File: profiledistance.py

package info (click to toggle)
python-dendropy 4.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 68,392 kB
  • ctags: 3,947
  • sloc: python: 41,840; xml: 1,400; makefile: 15
file content (327 lines) | stat: -rw-r--r-- 14,479 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#! /usr/bin/env python

##############################################################################
##  DendroPy Phylogenetic Computing Library.
##
##  Copyright 2010 Jeet Sukumaran and Mark T. Holder.
##  All rights reserved.
##
##  See "LICENSE.txt" for terms and conditions of usage.
##
##  If you use this work or any portion thereof in published work,
##  please cite it as:
##
##     Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
##     for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################

"""
Profile distances.
"""

import math
import collections
from dendropy.utility import constants
from dendropy.model import coalescent

class MeasurementProfile(object):

    @staticmethod
    def _euclidean_distance(v1, v2, is_weight_values_by_comparison_profile_size=True):
        v1_size = len(v1)
        v2_size = len(v2)
        v1_idx = 0
        v2_idx = 0
        if v1_size > v2_size:
            v1_idx = v1_size - v2_size
            weight = float(v2_size)
        elif v2_size > v1_size:
            v2_idx = v2_size - v1_size
            weight = float(v1_size)
        else:
            weight = float(v1_size)
        if not is_weight_values_by_comparison_profile_size:
            weight = 1.0
        ss = 0.0
        while v1_idx < v1_size and v2_idx < v2_size:
            ss += pow(v1[v1_idx]/weight - v2[v2_idx]/weight, 2)
            v1_idx += 1
            v2_idx += 1
        return math.sqrt(ss)

    def __init__(self,
            profile_data=None,
            interpolation_method="piecewise_linear"):
        self.set_data(profile_data)
        self.fixed_size = 0
        self.interpolation_method = interpolation_method

    def add(self, value):
        self._profile_data.append(value)
        self._profile_data = sorted(self._profile_data)
        self._raw_data_size = len(self._profile_data)
        self._interpolated_profiles = {}

    def set_data(self, values):
        if values is None:
            values = []
        self._profile_data = sorted(values)
        self._raw_data_size = len(self._profile_data)
        self._interpolated_profiles = {}

    def __len__(self):
        return self._raw_data_size

    def distance(self,
            other,
            profile_size,
            is_weight_values_by_comparison_profile_size=True):
        if profile_size is None:
            profile_size = self._get_profile_comparison_size(other)
        v1 = self._get_profile_for_size(profile_size)
        v2 = other._get_profile_for_size(profile_size)
        return MeasurementProfile._euclidean_distance(v1, v2,
                is_weight_values_by_comparison_profile_size=is_weight_values_by_comparison_profile_size)
    # def get(self, idx):
    #     if idx >= self._raw_data_size:
    #         val = 0.0
    #     else:
    #         val = self._profile_data[idx]
    #         if val is None:
    #             val = 0.0
    #     return val

    def _get_profile_comparison_size(self, other):
        if self.fixed_size > 0 and other.fixed_size > 0:
            if self.fixed_size != other.fixed_size:
                raise ValueError("Comparing two profiles locked to different sizes: {} and {}".format(
                    self.fixed_size, other.fixed_size))
            return self.fixed_size
        elif self.fixed_size == 0 and other.fixed_size > 0:
            if other.fixed_size < self._raw_data_size:
                raise ValueError("Cannot interpolate points in current profile: current raw data size is {} but other profile is locked to a smaller fixed size ({})".format(
                    self._raw_data_size, other.fixed_size))
            return other.fixed_size
        elif self.fixed_size > 0 and other.fixed_size == 0:
            if self.fixed_size < other._raw_data_size:
                raise ValueError("Cannot interpolate points in other profile: other raw data size is {} but current profile is locked to a smaller fixed size ({})".format(
                    other._raw_data_size,
                    self.fixed_size,
                    ))
            return self.fixed_size
        else:
            return max(self._raw_data_size, other._raw_data_size)

    def _get_profile_for_size(self, profile_size):
        if not profile_size:
            return self._raw_data_size
        try:
            return self._interpolated_profiles[profile_size]
        except KeyError:
            self._interpolated_profiles[profile_size] = self._generate_interpolated_profile(profile_size)
            return self._interpolated_profiles[profile_size]

    def _generate_interpolated_profile(self, profile_size):
        if profile_size == self._raw_data_size:
            self._interpolated_profiles[profile_size] = list(self._profile_data)
            return self._interpolated_profiles[profile_size]
        if self._raw_data_size == 0:
            raise ValueError("No data in profile")
        if profile_size < self._raw_data_size:
            raise ValueError("Error interpolating points in profile: number of requested interpolated points ({}) is less than raw data size ({})".format(
                profile_size, self._raw_data_size))
        default_bin_size = int(profile_size / self._raw_data_size)
        if default_bin_size == 0:
            raise ValueError("Profile size ({}) is too small for raw data size ({}), resulting in a null bin size".
                    format(profile_size, self._raw_data_size))
        bin_sizes = [default_bin_size] * self._raw_data_size

        # // due to rounding error, default bin size may not be enough
        # // this hacky algorithm adds additional points to bins to make up the
        # // difference, trying to distribute the additional points along the
        # // length of the line
        diff = profile_size - (default_bin_size * self._raw_data_size)
        if diff > 0:
            dv = float(diff) / self._raw_data_size
            cv = 0.0
            for bin_idx in range(len(bin_sizes)):
                if diff <= 1.0:
                    break
                cv += dv
                if cv >= 1.0:
                    bin_sizes[bin_idx] += 1
                    diff -= 1.0
                    cv = cv - 1.0

        interpolated_profile = []
        if self.interpolation_method == "staircase":
            for original_data_value in self._profile_data:
                self._interpolate_flat(
                        interpolated_profile=interpolated_profile,
                        value=original_data_value,
                        num_points=default_bin_size)
        elif self.interpolation_method == "piecewise_linear":
            for bin_idx, original_data_value in enumerate(self._profile_data[:-1]):
                self._interpolate_linear(
                        interpolated_profile=interpolated_profile,
                        x1=bin_idx,
                        y1=self._profile_data[bin_idx],
                        y2=self._profile_data[bin_idx+1],
                        num_points=bin_sizes[bin_idx],
                        max_points=profile_size,
                        )
            interpolated_profile.append(self._profile_data[-1])
        return interpolated_profile

    def _interpolate_flat(self,
            interpolated_profile,
            value,
            num_points):
        interpolated_profile += [value] * num_points
        return interpolated_profile

    def _interpolate_linear(self,
            interpolated_profile,
            x1, y1, y2,
            num_points,
            max_points):
        assert num_points > 0
        slope = float(y2 - y1) / num_points
        for xi in range(num_points):
            if max_points and len(interpolated_profile) >= max_points:
                return interpolated_profile
            interpolated_profile.append((slope * xi) + y1)

class TreeProfile(object):

    def __init__(self,
            tree,
            is_measure_edge_lengths=True,
            is_measure_patristic_distances=False,
            is_measure_patristic_steps=False,
            is_measure_node_distances=True,
            is_measure_node_steps=True,
            is_measure_node_ages=True,
            is_measure_coalescence_intervals=True,
            is_normalize=True,
            ultrametricity_precision=constants.DEFAULT_ULTRAMETRICITY_PRECISION,
            tree_phylogenetic_distance_matrix=None,
            tree_node_distance_matrix=None,
            tree_id=None,
            is_skip_normalization_on_zero_division_error=False,
            ):
        self.tree_id = tree_id
        self.is_measure_edge_lengths = is_measure_edge_lengths
        self.is_measure_patristic_distances = is_measure_patristic_distances
        self.is_measure_patristic_steps = is_measure_patristic_steps
        self.is_measure_node_distances = is_measure_node_distances
        self.is_measure_node_steps = is_measure_node_steps
        self.is_measure_node_ages = is_measure_node_ages
        self.is_measure_coalescence_intervals = is_measure_coalescence_intervals
        self.is_normalize = is_normalize
        self.is_skip_normalization_on_zero_division_error = is_skip_normalization_on_zero_division_error
        self.ultrametricity_precision = ultrametricity_precision
        self.measurement_profiles = collections.OrderedDict()
        self.compile(tree)

    def compile(self, tree,
            tree_phylogenetic_distance_matrix=None,
            tree_node_distance_matrix=None,
            ):
        if self.is_measure_edge_lengths:
            if self.is_normalize:
                tree_length_nf = tree.length()
                if tree_length_nf == 0:
                    tree_length_nf = 1.0
            else:
                tree_length_nf = 1.0
            self.measurement_profiles["Edge.Lengths"] = MeasurementProfile(
                    profile_data=[float(e.length)/tree_length_nf for e in tree.postorder_edge_iter() if e.length is not None])
        if self.is_measure_patristic_distances or self.is_measure_patristic_steps:
            if tree_phylogenetic_distance_matrix is None:
                tree_phylogenetic_distance_matrix = tree.phylogenetic_distance_matrix()
            if self.is_measure_patristic_distances:
                self.measurement_profiles["Patristic.Distances"] = MeasurementProfile(
                        profile_data=tree_phylogenetic_distance_matrix.distances(
                            is_weighted_edge_distances=True,
                            is_normalize_by_tree_size=self.is_normalize,))
            if self.is_measure_patristic_steps:
                self.measurement_profiles["Patristic.Steps"] = MeasurementProfile(
                        profile_data=tree_phylogenetic_distance_matrix.distances(
                        is_weighted_edge_distances=False,
                        is_normalize_by_tree_size=self.is_normalize,))
        if self.is_measure_node_distances or self.is_measure_node_steps:
            if tree_node_distance_matrix is None:
                tree_node_distance_matrix = tree.node_distance_matrix()
            if self.is_measure_node_distances:
                self.measurement_profiles["Node.Distances"] = MeasurementProfile(
                        profile_data=tree_node_distance_matrix.distances(
                            is_weighted_edge_distances=True,
                            is_normalize_by_tree_size=self.is_normalize,))
            if self.is_measure_node_steps:
                self.measurement_profiles["Node.Steps"] = MeasurementProfile(
                        profile_data=tree_node_distance_matrix.distances(
                        is_weighted_edge_distances=False,
                        is_normalize_by_tree_size=self.is_normalize,))
        if self.is_measure_node_ages:
            node_ages = tree.calc_node_ages(ultrametricity_precision=self.ultrametricity_precision)
            if self.is_normalize:
                s = sum(node_ages)
                try:
                    normalized_node_ages = [a/s for a in node_ages]
                    node_ages = normalized_node_ages
                except ZeroDivisionError as e:
                    if self.is_skip_normalization_on_zero_division_error:
                        pass
                    else:
                        raise
            self.measurement_profiles["Node.Ages"] = MeasurementProfile(profile_data=node_ages,)
        if self.is_measure_coalescence_intervals:
            cf = coalescent.extract_coalescent_frames(
                    tree=tree,
                    ultrametricity_precision=self.ultrametricity_precision,)
            waiting_times = cf.values()
            if self.is_normalize:
                s = sum(waiting_times)
                try:
                    normalized_waiting_times = [w/s for w in waiting_times]
                    waiting_times = normalized_waiting_times
                except ZeroDivisionError as e:
                    if self.is_skip_normalization_on_zero_division_error:
                        pass
                    else:
                        raise
            self.measurement_profiles["Coalescence.Intervals"] = MeasurementProfile(profile_data=waiting_times,)

    @property
    def measurement_names(self):
        names = []
        if self.is_measure_edge_lengths:
            names.append("Edge.Lengths")
        if self.is_measure_patristic_distances:
            names.append("Patristic.Distances")
        if self.is_measure_patristic_steps:
            names.append("Patristic.Steps")
        if self.is_measure_node_distances:
            names.append("Node.Distances")
        if self.is_measure_node_steps:
            names.append("Node.Steps")
        if self.is_measure_node_ages:
            names.append("Node.Ages")
        if self.is_measure_coalescence_intervals:
            names.append("Coalescence.Intervals")
        return names

    def measure_distances(self, other_tree_profile,
            profile_size=None,
            is_weight_values_by_comparison_profile_size=True):
        d = collections.OrderedDict()
        for pm_name in self.measurement_profiles:
            p1 = self.measurement_profiles[pm_name]
            p2 = other_tree_profile.measurement_profiles[pm_name]
            d[pm_name] = p1.distance(p2,
                    profile_size=None,
                    is_weight_values_by_comparison_profile_size=is_weight_values_by_comparison_profile_size)
        return d