._node_phylogenetic_path_steps[snd1][snd2] = self._node_phylogenetic_path_steps[node1][snd1] + self._node_phylogenetic_path_steps[node1][snd2]
                    if snd1 not in self._node_phylogenetic_distances[snd2]:
                        self._node_phylogenetic_distances[snd2][snd1] = self._node_phylogenetic_distances[node1][snd1] + self._node_phylogenetic_distances[node1][snd2]
                        self._node_phylogenetic_path_steps[snd2][snd1] = self._node_phylogenetic_path_steps[node1][snd1] + self._node_phylogenetic_path_steps[node1][snd2]
                    if snd1 not in self._mrca:
                        self._mrca[snd1] = {}
                    if snd2 not in self._mrca:
                        self._mrca[snd2] = {}
                    if snd2 not in self._mrca[snd1]:
                        self._mrca[snd1][snd2] = node1
                        self._mrca[snd2][snd1] = node1

    def __eq__(self, o):
        if self.node_namespace is not o.node_namespace:
            return False
        return (True
                and (self._node_phylogenetic_distances == o._node_phylogenetic_distances)
                and (self._node_phylogenetic_path_steps == o._node_phylogenetic_path_steps)
                and (self._mrca == o._mrca)
                and (self._tree_length == o._tree_length)
                and (self._num_edges == o._num_edges)
                )

    def __iter__(self):
        for node in self._node_phylogenetic_distances:
            yield node

    def __hash__(self):
        return id(self)

    def __call__(self, node1, node2):
        return self.patristic_distance(node1, node2)

    def __copy__(self):
        return self.clone()

    def clone(self):
        o = self.__class__()
        o._tree_length = self._tree_length
        o._num_edges = self._num_edges
        for src, dest in (
                (self._node_phylogenetic_distances, o._node_phylogenetic_distances,),
                (self._node_phylogenetic_path_steps, o._node_phylogenetic_path_steps,),
                (self._mrca, o._mrca,),
                ):
            for t1 in src:
                dest[t1] = {}
                for t2 in src[t1]:
                    dest[t1][t2] = src[t1][t2]
        return o

    def mrca(self, node1, node2):
        """
        Returns MRCA of two node objects.
        """
        return self._mrca[node1][node2]

    def distance(self,
            node1,
            node2,
            is_weighted_edge_distances=True,
            is_normalize_by_tree_size=False):
        """
        Returns distance between node1 and node2.
        """
        if is_weighted_edge_distances:
            return self.patristic_distance(node1, node2, is_normalize_by_tree_size=is_normalize_by_tree_size)
        else:
            return self.path_edge_count(node1, node2, is_normalize_by_tree_size=is_normalize_by_tree_size)


    def patristic_distance(self, node1, node2, is_normalize_by_tree_size=False):
        """
        Returns patristic distance between two node objects.
        """
        if node1 is node2:
            return 0.0
        d = self._node_phylogenetic_distances[node1][node2]
        if is_normalize_by_tree_size:
            return d / self._tree_length
        else:
            return d

    def path_edge_count(self, node1, node2, is_normalize_by_tree_size=False):
        """
        Returns the number of edges between two node objects.
        """
        if node1 is node2:
            return 0
        d = self._node_phylogenetic_path_steps[node1][node2]
        if is_normalize_by_tree_size:
            return float(d) / self._num_edges
        else:
            return d

    def distances(self,
            is_weighted_edge_distances=True,
            is_normalize_by_tree_size=False):
        """
        Returns list of patristic distances.
        """
        dmatrix, normalization_factor = self._get_distance_matrix_and_normalization_factor(
                is_weighted_edge_distances=is_weighted_edge_distances,
                is_normalize_by_tree_size=is_normalize_by_tree_size,
                )
        results = []
        nodes = list(dmatrix.keys())
        for node_idx1, node1 in enumerate(nodes[:-1]):
            for node_idx2, node2 in enumerate(nodes[node_idx1+1:]):
                results.append(dmatrix[node1][node2]/normalization_factor)
        return results

    def _get_distance_matrix_and_normalization_factor(self,
            is_weighted_edge_distances,
            is_normalize_by_tree_size):
        if is_weighted_edge_distances:
            dmatrix = self._node_phylogenetic_distances
            if is_normalize_by_tree_size:
                normalization_factor = self._tree_length
            else:
                normalization_factor = 1.0
        else:
            dmatrix = self._node_phylogenetic_path_steps
            if is_normalize_by_tree_size:
                normalization_factor = float(self._num_edges)
            else:
                normalization_factor = 1.0
        return dmatrix, normalization_factor