1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
#! /usr/bin/env python
##############################################################################
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.rst" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
import sys
import collections
import warnings
from dendropy.datamodel import taxonmodel
from dendropy.utility import deprecate
from dendropy.utility import textprocessing
if not (sys.version_info.major >= 3 and sys.version_info.minor >= 4):
from dendropy.utility.filesys import pre_py34_open as open
###############################################################################
## IOService
class IOService(object):
"""
Base class for all readers/writers.
"""
@staticmethod
def attached_taxon_set_deprecation_warning():
deprecate.dendropy_deprecation_warning(
old_construct="attached_taxon_set",
new_construct="attached_taxon_namespace",
stacklevel=5)
def __init__(self):
self.attached_taxon_namespace = None
def _get_attached_taxon_set(self):
IOService.attached_taxon_set_deprecation_warning()
return self.attached_taxon_namespace
def _set_attached_taxon_set(IOService, v):
IOService.attached_taxon_set_deprecation_warning()
self.attached_taxon_namespace = v
def _del_attached_taxon_set(IOService):
IOService.attached_taxon_set_deprecation_warning()
attached_taxon_set = property(_get_attached_taxon_set, _set_attached_taxon_set, _del_attached_taxon_set)
def check_for_unused_keyword_arguments(self, kwargs_dict):
ignore_unrecognized_keyword_arguments = kwargs_dict.pop("ignore_unrecognized_keyword_arguments", False)
attach_taxon_namespace, taxon_namespace = taxonmodel.process_attached_taxon_namespace_directives(kwargs_dict)
if attach_taxon_namespace or (taxon_namespace is not None):
self.attached_taxon_namespace = taxon_namespace
if kwargs_dict and not ignore_unrecognized_keyword_arguments:
raise TypeError("Unrecognized or unsupported arguments: {}".format(kwargs_dict))
###############################################################################
## DataReader
class DataReader(IOService):
"""
Base class for all readers.
Consumes a stream and builds or composes corresponding phylogenetic data
object or objects. Abstract class, to be implemented by derived classes
specializing in particular data formats.
"""
Product = collections.namedtuple(
"product",
["taxon_namespaces", "tree_lists", "char_matrices"]
)
def __init__(self):
IOService.__init__(self)
def _read(self,
stream,
taxon_namespace_factory=None,
tree_list_factory=None,
char_matrix_factory=None,
state_alphabet_factory=None,
global_annotations_target=None):
"""
Deriving classes should implement this method to build a data product
from the information in ``stream`` using the provided factory functions.
Parameters
----------
stream : file or file-like object
Source of data.
taxon_namespace_factory : function object
A function that takes one named argument, ``label``, and returns a
|TaxonNamespace| object to be used for each distinct block of
operational taxonomic unit concept definitions encountered in the
data source.
The function will be called as::
tns = taxon_namespace_factory(label="label")
In the simplest case, a new |TaxonNamespace| object can be created
for each block of taxon definitions in the data source by setting
the factory function to::
taxon_namespace_factory = TaxonNamespace
If all data objects are to be organized into a DataSet object,
then:
taxon_namespace_factory = dataset.new_taxon_namespace
If all data objects should reference the *same* |TaxonNamespace|
object, then:
taxon_namespace_factory = lambda label : taxon_namespace
where ``taxon_namespace`` is an existing |TaxonNamespace| object that
should be used.
If ``taxon_namespace_factor`` is |None|, then no tree data will be
parsed.
tree_list_factory : function object
A function that takes two named arguments, ``label`` and
``taxon_namespace``, and returns a |TreeList| or equivalent object to
be used to manage each distinct collection of trees in the data
source.
The function will be called as::
tns = taxon_namespace_factory(label="label")
tlist = tree_list_factory(label="label", taxon_namespace=tns)
In the simplest case, a new |TreeList| object can be created for
each block of tree definitions in the data source by setting the
factory function to::
tree_list_factory = TreeList
If all data objects are to be organized into a DataSet object,
then:
tree_list = dataset.new_tree_list
If all Tree data objects instantiated should be accessioned into
the *same* |TreeList| object, then:
taxon_namespace_factory = lambda label : tree_list.taxon_namespace
tree_list_factory = lambda label, taxon_namespace : tree_list
where ``tree_list`` is an existing |TreeList| object that should be
used.
char_matrix_factory : function object
A function that takes two named arguments, ``label`` and
``taxon_namespace``, and returns a |CharacterMatrix| or equivalent object to
be used to manage each aligment or distinct set of sequences in the data
source.
The function will be called as::
tns = taxon_namespace_factory(label="label")
cm = char_matrix_factory(label="label", taxon_namespace=tns)
In the simplest case, a new |CharacterMatrix| object can be created for
each alignment or set of sequences in the data source by setting the
factory function to, for e.g.::
char_matrix_factory = DnaCharacterMatrix
If all data objects are to be organized into a DataSet object,
then:
char_matrix = dataset.new_char_matrix
If ``char_matrix_factory`` is |None|, then no character data will be
parsed.
state_alphabet_factory : function object
A function that takes all the arguments of |StateAlphabet|
and returns a properly configured instance.
global_annotations_target : |Annotable| object
Any object that will be the target (or subject, in the grammatical
sense) of general metadata or annotations in the data source. If
|None|, then such metadata or annotations will not be stored.
Returns
-------
A `Product` object : a ``namedtuple`` with the following attributes:
"taxon_namespaces", "tree_lists", "char_matrices".
"""
raise NotImplementedError
def read_dataset(self,
stream,
dataset,
taxon_namespace=None,
exclude_trees=False,
exclude_chars=False,
state_alphabet_factory=None):
"""
Populates the given |DataSet| object from external data source.
Parameters
----------
stream : file or file-like object
Source of data.
dataset : |DataSet| object
The target |DataSet| to populate/build.
exclude_trees : boolean, default: False
If set to |True|, tree data will not be read from the source.
exclude_chars : boolean, default: False
If set to |True|, character data will not be read from the source.
"""
if taxon_namespace is not None:
taxon_namespace_factory = lambda label : taxon_namespace
if (dataset.attached_taxon_namespace is not None
and dataset.attached_taxon_namespace is not taxon_namespace):
raise ValueError("'taxon_namespace' (or 'taxon_set') keyword argument value must be the same as 'dataset.attached_taxon_namespace' if both are not 'None'")
self.attached_taxon_namespace = taxon_namespace
elif dataset.attached_taxon_namespace is not None:
taxon_namespace_factory = lambda label : dataset.attached_taxon_namespace
self.attached_taxon_namespace = dataset.attached_taxon_namespace
else:
taxon_namespace_factory = dataset.new_taxon_namespace
if exclude_trees:
tree_list_factory = None
else:
tree_list_factory = dataset.new_tree_list
if exclude_chars:
char_matrix_factory = None
else:
char_matrix_factory = dataset.new_char_matrix
product = self._read(stream=stream,
taxon_namespace_factory=taxon_namespace_factory,
tree_list_factory=tree_list_factory,
char_matrix_factory=char_matrix_factory,
state_alphabet_factory=state_alphabet_factory,
global_annotations_target=dataset)
return product
def read_tree_lists(self,
stream,
taxon_namespace_factory,
tree_list_factory,
global_annotations_target=None):
"""
Reads tree data from source into tree objects.
With data schemas that support the concept of multiple distinct blocks
or sets of trees (e.g. NEXUS or NeXML), each tree block will be
accessioned into a separate |TreeList| instantiated by calling
`tree_list_factory(label)`. If trees should be accessioned into the
same |TreeList|, then this can be coerced by, e.g.::
t = TreeList()
reader.read_tree_lists(
stream=stream,
taxon_namespace_factory=lambda x: t.taxon_namespace,
tree_list_factory=lambda x : t)
Parameters
----------
stream : file or file-like object
Source of data.
taxon_namespace_factory : function object
A function that takes one named argument, ``label``, and returns a
|TaxonNamespace| object to be used for each distinct block of
operational taxonomic unit concept definitions encountered in the
data source.
The function will be called as::
tns = taxon_namespace_factory(label="label")
In the simplest case, a new |TaxonNamespace| object can be created
for each block of taxon definitions in the data source by setting
the factory function to::
taxon_namespace_factory = TaxonNamespace
If all data objects are to be organized into a DataSet object,
then:
taxon_namespace_factory = dataset.new_taxon_namespace
If all data objects should reference the *same* |TaxonNamespace|
object, then:
taxon_namespace_factory = lambda label : taxon_namespace
where ``taxon_namespace`` is an existing |TaxonNamespace| object that
should be used.
If ``taxon_namespace_factor`` is |None|, then no tree data will be
parsed.
tree_list_factory : function object
A function that takes two named arguments, ``label`` and
``taxon_namespace``, and returns a |TreeList| or equivalent object to
be used to manage each distinct collection of trees in the data
source.
The function will be called as::
tns = taxon_namespace_factory(label="label")
tlist = tree_list_factory(label="label", taxon_namespace=tns)
In the simplest case, a new |TreeList| object can be created for
each block of tree definitions in the data source by setting the
factory function to::
tree_list_factory = TreeList
If all data objects are to be organized into a DataSet object,
then:
tree_list = dataset.new_tree_list
If all Tree data objects instantiated should be accessioned into
the *same* |TreeList| object, then:
taxon_namespace_factory = lambda label : tree_list.taxon_namespace
tree_list_factory = lambda label, taxon_namespace : tree_list
where ``tree_list`` is an existing |TreeList| object that should be
used.
global_annotations_target : |Annotable| object
Any object that will be the target (or subject, in the grammatical
sense) of general metadata or annotations in the data source. If
|None|, then such metadata or annotations will not be stored.
Returns
-------
List of |TreeList| objects.
"""
# ``product`` is a namedtuple("DataReaderProducts", ["taxon_namespaces", "tree_lists", "char_matrices"])
product = self._read(stream=stream,
taxon_namespace_factory=taxon_namespace_factory,
tree_list_factory=tree_list_factory,
char_matrix_factory=None,
state_alphabet_factory=None,
global_annotations_target=global_annotations_target)
return product.tree_lists
def read_char_matrices(self,
stream,
taxon_namespace_factory,
char_matrix_factory,
state_alphabet_factory,
global_annotations_target=None):
product = self._read(stream=stream,
taxon_namespace_factory=taxon_namespace_factory,
tree_list_factory=None,
char_matrix_factory=char_matrix_factory,
state_alphabet_factory=state_alphabet_factory,
global_annotations_target=global_annotations_target)
return product.char_matrices
###############################################################################
## DataWriter
class DataWriter(IOService):
"""
Base class for all writers.
Writes a DendroPy phylogenetic data object to a stream. Abstract class, to
be implemented by derived classes specializing in particular data formats.
"""
def __init__(self, **kwargs):
"""
Constructs and configures a `DataWriter` object by "harvesting" keyword
arguments and setting state accordingly. Keyword arguments recognized
and processed will be removed from the keyword argument dictionary.
Parameters
----------
**kwargs : schema- and implementation-specific keyword arguments
"""
IOService.__init__(self)
def _write(self,
stream,
taxon_namespaces=None,
tree_lists=None,
char_matrices=None,
global_annotations_target=None):
"""
Deriving classes should implement this method to information to ``stream``
in schema-specific formatting.
Parameters
----------
stream : file or file-like object
Destination for data.
taxon_namespaces : Iterable of |TaxonNamespace| objects
Collection of |TaxonNamespace| objects to be serialized.
tree_lists : Iterable of |TreeList| objects
Collection of |TreeList| objects to be serialized.
char_matrices : Iterable of |CharacterMatrix| objects
Collection of |CharacterMatrix| objects to be serialized.
global_annotations_target : |Annotable| object
Any object that will be the source (or subject, in the grammatical
sense) of general metadata or annotations for the data. If
|None|, then such metadata or annotations will not be stored.
"""
raise NotImplementedError
def write_dataset(self,
dataset,
stream,
exclude_trees,
exclude_chars,
):
"""
Writes the given |DataSet| object to the file-like object ``stream``.
stream : file or file-like object
Destination for data.
dataset : |DataSet| object
The |DataSet| to write.
exclude_trees : boolean, default: False
If set to |True|, tree data will not be written to the destination.
exclude_chars : boolean, default: False
If set to |True|, character data will not be written to the destination.
global_annotations_target : |Annotable| object
Any object that will be the source (or subject, in the grammatical
sense) of general metadata or annotations for the data. If
|None|, then such metadata or annotations will not be stored.
"""
tree_lists = dataset.tree_lists if not exclude_trees else None
char_matrices = dataset.char_matrices if not exclude_chars else None
self.attached_taxon_namespace = dataset.attached_taxon_namespace
self._write(
stream=stream,
taxon_namespaces=dataset.taxon_namespaces,
tree_lists=tree_lists,
char_matrices=char_matrices,
global_annotations_target=dataset)
def write_tree_list(self, tree_list, stream):
self._write(
stream=stream,
taxon_namespaces=None,
tree_lists=[tree_list],
char_matrices=None,
global_annotations_target=None)
def write_tree_lists(self, tree_lists, stream):
self._write(
stream=stream,
taxon_namespaces=None,
tree_lists=tree_lists,
char_matrices=None,
global_annotations_target=None)
def write_char_matrices(self, char_matrix_list, stream):
self._write(
stream=stream,
taxon_namespaces=None,
tree_lists=None,
char_matrices=char_matrix_list,
global_annotations_target=None)
def write_char_matrix(self, char_matrix, stream):
self._write(
stream=stream,
taxon_namespaces=None,
tree_lists=None,
char_matrices=[char_matrix],
global_annotations_target=None)
###############################################################################
## DataYielder
class DataYielder(IOService):
def __init__(self, files=None):
IOService.__init__(self)
self.files = files
self._current_file_index = None
self._current_file = None
self._current_file_name = None
def reset(self):
self.current_file_index = None
self.current_file = None
self.current_file_name = None
def _get_current_file_index(self):
return self._current_file_index
current_file_index = property(_get_current_file_index)
def _get_current_file(self):
return self._current_file
current_file = property(_get_current_file)
def _get_current_file_name(self):
return self._current_file_name
current_file_name = property(_get_current_file_name)
def __iter__(self):
for current_file_index, current_file in enumerate(self.files):
self._current_file_index = current_file_index
for item in self.iterate_over_file(current_file):
yield item
def iterate_over_file(self, current_file):
if textprocessing.is_str_type(current_file):
self._current_file = open(current_file, "r")
self._current_file_name = current_file
else:
self._current_file = current_file
try:
self._current_file_name = self.current_file.name
except AttributeError:
self._current_file_name = None
if hasattr(self._current_file, "__exit__"):
with self._current_file:
for item in self._yield_items_from_stream(stream=self._current_file):
yield item
else:
# StringIO does not support ``with``
for item in self._yield_items_from_stream(stream=self._current_file):
yield item
self._current_file = None
###############################################################################
## DataYielder
class TreeDataYielder(DataYielder):
def __init__(self,
files=None,
taxon_namespace=None,
tree_type=None):
DataYielder.__init__(self, files=files)
self.taxon_namespace = taxon_namespace
assert self.taxon_namespace is not None
self.attached_taxon_namespace = self.taxon_namespace
self.tree_type = tree_type
def tree_factory(self):
return self.tree_type(taxon_namespace=self.taxon_namespace)
|