1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
|
#! /usr/bin/env python
##############################################################################
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.rst" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
"""
Population genetic statistics.
"""
import math
import dendropy
from dendropy.calculate import probability
from dendropy.calculate import combinatorics
###############################################################################
## internal functions: generally taking lower-level data, such as sequences etc.
###############################################################################
def _count_differences(char_sequences, state_alphabet, ignore_uncertain=True):
"""
Returns pair of values: total number of pairwise differences observed between
all sequences, and mean number of pairwise differences pair base.
"""
sum_diff = 0.0
mean_diff = 0.0
sq_diff = 0.0
comps = 0
#Check that all sequences are the same length
if len(set([len(seq) for seq in char_sequences])) != 1:
raise Exception("sequences of unequal length")
if ignore_uncertain:
attr = "fundamental_indexes_with_gaps_as_missing"
_states_to_ignore = [state_alphabet.gap_state, state_alphabet.no_data_state]
states_to_ignore = set([getattr(char, attr) for char in _states_to_ignore])
else:
attr = "fundamental_indexes"
states_to_ignore = set()
reduced_char_sequences = []
for sequence in char_sequences:
seq = [getattr(char, attr) for char in sequence]
reduced_char_sequences.append(seq)
for vidx, i in enumerate(reduced_char_sequences[:-1]):
for j in reduced_char_sequences[vidx+1:]:
diff = 0
counted = 0
comps += 1
for cidx, c in enumerate(i):
c1 = c
c2 = j[cidx]
if c1 in states_to_ignore or c2 in states_to_ignore:
continue
counted += 1
if c1 is not c2:
diff += 1
sum_diff += float(diff)
# If counted < 0, this means that there is sites between these sequences
# in which both are not ignored: i.e., one or the other has a gap
# or an uncertain character. We consider this to mean (maybe
# somewhat paradoxically) that there are no sites that are
# different between the sequences. Put less paradoxically: there
# are no non-ignored sites that are different between the
# sequences.
mean_diff += (float(diff) / counted) if counted > 0 else float(diff)
sq_diff += (diff ** 2)
return sum_diff, mean_diff / comps, sq_diff
def _nucleotide_diversity(char_sequences, state_alphabet, ignore_uncertain=True):
"""
Returns $\pi$, the proportional nucleotide diversity, calculated for a
list of character sequences.
"""
return _count_differences(char_sequences, state_alphabet, ignore_uncertain)[1]
def _average_number_of_pairwise_differences(char_sequences, state_alphabet, ignore_uncertain=True):
"""
Returns $k$ (Tajima 1983; Wakely 1996), calculated for a set of sequences:
k = \frac{\right(\sum \sum \k_{ij}\left)}{n \choose 2}
where $k_{ij}$ is the number of pairwise differences between the
$i$th and $j$th sequence, and $n$ is the number of DNA sequences
sampled.
"""
sum_diff, mean_diff, sq_diff = _count_differences(char_sequences, state_alphabet, ignore_uncertain)
return sum_diff / combinatorics.choose(len(char_sequences), 2)
def _num_segregating_sites(char_sequences, state_alphabet, ignore_uncertain=True):
"""
Returns the raw number of segregating sites (polymorphic sites).
"""
s = 0
if ignore_uncertain:
attr = "fundamental_indexes_with_gaps_as_missing"
_states_to_ignore = [state_alphabet.gap_state, state_alphabet.no_data_state]
states_to_ignore= set([getattr(char, attr) for char in _states_to_ignore])
else:
attr = "fundamental_indexes"
states_to_ignore = set()
for i, c1 in enumerate(char_sequences[0]):
for v in char_sequences[1:]:
c2 = v[i]
f1 = getattr(c1, attr)
f2 = getattr(c2, attr)
if f1 in states_to_ignore or f2 in states_to_ignore:
continue
if f1 is not f2:
s += 1
break
return s
def _tajimas_d(num_sequences, avg_num_pairwise_differences, num_segregating_sites):
### VERIFICATION ###
###
### Given: num_sequences = 10, num_pairwise_differences = 3.888889, num_segregating_sites = 16
### i.e.: tajimas_d(10, 3.888889, 16) == -1.44617198561
### Then: a1 == 2.82896825397
### a2 == 1.53976773117
### b1 == 0.407407407407
### b2 == 0.279012345679
### c1 == 0.0539216450284
### c2 == 0.0472267720013
### e1 == 0.0190605338016
### e2 == 0.0049489277699
### D == -1.44617198561
a1 = sum([1.0/i for i in range(1, num_sequences)])
a2 = sum([1.0/(i**2) for i in range(1, num_sequences)])
b1 = float(num_sequences+1)/(3*(num_sequences-1))
b2 = float(2 * ( (num_sequences**2) + num_sequences + 3 )) / (9*num_sequences*(num_sequences-1))
c1 = b1 - 1.0/a1
c2 = b2 - float(num_sequences+2)/(a1 * num_sequences) + float(a2)/(a1 ** 2)
e1 = float(c1) / a1
e2 = float(c2) / ( (a1**2) + a2 )
D = (
float(avg_num_pairwise_differences - (float(num_segregating_sites)/a1))
/ math.sqrt(
(e1 * num_segregating_sites )
+ ((e2 * num_segregating_sites) * (num_segregating_sites - 1) ))
)
return D
###############################################################################
## friendlier-functions, generally taking a CharacterMatrix
###############################################################################
def num_segregating_sites(char_matrix, ignore_uncertain=True):
"""
Returns the raw number of segregating sites (polymorphic sites).
"""
return _num_segregating_sites(
char_matrix.sequences(),
char_matrix.default_state_alphabet,
ignore_uncertain)
def average_number_of_pairwise_differences(char_matrix, ignore_uncertain=True):
"""
Returns $k$, calculated for a character block.
"""
return _average_number_of_pairwise_differences(char_matrix.sequences(), char_matrix.default_state_alphabet, ignore_uncertain)
def nucleotide_diversity(char_matrix, ignore_uncertain=True):
"""
Returns $\pi$, calculated for a character block.
"""
return _nucleotide_diversity(char_matrix.sequences(), char_matrix.default_state_alphabet, ignore_uncertain)
def tajimas_d(char_matrix, ignore_uncertain=True):
"""
Returns Tajima's D.
"""
sequences = char_matrix.sequences()
num_sequences = len(sequences)
avg_num_pairwise_differences = _average_number_of_pairwise_differences(sequences, char_matrix.default_state_alphabet, ignore_uncertain=ignore_uncertain)
num_segregating_sites = _num_segregating_sites(
sequences,
char_matrix.default_state_alphabet,
ignore_uncertain=ignore_uncertain)
return _tajimas_d(num_sequences, avg_num_pairwise_differences, num_segregating_sites)
def wattersons_theta(char_matrix, ignore_uncertain=True):
"""
Returns Watterson's Theta (per sequence)
"""
sequences = char_matrix.sequences()
num_segregating_sites = _num_segregating_sites(
sequences,
char_matrix.default_state_alphabet,
ignore_uncertain=ignore_uncertain)
a1 = sum([1.0/i for i in range(1, len(sequences))])
return float(num_segregating_sites) / a1
###############################################################################
## Classes
###############################################################################
class PopulationPairSummaryStatistics(object):
def __init__(self, pop1_seqs, pop2_seqs, ignore_uncertain=True):
self.pop1_seqs = pop1_seqs
self.pop2_seqs = pop2_seqs
self.combined_seqs = pop1_seqs + pop2_seqs
self.ignore_uncertain = ignore_uncertain
self.state_alphabet = dendropy.DNA_STATE_ALPHABET
self.average_number_of_pairwise_differences = 0
self.average_number_of_pairwise_differences_between = 0
self.average_number_of_pairwise_differences_within = 0
self.average_number_of_pairwise_differences_net = 0
self.num_segregating_sites = 0
self.wattersons_theta = 0.0
self.wakeleys_psi = 0.0
self.tajimas_d = 0.0
if self.ignore_uncertain:
self.state_attr = "fundamental_indexes_with_gaps_as_missing"
self.states_to_ignore = set([self.state_alphabet.gap_state, self.state_alphabet.no_data_state])
else:
self.state_attr = "fundamental_indexes"
self.states_to_ignore = set()
self.calc()
def calc(self):
"""
Returns a summary of a set of sequences that can be partitioned into
the list of lists of taxa given by ``taxon_groups``.
"""
diffs_x, mean_diffs_x, sq_diff_x = _count_differences(self.pop1_seqs, self.state_alphabet, self.ignore_uncertain)
diffs_y, mean_diffs_y, sq_diff_y = _count_differences(self.pop2_seqs, self.state_alphabet, self.ignore_uncertain)
d_x = diffs_x / combinatorics.choose(len(self.pop1_seqs), 2)
d_y = diffs_y / combinatorics.choose(len(self.pop2_seqs), 2)
d_xy = self._average_number_of_pairwise_differences_between_populations()
s2_x = (float(sq_diff_x) / combinatorics.choose(len(self.pop1_seqs), 2) ) - (d_x ** 2)
s2_y = (float(sq_diff_y) / combinatorics.choose(len(self.pop2_seqs), 2) ) - (d_y ** 2)
s2_xy = self._variance_of_pairwise_differences_between_populations(d_xy)
n = len(self.combined_seqs)
n_x = float(len(self.pop1_seqs))
n_y = float(len(self.pop2_seqs))
a = float(n * (n-1))
ax = float(n_x * (n_x - 1))
ay = float(n_y * (n_y - 1))
k = _average_number_of_pairwise_differences(self.combined_seqs, self.state_alphabet, self.ignore_uncertain)
n = len(self.combined_seqs)
# Hickerson 2006: pi #
self.average_number_of_pairwise_differences = k
# Hickerson 2006: pi_b #
self.average_number_of_pairwise_differences_between = d_xy
# Hickerson 2006: pi_w #
self.average_number_of_pairwise_differences_within = d_x + d_y
# Hickerson 2006: pi_net #
self.average_number_of_pairwise_differences_net = d_xy - (d_x + d_y)
# Hickerson 2006: S #
self.num_segregating_sites = _num_segregating_sites(
self.combined_seqs,
self.state_alphabet,
self.ignore_uncertain)
# Hickerson 2006: theta #
a1 = sum([1.0/i for i in range(1, n)])
self.wattersons_theta = float(self.num_segregating_sites) / a1
# Wakeley 1996 #
self.wakeleys_psi = (float(1)/(a)) * ( ax * (math.sqrt(s2_x)/d_x) + ay * (math.sqrt(s2_y)/d_y) + (2 * n_x * n_y * math.sqrt(s2_xy)/k))
# Tajima's D #
self.tajimas_d = _tajimas_d(n, self.average_number_of_pairwise_differences, self.num_segregating_sites)
def _average_number_of_pairwise_differences_between_populations(self):
"""
Implements Eq (3) of:
Wakeley, J. 1996. Distinguishing migration from isolation using the
variance of pairwise differences. Theoretical Population Biology 49:
369-386.
"""
diffs = 0
for sx in self.pop1_seqs:
for sy in self.pop2_seqs:
for cidx, c in enumerate(sx):
c1 = c
c2 = sy[cidx]
if c1 in self.states_to_ignore or c2 in self.states_to_ignore:
continue
f1 = getattr(c1, self.state_attr)
f2 = getattr(c2, self.state_attr)
if f1 != f2:
diffs += 1
dxy = float(1)/(len(self.pop1_seqs) * len(self.pop2_seqs)) * float(diffs)
return dxy
def _variance_of_pairwise_differences_between_populations(self, mean_diff):
"""
Implements Eq (10) of:
Wakeley, J. 1996. Distinguishing migration from isolation using the
variance of pairwise differences. Theoretical Population Biology 49:
369-386.
"""
ss_diffs = 0
for sx in self.pop1_seqs:
for sy in self.pop2_seqs:
diffs = 0
for cidx, c in enumerate(sx):
c1 = c
c2 = sy[cidx]
if c1 in self.states_to_ignore or c2 in self.states_to_ignore:
continue
f1 = getattr(c1, self.state_attr)
f2 = getattr(c2, self.state_attr)
if f1 != f2:
diffs += 1
ss_diffs += (float(diffs - mean_diff) ** 2)
return float(ss_diffs)/(len(self.pop1_seqs)*len(self.pop2_seqs))
def derived_state_matrix(
char_matrix,
ancestral_sequence=None,
derived_state_alphabet=None,
ignore_uncertain=True,
):
"""
Given a list of CharDataSequence objects, and a reference ancestral sequence,
this returns a list of strings corresponding to the list of CharDataSequence
objects, where a '0' indicates the ancestral state and '1' a derived state.
e.g.
Given:
GGCTAATCTGA
GCTTTTTCTGA
GCTCTCTCTTC
with ancestral sequence:
GGTTAATCTGA
this returns:
0010000000
0000110000
0001110011
"""
if derived_state_alphabet is None:
derived_state_alphabet = dendropy.StateAlphabet(
fundamental_states="01",
polymorphic_states=None,
ambiguous_states=None,
no_data_symbol="?",
gap_symbol="-")
derived_matrix = dendropy.StandardCharacterMatrix(
taxon_namespace=char_matrix.taxon_namespace,
default_state_alphabet=derived_state_alphabet)
if ignore_uncertain:
attr = "fundamental_indexes_with_gaps_as_missing"
states_to_ignore = set([char_matrix.default_state_alphabet.gap_state, char_matrix.default_state_alphabet.no_data_state])
else:
attr = "fundamental_indexes"
states_to_ignore = set()
if ancestral_sequence is None:
ancestral_sequence = char_matrix[0]
ancestral_fundamental_ids = []
for idx, c1 in enumerate(ancestral_sequence):
if c1 in states_to_ignore:
ancestral_fundamental_ids.append(None)
else:
ancestral_fundamental_ids.append(getattr(c1, attr))
for taxon in char_matrix:
s1 = char_matrix[taxon]
for idx, c2 in enumerate(s1):
if ancestral_fundamental_ids[idx] is None or c2 in states_to_ignore:
derived_matrix[taxon].append(derived_matrix.default_state_alphabet["?"])
continue
f2 = getattr(c2, attr)
if f2 == ancestral_fundamental_ids[idx]:
derived_matrix[taxon].append(derived_matrix.default_state_alphabet["0"])
else:
derived_matrix[taxon].append(derived_matrix.default_state_alphabet["1"])
return derived_matrix
def unfolded_site_frequency_spectrum(
char_matrix,
ancestral_sequence=None,
ignore_uncertain=False,
pad=True):
"""
Returns the site frequency spectrum of list of CharDataSequence objects given by char_sequences,
with reference to the ancestral sequence given by ancestral_seq. If ancestral_seq
is None, then the first sequence in char_sequences is taken to be the ancestral
sequence.
"""
dsm = derived_state_matrix(
char_matrix=char_matrix,
ancestral_sequence=ancestral_sequence,
derived_state_alphabet=None,
ignore_uncertain=ignore_uncertain,
)
sites = zip(*dsm.sequences()) # transpose
freqs = {}
if pad:
for i in range(len(char_matrix)+1):
freqs[i] = 0
for s in sites:
p = sum(1 for i in s if i.symbol == "1")
if p not in freqs:
freqs[p] = 1
else:
freqs[p] += 1
return freqs
|