File: charmatrixmodel.py

package info (click to toggle)
python-dendropy 4.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 68,392 kB
  • ctags: 3,947
  • sloc: python: 41,840; xml: 1,400; makefile: 15
file content (2026 lines) | stat: -rw-r--r-- 80,926 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
#! /usr/bin/env python

##############################################################################
##  DendroPy Phylogenetic Computing Library.
##
##  Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
##  All rights reserved.
##
##  See "LICENSE.rst" for terms and conditions of usage.
##
##  If you use this work or any portion thereof in published work,
##  please cite it as:
##
##     Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
##     for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################

"""
Character and character-sequence data structures.
"""

import warnings
import copy
import collections
from dendropy.utility.textprocessing import StringIO
from dendropy.utility import textprocessing
from dendropy.utility import error
from dendropy.utility import deprecate
from dendropy.utility import container
from dendropy.datamodel import charstatemodel
from dendropy.datamodel.charstatemodel import DNA_STATE_ALPHABET
from dendropy.datamodel.charstatemodel import RNA_STATE_ALPHABET
from dendropy.datamodel.charstatemodel import NUCLEOTIDE_STATE_ALPHABET
from dendropy.datamodel.charstatemodel import PROTEIN_STATE_ALPHABET
from dendropy.datamodel.charstatemodel import RESTRICTION_SITES_STATE_ALPHABET
from dendropy.datamodel.charstatemodel import INFINITE_SITES_STATE_ALPHABET
from dendropy.datamodel import basemodel
from dendropy.datamodel import taxonmodel
from dendropy import dataio

###############################################################################
## ContinuousCharElement

class ContinuousCharElement(
        basemodel.DataObject,
        basemodel.Annotable):
    def __init__(self, value, column_def=None, label=None):
        basemodel.DataObject.__init__(self,
                label=label)
        self.value = value
        self.column_def = column_def

###############################################################################
## CharacterType

class CharacterType(
        basemodel.DataObject,
        basemodel.Annotable):
    """
    A character format or type of a particular column: i.e., maps a particular
    set of character state definitions to a column in a character matrix.
    """

    def __init__(self,
            label=None,
            state_alphabet=None):
        basemodel.DataObject.__init__(self, label=label)
        self._state_alphabet = None
        self.state_alphabet = state_alphabet

    def _get_state_alphabet(self):
        """
        The |StateAlphabet| representing the state alphabet for this
        column: i.e., the collection of symbols and the state identities to
        which they map.
        """
        return self._state_alphabet
    def _set_state_alphabet(self, value):
        self._state_alphabet = value
    state_alphabet = property(_get_state_alphabet, _set_state_alphabet)

    def __copy__(self, memo=None):
        raise TypeError("Cannot directly copy {}".format(self.__class__.__name__))

    def taxon_namespace_scoped_copy(self, memo=None):
        raise TypeError("Cannot directly copy {}".format(self.__class__.__name__))

    def __deepcopy__(self, memo=None):
        return basemodel.Annotable.__deepcopy__(self, memo=memo)

###############################################################################
## CharacterDataSequence

class CharacterDataSequence(
        basemodel.Annotable,
        ):
    """
    A sequence of character values or values for a particular taxon or entry in
    a data matrix.

    Objects of this class can be (almost) treated as simple lists, where the
    elements are the values of characters (typically, real values in the case
    of continuous data, and special instances of |StateIdentity| objects in the
    case of discrete data.

    Character type data (represented by |CharacterType| instances) and metadata
    annotations (represented by |AnnotationSet| instances), if any, are
    maintained in a parallel list that need to be accessed separately using the
    index of the value to which the data correspond. So, for example, the
    |AnnotationSet| object containing the metadata annotations for the first
    value in a sequence, ``s[0]``, is available through
    ``s.annotations_at(0)``, while the character type information for that
    first element is available through ``s.character_type_at(0)`` and can be
    set through ``s.set_character_type_at(0, c)``.

    In most cases where metadata annotations and character type information are
    not needed, treating objects of this class as a simple list provides all
    the functionality needed. Where metadata annotations or character type
    information are required, all the standard list mutation methods (e.g.,
    ``CharacterDataSequence.insert``, ``CharacterDataSequence.append``,
    ``CharacterDataSequence.extend``) also take optional ``character_type``
    and ``character_annotations`` argument in addition to the primary
    ``character_value`` argument, thus allowing for setting of the value,
    character type, and annotation set simultaneously. While iteration over
    character values are available through the standard list iteration
    interface, the method ``CharacterDataSequence.cell_iter()`` provides for
    iterating over ``<character-value, character-type,
    character-annotation-set>`` triplets.

    """

    ###############################################################################
    ## Life-cycle

    def __init__(self,
            character_values=None,
            character_types=None,
            character_annotations=None):
        """
        Parameters
        ----------
        character_values : iterable of values
            A set of values for this sequence.
        """
        self._character_values = []
        self._character_types = []
        self._character_annotations = []
        if character_values:
            self.extend(
                    character_values=character_values,
                    character_types=character_types,
                    character_annotations=character_annotations)

    ###############################################################################
    ## Life-cycle

    # def values(self):
    #     return list(self._character_values)

    def values(self):
        """
        Returns list of values of this vector.

        Returns
        -------
        v : list
            List of values making up this vector.
        """
        return self._character_values

    def symbols_as_list(self):
        """
        Returns list of string representation of values of this vector.

        Returns
        -------
        v : list
            List of string representation of values making up this vector.
        """
        return list(str(cs) for cs in self._character_values)

    def symbols_as_string(self, sep=""):
        """
        Returns values of this vector as a single string, with individual value
        elements separated by ``sep``.

        Returns
        -------
        s : string
            String representation of values making up this vector.
        """
        return sep.join(str(cs) for cs in self._character_values)

    def __str__(self):
        return self.symbols_as_string()

    def append(self, character_value, character_type=None, character_annotations=None):
        """
        Adds a value to ``self``.

        Parameters
        ----------
        character_value : object
            Value to be stored.
        character_type : |CharacterType|
            Description of character value.
        character_annotations : |AnnotationSet|
            Metadata annotations associated with this character.
        """
        self._character_values.append(character_value)
        self._character_types.append(character_type)
        self._character_annotations.append(character_annotations)

    def extend(self, character_values, character_types=None, character_annotations=None):
        """
        Extends ``self`` with values.

        Parameters
        ----------
        character_values : iterable of objects
            Values to be stored.
        character_types : iterable of |CharacterType| objects
            Descriptions of character values.
        character_annotations : iterable |AnnotationSet| objects
            Metadata annotations associated with characters.
        """
        self._character_values.extend(character_values)
        if character_types is None:
            self._character_types.extend( [None] * len(character_values) )
        else:
            assert len(character_types) == len(character_values)
            self._character_types.extend(character_types)
        if character_annotations is None:
            self._character_annotations.extend( [None] * len(character_values) )
        else:
            assert len(character_annotations) == len(character_values)
            self._character_annotations.extend(character_annotations)

    def __len__(self):
        return len(self._character_values)

    def __getitem__(self, idx):
        return self._character_values[idx]

    def __setitem__(self, idx, value):
        self._character_values[idx] = value

    def __iter__(self):
        return self.__next__()

    def __next__(self):
        for v in self._character_values:
            yield v

    next = __next__ # Python 2 legacy support

    def cell_iter(self):
        """
        Iterate over triplets of character values and associated
        |CharacterType| and |AnnotationSet| instances.
        """
        for v, t, a in zip(self._character_values, self._character_types, self._character_annotations):
            yield v, t, a

    def __delitem__(self, idx):
        del self._character_values[idx]
        del self._character_types[idx]
        del self._character_annotations[idx]

    def set_at(self, idx, character_value, character_type=None, character_annotations=None):
        """
        Set value and associated character type and metadata annotations for
        element at ``idx``.

        Parameters
        ----------
        idx : integer
            Index of element to set.
        character_value : object
            Value to be stored.
        character_type : |CharacterType|
            Description of character value.
        character_annotations : |AnnotationSet|
            Metadata annotations associated with this character.
        """
        to_add = (idx+1) - len(self._character_values)
        while to_add > 0:
            self.append(None)
            to_add -= 1
        self._character_values[idx] = character_value
        self._character_types[idx] = character_type
        self._character_annotations[idx] = character_annotations

    def insert(self, idx, character_value, character_type=None, character_annotations=None):
        """
        Insert value and associated character type and metadata annotations for
        element at ``idx``.

        Parameters
        ----------
        idx : integer
            Index of element to set.
        character_value : object
            Value to be stored.
        character_type : |CharacterType|
            Description of character value.
        character_annotations : |AnnotationSet|
            Metadata annotations associated with this character.
        """
        self._character_values.insert(idx, character_value)
        self._character_types.insert(idx, character_type)
        self._character_annotations.insert(idx, character_annotations)

    def value_at(self, idx):
        """
        Return value of character at ``idx``.

        Parameters
        ----------
        idx : integer
            Index of element value to return.

        Returns
        -------
        c : object
            Value of character at index ``idx``.
        """
        return self._character_values[idx]

    def character_type_at(self, idx):
        """
        Return type of character at ``idx``.

        Parameters
        ----------
        idx : integer
            Index of element character type to return.

        Returns
        -------
        c : |CharacterType|
            |CharacterType| associated with character index ``idx``.
        """
        return self._character_types[idx]

    def annotations_at(self, idx):
        """
        Return metadata annotations of character at ``idx``.

        Parameters
        ----------
        idx : integer
            Index of element annotations to return.

        Returns
        -------
        c : |AnnotationSet|
            |AnnotationSet| representing metadata annotations of character at index ``idx``.
        """
        if self._character_annotations[idx] is None:
            self._character_annotations[idx] = basemodel.AnnotationSet()
        return self._character_annotations[idx]

    def has_annotations_at(self, idx):
        """
        Return |True| if character at ``idx`` has metadata annotations.

        Parameters
        ----------
        idx : integer
            Index of element annotations to check.

        Returns
        -------
        b : bool
            |True| if character at ``idx`` has metadata annotations, |False|
            otherwise.
        """
        return not self._character_annotations[idx] is None

    def set_character_type_at(self, idx, character_type):
        """
        Set type of character at ``idx``.

        Parameters
        ----------
        idx : integer
            Index of element character type to set.
        """
        self._character_types[idx] = character_type

    def set_annotations_at(self, idx, annotations):
        """
        Set metadata annotations of character at ``idx``.

        Parameters
        ----------
        idx : integer
            Index of element annotations to set.
        """
        self._character_annotations[idx] = annotations

###############################################################################
## Subset of Character (Columns)

class CharacterSubset(
        basemodel.DataObject,
        basemodel.Annotable,
        ):
    """
    Tracks definition of a subset of characters.
    """

    def __init__(self, label=None, character_indices=None):
        """
        Parameters
        ----------
        label: str
            Name of this subset.
        character_indices: iterable of ``int``
            Iterable of 0-based (integer) indices of column positions that
            constitute this subset.

        """
        basemodel.DataObject.__init__(self, label=label)
        if character_indices is None:
            self.character_indices = set()
        else:
            self.character_indices = set(character_indices)

    def __len__(self):
        return len(self.character_indices)

    def __iter__(self):
        return iter(self.character_indices)

    def __deepcopy__(self, memo):
        return basemodel.Annotable.__deepcopy__(self, memo=memo)

###############################################################################
## CharacterMatrix

class CharacterMatrix(
        taxonmodel.TaxonNamespaceAssociated,
        basemodel.Annotable,
        basemodel.Deserializable,
        basemodel.NonMultiReadable,
        basemodel.Serializable,
        basemodel.DataObject):
    """
    A data structure that manages assocation of operational taxononomic unit
    concepts to sequences of character state identities or values.

    This is a base class that provides general functionality; derived classes
    specialize for particular data types. You will not be using the class
    directly, but rather one of the derived classes below, specialized for data
    types such as DNA, RNA, continuous, etc.

    This class and derived classes behave like a dictionary where the keys are
    |Taxon| objects and the values are `CharacterDataSequence` objects. Access
    to sequences based on taxon labels as well as indexes are also provided.
    Numerous methods are provided to manipulate and iterate over sequences.
    Character partitions can be managed through `CharacterSubset` objects,
    while management of detailed metadata on character types are available
    through |CharacterType| objects.

    Objects can be instantiated by reading data from external sources through
    the usual ``get_from_stream()``, ``get_from_path()``, or
    ``get_from_string()`` functions. In addition, a single matrix object can be
    instantiated from multiple matrices (``concatenate()``) or data sources
    (``concatenate_from_paths``).

    A range of methods also exist for importing data from another matrix object.
    These vary depending on how "new" and "existing" are treated.  A "new"
    sequence is a sequence in the other matrix associated with a |Taxon|
    object for which there is no sequence defined in the current matrix.  An
    "existing" sequence is a sequence in the other matrix associated with a
    |Taxon| object for which there *is* a sequence defined in the
    current matrix.

    +---------------------------------+---------------------------------------------+--------------------------------------------+
    |                                 | New Sequences: IGNORED                      | New Sequences: ADDED                       |
    +=================================+=============================================+============================================+
    | Existing Sequences: IGNORED     | [NO-OP]                                     | :meth:`CharacterMatrix.add_sequences()`    |
    +---------------------------------+---------------------------------------------+--------------------------------------------+
    | Existing Sequences: OVERWRITTEN | :meth:`CharacterMatrix.replace_sequences()` | :meth:`CharacterMatrix.update_sequences()` |
    +---------------------------------+---------------------------------------------+--------------------------------------------+
    | Existing Sequences: EXTENDED    | :meth:`CharacterMatrix.extend_sequences()`  | :meth:`CharacterMatrix.extend_matrix()`    |
    +---------------------------------+---------------------------------------------+--------------------------------------------+

    If character subsets have been defined, these subsets can be exported to independent matrices.

    """

    ###########################################################################
    ### Class Variables

    data_type = None
    character_sequence_type = CharacterDataSequence

    ###########################################################################
    ### Factory (Class) Methods

    def _parse_and_create_from_stream(cls,
            stream,
            schema,
            matrix_offset=0,
            **kwargs):
        taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None)
        if taxon_namespace is None:
            taxon_namespace = taxonmodel.TaxonNamespace()
        def tns_factory(label):
            if label is not None and taxon_namespace.label is None:
                taxon_namespace.label = label
            return taxon_namespace
        label = kwargs.pop("label", None)
        kwargs["data_type"] = cls.data_type
        reader = dataio.get_reader(schema, **kwargs)
        char_matrices = reader.read_char_matrices(
                stream=stream,
                taxon_namespace_factory=tns_factory,
                char_matrix_factory=new_char_matrix,
                state_alphabet_factory=charstatemodel.StateAlphabet,
                global_annotations_target=None)
        if len(char_matrices) == 0:
            raise ValueError("No character data in data source")
        char_matrix = char_matrices[matrix_offset]
        if char_matrix.data_type != cls.data_type:
            raise ValueError(
                "Data source (at offset {}) is of type '{}', "
                "but current CharacterMatrix is of type '{}'.".format(
                    matrix_offset,
                    char_matrix.data_type,
                    cls.data_type))
        return char_matrix
    _parse_and_create_from_stream = classmethod(_parse_and_create_from_stream)

    @classmethod
    def get(cls, **kwargs):
        """
        Instantiate and return a *new* character matrix object from a data source.

        **Mandatory Source-Specification Keyword Argument (Exactly One of the Following Required):**

            - **file** (*file*) -- File or file-like object of data opened for reading.
            - **path** (*str*) -- Path to file of data.
            - **url** (*str*) -- URL of data.
            - **data** (*str*) -- Data given directly.

        **Mandatory Schema-Specification Keyword Argument:**

            - **schema** (*str*) -- Identifier of format of data given by the
              "``file``", "``path``", "``data``", or "``url``" argument
              specified above: ":doc:`fasta </schemas/fasta>`", ":doc:`nexus
              </schemas/nexus>`", or ":doc:`nexml </schemas/nexml>`",
              ":doc:`phylip </schemas/phylip>`", etc.
              See "|Schemas|" for more details.

        **Optional General Keyword Arguments:**

            - **label** (*str*) -- Name or identifier to be assigned to the new
              object; if not given, will be assigned the one specified in the
              data source, or |None| otherwise.
            - **taxon_namespace** (|TaxonNamespace|) -- The |TaxonNamespace|
              instance to use to :doc:`manage the taxon names </primer/taxa>`.
              If not specified, a new one will be created.
            - **matrix_offset** (*int*) -- 0-based index of character block or
              matrix in source to be parsed. If not specified then the
              first matrix (offset = 0) is assumed.
            - **ignore_unrecognized_keyword_arguments** (*bool*) -- If |True|,
              then unsupported or unrecognized keyword arguments will not
              result in an error. Default is |False|: unsupported keyword
              arguments will result in an error.

        **Optional Schema-Specific Keyword Arguments:**

        These provide control over how the data is interpreted and
        processed, and supported argument names and values depend on
        the schema as specified by the value passed as the "``schema``"
        argument. See "|Schemas|" for more details.

        **Examples:**

        ::

            dna1 = dendropy.DnaCharacterMatrix.get(
                    file=open("pythonidae.fasta"),
                    schema="fasta")
            dna2 = dendropy.DnaCharacterMatrix.get(
                    url="http://purl.org/phylo/treebase/phylows/matrix/TB2:M2610?format=nexus",
                    schema="nexus")
            aa1 = dendropy.ProteinCharacterMatrix.get(
                    file=open("pythonidae.dat"),
                    schema="phylip")
            std1 = dendropy.StandardCharacterMatrix.get(
                    path="python_morph.nex",
                    schema="nexus")
            std2 = dendropy.StandardCharacterMatrix.get(
                    data=">t1\\n01011\\n\\n>t2\\n11100",
                    schema="fasta")

        """
        return cls._get_from(**kwargs)

    def concatenate(cls, char_matrices):
        """
        Creates and returns a single character matrix from multiple
        CharacterMatrix objects specified as a list, 'char_matrices'.
        All the CharacterMatrix objects in the list must be of the
        same type, and share the same TaxonNamespace reference. All taxa
        must be present in all alignments, all all alignments must
        be of the same length. Component parts will be recorded as
        character subsets.
        """
        taxon_namespace = char_matrices[0].taxon_namespace
        nseqs = len(char_matrices[0])
        concatenated_chars = cls(taxon_namespace=taxon_namespace)
        pos_start = 0
        for cidx, cm in enumerate(char_matrices):
            if cm.taxon_namespace is not taxon_namespace:
                raise ValueError("Different ``taxon_namespace`` references in matrices to be merged")
            if len(cm) != len(taxon_namespace):
                raise ValueError("Number of sequences not equal to the number of taxa")
            if len(cm) != nseqs:
                raise ValueError("Different number of sequences across alignments: %d (expecting %d based on first matrix)" % (len(cm), nseqs))
            v1 = len(cm[0])
            for t, s in cm.items():
                if len(s) != v1:
                    raise ValueError("Unequal length sequences in character matrix %d".format(cidx+1))
            concatenated_chars.extend_matrix(cm)
            if cm.label is None:
                new_label = "locus%03d" % cidx
            else:
                new_label = cm.label
            cs_label = new_label
            i = 2
            while cs_label in concatenated_chars.character_subsets:
                label = "%s_%03d" % (new_label, i)
                i += 1
            character_indices = range(pos_start, pos_start + cm.vector_size)
            pos_start += cm.vector_size
            concatenated_chars.new_character_subset(character_indices=character_indices,
                    label=cs_label)
        return concatenated_chars
    concatenate = classmethod(concatenate)

    def concatenate_from_streams(cls, streams, schema, **kwargs):
        """
        Read a character matrix from each file object given in ``streams``,
        assuming data format/schema ``schema``, and passing any keyword arguments
        down to the underlying specialized reader. Merge the character matrices
        and return the combined character matrix. Component parts will be
        recorded as character subsets.
        """
        taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None)
        if taxon_namespace is None:
            taxon_namespace = taxonmodel.TaxonNamespace()
        kwargs["taxon_namespace"] = taxon_namespace
        char_matrices = []
        for stream in streams:
            char_matrices.append(cls.get_from_stream(stream,
                schema=schema, **kwargs))
        return cls.concatenate(char_matrices)
    concatenate_from_streams = classmethod(concatenate_from_streams)

    def concatenate_from_paths(cls, paths, schema, **kwargs):
        """
        Read a character matrix from each file path given in ``paths``, assuming
        data format/schema ``schema``, and passing any keyword arguments down to
        the underlying specialized reader. Merge the and return the combined
        character matrix. Component parts will be recorded as character
        subsets.
        """
        streams = [open(path, "rU") for path in paths]
        return cls.concatenate_from_streams(streams, schema, **kwargs)
    concatenate_from_paths = classmethod(concatenate_from_paths)

    def from_dict(cls,
            source_dict,
            char_matrix=None,
            case_sensitive_taxon_labels=False,
            **kwargs):
        """
        Populates character matrix from dictionary (or similar mapping type),
        creating |Taxon| objects and sequences as needed.

        Keys must be strings representing labels |Taxon| objects or
        |Taxon| objects directly. If key is specified as string, then it
        will be dereferenced to the first existing |Taxon| object in the
        current taxon namespace with the same label. If no such |Taxon|
        object can be found, then a new |Taxon| object is created and
        added to the current namespace. If a key is specified as a
        |Taxon| object, then this is used directly. If it is not in the
        current taxon namespace, it will be added.

        Values are the sequences (more generally, iterable of values).  If
        values are of type `CharacterDataSequence`, then they are added
        as-is.  Otherwise `CharacterDataSequence` instances are
        created for them. Values may be coerced into types compatible with
        particular matrices. The classmethod ``coerce_values()`` will be
        called for this.

        Examples
        --------

        The following creates a |DnaCharacterMatrix| instance with three
        sequences::

            d = {
                    "s1" : "TCCAA",
                    "s2" : "TGCAA",
                    "s3" : "TG-AA",
            }
            dna = DnaCharacterMatrix.from_dict(d)

        Three |Taxon| objects will be created, corresponding to the
        labels 's1', 's2', 's3'. Each associated string sequence will be
        converted to a `CharacterDataSequence`, with each symbol ("A", "C",
        etc.) being replaced by the DNA state represented by the symbol.

        Parameters
        ----------
        source_dict : dict or other mapping type
            Keys must be strings representing labels |Taxon| objects or
            |Taxon| objects directly. Values are sequences. See above
            for details.
        char_matrix : |CharacterMatrix|
            Instance of |CharacterMatrix| to populate with data. If not
            specified, a new one will be created using keyword arguments
            specified by ``kwargs``.
        case_sensitive_taxon_labels : boolean
            If |True|, matching of string labels specified as keys in ``d`` will
            be matched to |Taxon| objects in current taxon namespace
            with case being respected. If |False|, then case will be ignored.
        \*\*kwargs : keyword arguments, optional
            Keyword arguments to be passed to constructor of
            |CharacterMatrix| when creating new instance to populate, if
            no target instance is provided via ``char_matrix``.

        Returns
        -------
        char_matrix : |CharacterMatrix|
            |CharacterMatrix| populated by data from ``d``.
        """
        if char_matrix is None:
            char_matrix = cls(**kwargs)
        for key in source_dict:
            if textprocessing.is_str_type(key):
                taxon = char_matrix.taxon_namespace.require_taxon(key,
                        is_case_sensitive=case_sensitive_taxon_labels)
            else:
                taxon = key
                if taxon not in char_matrix.taxon_namespace:
                    char_matrix.taxon_namespace.add_taxon(taxon)
            s = char_matrix.coerce_values(source_dict[key])
            char_matrix[taxon] = s
        return char_matrix
    from_dict = classmethod(from_dict)

    ###########################################################################
    ### Lifecycle and Identity

    def __init__(self, *args, **kwargs):
        if len(args) > 1:
            # only allow 1 positional argument
            raise error.TooManyArgumentsError(func_name=self.__class__.__name__, max_args=1, args=args)
        elif len(args) == 1 and isinstance(args[0], CharacterMatrix):
            self._clone_from(args[0], kwargs)
        else:
            basemodel.DataObject.__init__(self, label=kwargs.pop("label", None))
            taxonmodel.TaxonNamespaceAssociated.__init__(self,
                    taxon_namespace=taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None))
            self._taxon_sequence_map = {}
            self.character_types = []
            self.comments = []
            self.character_subsets = container.OrderedCaselessDict()
            if len(args) == 1:
                # takes care of all possible initializations, including. e.g.,
                # tuples and so on
                d = collections.OrderedDict(args[0])
                self.__class__.from_dict(d, char_matrix=self)
        if kwargs:
            raise TypeError("Unrecognized or unsupported arguments: {}".format(kwargs))

    def __hash__(self):
        return id(self)

    def __eq__(self, other):
        return self is other

    def _clone_from(self, src, kwargs_dict):
        # super(Tree, self).__init__()
        memo = {}
        # memo[id(tree)] = self
        taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs_dict, src.taxon_namespace)
        memo[id(src.taxon_namespace)] = taxon_namespace
        if taxon_namespace is not src.taxon_namespace:
            for t1 in src.taxon_namespace:
                t2 = taxon_namespace.require_taxon(label=t1.label)
                memo[id(t1)] = t2
        else:
            for t1 in src.taxon_namespace:
                memo[id(t1)] = t1
        t = copy.deepcopy(src, memo)
        self.__dict__ = t.__dict__
        self.label = kwargs_dict.pop("label", src.label)
        return self

    def __copy__(self):
        other = self.__class__(label=self.label,
            taxon_namespace=self.taxon_namespace)
        for taxon in self._taxon_sequence_map:
            # other._taxon_sequence_map[taxon] = self.__class__.character_sequence_type(self._taxon_sequence_map[taxon])
            other._taxon_sequence_map[taxon] = self._taxon_sequence_map[taxon]
        memo = {}
        memo[id(self)] = other
        other.deep_copy_annotations_from(self, memo)
        return other

    def taxon_namespace_scoped_copy(self, memo=None):
        if memo is None:
            memo = {}
        # this populates ``memo`` with references to the
        # the TaxonNamespace and Taxon objects
        self.taxon_namespace.populate_memo_for_taxon_namespace_scoped_copy(memo)
        return self.__deepcopy__(memo=memo)

    def __deepcopy__(self, memo=None):
        return basemodel.Annotable.__deepcopy__(self, memo=memo)

    ###########################################################################
    ### Data I/O

    # def _parse_and_add_from_stream(self, stream, schema, **kwargs):
    #     """
    #     Populates objects of this type from ``schema``-formatted
    #     data in the file-like object source ``stream``, *replacing*
    #     all current data. If multiple character matrices are in the data
    #     source, a 0-based index of the character matrix to use can
    #     be specified using the ``matrix_offset`` keyword (defaults to 0, i.e., first
    #     character matrix).
    #     """
    #     warnings.warn("Repopulating a CharacterMatrix is now deprecated. Instantiate a new instance from the source instead.",
    #             DeprecationWarning)
    #     m = self.__class__._parse_and_create_from_stream(stream=stream,
    #             schema=schema,
    #             **kwargs)
    #     return self.clone_from(m)

    def _format_and_write_to_stream(self, stream, schema, **kwargs):
        """
        Writes out ``self`` in ``schema`` format to a destination given by
        file-like object ``stream``.

        Parameters
        ----------
        stream : file or file-like object
            Destination for data.
        schema : string
            Must be a recognized character file schema, such as "nexus",
            "phylip", etc, for which a specialized writer is available. If this
            is not implemented for the schema specified, then a
            UnsupportedSchemaError is raised.

        \*\*kwargs : keyword arguments, optional
            Keyword arguments will be passed directly to the writer for the
            specified schema. See documentation for details on keyword
            arguments supported by writers of various schemas.

        """
        writer = dataio.get_writer(schema, **kwargs)
        writer.write_char_matrices([self],
                stream)

    ###########################################################################
    ### Taxon Management

    def reconstruct_taxon_namespace(self,
            unify_taxa_by_label=True,
            taxon_mapping_memo=None):
        """
        See `TaxonNamespaceAssociated.reconstruct_taxon_namespace`.
        """
        if taxon_mapping_memo is None:
            taxon_mapping_memo = {}
        original_taxa = list(self._taxon_sequence_map.keys())
        for original_taxon in original_taxa:
            if unify_taxa_by_label or original_taxon not in self.taxon_namespace:
                t = taxon_mapping_memo.get(original_taxon, None)
                if t is None:
                    # taxon to use not given and
                    # we have not yet created a counterpart
                    if unify_taxa_by_label:
                        # this will force usage of any taxon with
                        # a label that matches the current taxon
                        t = self.taxon_namespace.require_taxon(label=original_taxon.label)
                    else:
                        # this will unconditionally create a new taxon
                        t = self.taxon_namespace.new_taxon(label=original_taxon.label)
                    taxon_mapping_memo[original_taxon] = t
                else:
                    # taxon to use is given by mapping
                    self.taxon_namespace.add_taxon(t)
                if t in self._taxon_sequence_map:
                    raise error.TaxonNamespaceReconstructionError("Multiple sequences for taxon with label '{}'".format(t.label))
                self._taxon_sequence_map[t] = self._taxon_sequence_map[original_taxon]
                del self._taxon_sequence_map[original_taxon]

    def poll_taxa(self, taxa=None):
        """
        Returns a set populated with all of |Taxon| instances associated
        with ``self``.

        Parameters
        ----------
        taxa : set()
            Set to populate. If not specified, a new one will be created.

        Returns
        -------
        taxa : set[|Taxon|]
            Set of taxa associated with ``self``.
        """
        if taxa is None:
            taxa = set()
        for taxon in self._taxon_sequence_map:
            taxa.add(taxon)
        return taxa

    def update_taxon_namespace(self):
        """
        All |Taxon| objects in ``self`` that are not in
        ``self.taxon_namespace`` will be added.
        """
        assert self.taxon_namespace is not None
        for taxon in self._taxon_sequence_map:
            if taxon not in self.taxon_namespace:
                self.taxon_namespace.add_taxon(taxon)

    def reindex_subcomponent_taxa(self):
        """
        Synchronizes |Taxon| objects of map to ``taxon_namespace`` of self.
        """
        raise NotImplementedError("'reindex_subcomponent_taxa()' is no longer supported; use '{}.reconstruct_taxon_namespace()' instead".format(self.__class__.__name__))

    ###########################################################################
    ### Sequence CRUD

    def _resolve_key(self, key):
        """
        Resolves map access key into |Taxon| instance.

        If ``key`` is integer, assumed to be taxon index.
        If ``key`` string, assumed to be taxon label.
        Otherwise, assumed to be |Taxon| instance directly.
        """
        if isinstance(key, int):
            if abs(key) < len(self.taxon_namespace):
                taxon = self.taxon_namespace[key]
            else:
                raise IndexError(key)
        elif textprocessing.is_str_type(key):
            taxon = self.taxon_namespace.get_taxon(label=key)
            if taxon is None:
                raise KeyError(key)
        else:
            taxon = key
        return taxon

    def new_sequence(self, taxon, values=None):
        """
        Creates a new `CharacterDataSequence` associated with |Taxon|
        ``taxon``, and populates it with values in ``values``.

        Parameters
        ----------
        taxon : |Taxon|
            |Taxon| instance with which this sequence is associated.
        values : iterable or |None|
            An initial set of values with which to populate the new character
            sequence.

        Returns
        -------
        s : `CharacterDataSequence`
            A new `CharacterDataSequence` associated with |Taxon|
            ``taxon``.
        """
        if taxon in self._taxon_sequence_map:
            raise ValueError("Character values vector for taxon {} already exists".format(repr(taxon)))
        if taxon not in self.taxon_namespace:
            raise ValueError("Taxon {} is not in object taxon namespace".format(repr(taxon)))
        cv = self.__class__.character_sequence_type(values)
        self._taxon_sequence_map[taxon] = cv
        return cv

    def __getitem__(self, key):
        """
        Retrieves sequence for ``key``, which can be a index or a label of a
        |Taxon| instance in the current taxon namespace, or a
        |Taxon| instance directly.

        If no sequence is currently associated with specified |Taxon|, a
        new one will be created. Note that the |Taxon| object must have
        already been defined in the curent taxon namespace.

        Parameters
        ----------
        key : integer, string, or |Taxon|
            If an integer, assumed to be an index of a |Taxon| object in
            the current |TaxonNamespace| object of ``self.taxon_namespace``.
            If a string, assumed to be a label of a |Taxon| object in
            the current |TaxonNamespace| object of ``self.taxon_namespace``.
            Otherwise, assumed to be |Taxon| instance directly. In all
            cases, the |Taxon| object must be (already) defined in the
            current taxon namespace.

        Returns
        -------
        s : `CharacterDataSequence`
            A sequence associated with the |Taxon| instance referenced
            by ``key``.
        """
        taxon = self._resolve_key(key)
        try:
            return self._taxon_sequence_map[taxon]
        except KeyError:
            return self.new_sequence(taxon)

    def __setitem__(self, key, values):
        """
        Assigns sequence ``values`` to taxon specified by ``key``, which can be a
        index or a label of a |Taxon| instance in the current taxon
        namespace, or a |Taxon| instance directly.

        If no sequence is currently associated with specified |Taxon|, a
        new one will be created.  Note that the |Taxon| object must have
        already been defined in the curent taxon namespace.

        Parameters
        ----------
        key : integer, string, or |Taxon|
            If an integer, assumed to be an index of a |Taxon| object in
            the current |TaxonNamespace| object of ``self.taxon_namespace``.
            If a string, assumed to be a label of a |Taxon| object in
            the current |TaxonNamespace| object of ``self.taxon_namespace``.
            Otherwise, assumed to be |Taxon| instance directly. In all
            cases, the |Taxon| object must be (already) defined in the
            current taxon namespace.

        """
        taxon = self._resolve_key(key)
        if taxon not in self.taxon_namespace:
            raise ValueError(repr(key))
        if not isinstance(values, self.__class__.character_sequence_type):
            values = self.__class__.character_sequence_type(values)
        self._taxon_sequence_map[taxon] = values

    def __contains__(self, key):
        """
        Returns |True| if a sequence associated with ``key`` is in ``self``, or
        |False| otherwise.

        Parameters
        ----------
        key : integer, string, or |Taxon|
            If an integer, assumed to be an index of a |Taxon| object in
            the current |TaxonNamespace| object of ``self.taxon_namespace``.
            If a string, assumed to be a label of a |Taxon| object in
            the current |TaxonNamespace| object of ``self.taxon_namespace``.
            Otherwise, assumed to be |Taxon| instance directly. In all
            cases, the |Taxon| object must be (already) defined in the
            current taxon namespace.

        Returns
        -------
        b : boolean
            |True| if ``key`` is in ``self``; |False| otherwise.
        """
        return self._taxon_sequence_map.__contains__(key)

    def __delitem__(self, key):
        """
        Removes sequence for ``key``, which can be a index or a label of a
        |Taxon| instance in the current taxon namespace, or a
        |Taxon| instance directly.

        Parameters
        ----------
        key : integer, string, or |Taxon|
            If an integer, assumed to be an index of a |Taxon| object in
            the current |TaxonNamespace| object of ``self.taxon_namespace``.
            If a string, assumed to be a label of a |Taxon| object in
            the current |TaxonNamespace| object of ``self.taxon_namespace``.
            Otherwise, assumed to be |Taxon| instance directly. In all
            cases, the |Taxon| object must be (already) defined in the
            current taxon namespace.

        """
        return self._taxon_sequence_map.__delitem__(key)

    def clear(self):
        """
        Removes all sequences from matrix.
        """
        self._taxon_sequence_map.clear()

    def sequences(self):
        """
        List of all sequences in self.

        Returns
        -------
        s : list of `CharacterDataSequence` objects in self

        """
        s = [self[taxon] for taxon in self]
        return s

    def vectors(self):
        deprecate.dendropy_deprecation_warning(
                message="Deprecated since DendroPy 4: 'vectors()' will no longer be supported in future releases; use 'sequences()' instead")
        return self.sequences()

    ###########################################################################
    ### Symbol/alphabet management

    def coerce_values(self, values):
        """
        Converts elements of ``values`` to type of matrix.

        This method is called by :meth:`CharacterMatrix.from_dict` to create
        sequences from iterables of values.  This method should be overridden
        by derived classes to ensure that ``values`` consists of types compatible
        with the particular type of matrix. For example, a CharacterMatrix type
        with a fixed state alphabet (such as |DnaCharacterMatrix|) would
        dereference the string elements of ``values`` to return a list of
        |StateIdentity| objects corresponding to the symbols represented
        by the strings.  If there is no value-type conversion done, then
        ``values`` should be returned as-is. If no value-type conversion is
        possible (e.g., when the type of a value is dependent on positionaly
        information), then a TypeError should be raised.

        Parameters
        ----------
        values : iterable
            Iterable of values to be converted.

        Returns
        -------
        v : list of values.
        """
        return values

    ###########################################################################
    ### Sequence Access Iteration

    def __iter__(self):
        "Returns an iterator over character map's ordered keys."
        for t in self.taxon_namespace:
            if t in self._taxon_sequence_map:
                yield t

    def values(self):
        """
        Iterates values (i.e. sequences) in this matrix.
        """
        for t in self:
            yield self[t]

    # def iterkeys(self):
    #     "Dictionary interface implementation for direct access to character map."
    #     for t in self.taxon_namespace:
    #         if t in self._taxon_sequence_map:
    #             yield t

    # def itervalues(self):
    #     "Dictionary interface implementation for direct access to character map."
    #     for t in self.taxon_namespace:
    #         if t in self._taxon_sequence_map:
    #             yield self._taxon_sequence_map[t]

    def items(self):
        "Returns character map key, value pairs in key-order."
        for t in self.taxon_namespace:
            if t in self._taxon_sequence_map:
                yield t, self._taxon_sequence_map[t]

    # def values(self):
    #     "Returns list of values."
    #     return [self._taxon_sequence_map[t] for t in self.taxon_namespace if t in self._taxon_seq_map]

    # def pop(self, key, alt_val=None):
    #     "a.pop(k[, x]):  a[k] if k in a, else x (and remove k)"
    #     return self._taxon_sequence_map.pop(key, alt_val)

    # def popitem(self):
    #     "a.popitem()  remove and last (key, value) pair"
    #     return self._taxon_sequence_map.popitem()

    # def keys(self):
    #     "Returns a copy of the ordered list of character map keys."
    #     return list(self._taxon_sequence_map.keys())

    ###########################################################################
    ### Metrics

    def __len__(self):
        """
        Number of sequences in matrix.

        Returns
        -------
        n : Number of sequences in matrix.
        """
        return len(self._taxon_sequence_map)

    def _get_sequence_size(self):
        """
        Number of characters in *first* sequence in matrix.

        Returns
        -------
        n : integer
            Number of sequences in matrix.
        """
        if len(self):
            # yuck, but len(self.values())
            # means we have to create and populate a list ...
            return len(self[next(iter(self._taxon_sequence_map))])
        else:
            return 0
    sequence_size = property(_get_sequence_size, None, None)
    vector_size = property(_get_sequence_size, None, None) # legacy

    def _get_max_sequence_size(self):
        """
        Maximum number of characters across all sequences in matrix.

        Returns
        -------
        n : integer
            Maximum number of characters across all sequences in matrix.
        """
        max_len = 0
        for k in self:
            if len(self[k]) > max_len:
                max_len  = len(self._taxon_sequence_map[k])
        return max_len
    max_sequence_size = property(_get_max_sequence_size, None, None)

    ###########################################################################
    ### Mass/Bulk Operations

    def fill(self, value, size=None, append=True):
        """
        Pads out all sequences in ``self`` by adding ``value`` to each sequence
        until its length is ``size`` long or equal to the length of the longest
        sequence if ``size`` is not specified.

        Parameters
        ----------
        value : object
            A valid value (e.g., a numeric value for continuous characters, or
            a |StateIdentity| for discrete character).
        size : integer or None
            The size (length) up to which the sequences will be padded. If |None|, then
            the maximum (longest) sequence size will be used.
        append : boolean
            If |True| (default), then new values will be added to the end of
            each sequence. If |False|, then new values will be inserted to the
            front of each sequence.
        """
        if size is None:
            size = self.max_sequence_size
        for k in self:
            v = self[k]
            while len(v) < size:
                if append:
                    v.append(value)
                else:
                    v.insert(0, value)
        return size

    def fill_taxa(self):
        """
        Adds a new (empty) sequence for each |Taxon| instance in
        current taxon namespace that does not have a sequence.
        """
        for taxon in self.taxon_namespace:
            if taxon not in self:
                self[taxon] = CharacterDataSequence()

    def pack(self, value=None, size=None, append=True):
        """
        Adds missing sequences for all |Taxon| instances in current
        namespace, and then pads out all sequences in ``self`` by adding ``value``
        to each sequence until its length is ``size`` long or equal to the length
        of the longest sequence if ``size`` is not specified. A combination of
        :meth:`CharacterMatrix.fill_taxa()` and
        :meth:`CharacterMatrix.fill()`.

        Parameters
        ----------
        value : object
            A valid value (e.g., a numeric value for continuous characters, or
            a |StateIdentity| for discrete character).
        size : integer or None
            The size (length) up to which the sequences will be padded. If |None|, then
            the maximum (longest) sequence size will be used.
        append : boolean
            If |True| (default), then new values will be added to the end of
            each sequence. If |False|, then new values will be inserted to the
            front of each sequence.
        """
        self.fill_taxa()
        self.fill(value=value, size=size, append=append)

    def add_sequences(self, other_matrix):
        """
        Adds sequences for |Taxon| objects that are in ``other_matrix`` but not in
        ``self``.

        Parameters
        ----------
        other_matrix : |CharacterMatrix|
            Matrix from which to add sequences.

        Notes
        -----
            1. ``other_matrix`` must be of same type as ``self``.
            2. ``other_matrix`` must have the same |TaxonNamespace| as ``self``.
            3. Each sequence associated with a |Taxon| reference in ``other_matrix``
               but not in ``self`` will be added to ``self`` as a shallow-copy.
            4. All other sequences will be ignored.

        """
        if other_matrix.taxon_namespace is not self.taxon_namespace:
            raise error.TaxonNamespaceIdentityError(self, other_matrix)
        for taxon in other_matrix._taxon_sequence_map:
            if taxon not in self._taxon_sequence_map:
                self._taxon_sequence_map[taxon] = self.__class__.character_sequence_type(other_matrix._taxon_sequence_map[taxon])

    def replace_sequences(self, other_matrix):
        """
        Replaces sequences for |Taxon| objects shared between ``self`` and
        ``other_matrix``.

        Parameters
        ----------
        other_matrix : |CharacterMatrix|
            Matrix from which to replace sequences.

        Notes
        -----
            1. ``other_matrix`` must be of same type as ``self``.
            2. ``other_matrix`` must have the same |TaxonNamespace| as ``self``.
            3. Each sequence in ``self`` associated with a |Taxon| that is
               also represented in ``other_matrix`` will be replaced with a
               shallow-copy of the corresponding sequence from ``other_matrix``.
            4. All other sequences will be ignored.
        """
        if other_matrix.taxon_namespace is not self.taxon_namespace:
            raise error.TaxonNamespaceIdentityError(self, other_matrix)
        for taxon in other_matrix._taxon_sequence_map:
            if taxon in self._taxon_sequence_map:
                self._taxon_sequence_map[taxon] = self.__class__.character_sequence_type(other_matrix._taxon_sequence_map[taxon])

    def update_sequences(self, other_matrix):
        """
        Replaces sequences for |Taxon| objects shared between ``self`` and
        ``other_matrix`` and adds sequences for |Taxon| objects that are
        in ``other_matrix`` but not in ``self``.

        Parameters
        ----------
        other_matrix : |CharacterMatrix|
            Matrix from which to update sequences.

        Notes
        -----
            1. ``other_matrix`` must be of same type as ``self``.
            2. ``other_matrix`` must have the same |TaxonNamespace| as ``self``.
            3. Each sequence associated with a |Taxon| reference in ``other_matrix``
               but not in ``self`` will be added to ``self``.
            4. Each sequence in ``self`` associated with a |Taxon| that is
               also represented in ``other_matrix`` will be replaced with a
               shallow-copy of the corresponding sequence from ``other_matrix``.
        """
        if other_matrix.taxon_namespace is not self.taxon_namespace:
            raise error.TaxonNamespaceIdentityError(self, other_matrix)
        for taxon in other_matrix._taxon_sequence_map:
            self._taxon_sequence_map[taxon] = self.__class__.character_sequence_type(other_matrix._taxon_sequence_map[taxon])

    def extend_sequences(self, other_matrix):
        """
        Extends sequences in ``self`` with characters associated with
        corresponding |Taxon| objects in ``other_matrix``.

        Parameters
        ----------
        other_matrix : |CharacterMatrix|
            Matrix from which to extend sequences.

        Notes
        -----
            1. ``other_matrix`` must be of same type as ``self``.
            2. ``other_matrix`` must have the same |TaxonNamespace| as ``self``.
            3. Each sequence associated with a |Taxon| reference in
               ``other_matrix`` that is also in ``self`` will be appended to the
               sequence currently associated with that |Taxon| reference
               in ``self``.
            4. All other sequences will be ignored.
        """
        if other_matrix.taxon_namespace is not self.taxon_namespace:
            raise error.TaxonNamespaceIdentityError(self, other_matrix)
        for taxon in other_matrix._taxon_sequence_map:
            if taxon in self._taxon_sequence_map:
                self._taxon_sequence_map[taxon].extend(other_matrix._taxon_sequence_map[taxon])

    def extend_matrix(self, other_matrix):
        """
        Extends sequences in ``self`` with characters associated with
        corresponding |Taxon| objects in ``other_matrix`` and adds
        sequences for |Taxon| objects that are in ``other_matrix`` but not
        in ``self``.

        Parameters
        ----------
        other_matrix : |CharacterMatrix|
            Matrix from which to extend.

        Notes
        -----
            1. ``other_matrix`` must be of same type as ``self``.
            2. ``other_matrix`` must have the same |TaxonNamespace| as ``self``.
            3. Each sequence associated with a |Taxon| reference in ``other_matrix``
               that is also in ``self`` will be appending
               to the sequence currently associated with that |Taxon|
               reference in ``self``.
            4. Each sequence associated with a |Taxon| reference in
               ``other_matrix`` that is also in ``self`` will replace the sequence
               currently associated with that |Taxon| reference in ``self``.
        """
        if other_matrix.taxon_namespace is not self.taxon_namespace:
            raise error.TaxonNamespaceIdentityError(self, other_matrix)
        for taxon in other_matrix._taxon_sequence_map:
            if taxon in self._taxon_sequence_map:
                self._taxon_sequence_map[taxon].extend(other_matrix._taxon_sequence_map[taxon])
            else:
                self._taxon_sequence_map[taxon]= self.__class__.character_sequence_type(other_matrix._taxon_sequence_map[taxon])

    def remove_sequences(self, taxa):
        """
        Removes sequences associated with |Taxon| instances specified in
        ``taxa``. A KeyError is raised if a |Taxon| instance is
        specified for which there is no associated sequences.

        Parameters
        ----------
        taxa : iterable[|Taxon|]
            List or some other iterable of |Taxon| instances.
        """
        for taxon in taxa:
            del self._taxon_sequence_map[taxon]

    def discard_sequences(self, taxa):
        """
        Removes sequences associated with |Taxon| instances specified in
        ``taxa`` if they exist.

        Parameters
        ----------
        taxa : iterable[|Taxon|]
            List or some other iterable of |Taxon| instances.
        """
        for taxon in taxa:
            try:
                del self._taxon_sequence_map[taxon]
            except KeyError:
                pass

    def keep_sequences(self, taxa):
        """
        Discards all sequences *not* associated with any of the |Taxon| instances.

        Parameters
        ----------
        taxa : iterable[|Taxon|]
            List or some other iterable of |Taxon| instances.
        """
        to_keep = set(taxa)
        for taxon in self._taxon_sequence_map:
            if taxon not in to_keep:
                del self._taxon_sequence_map[taxon]

    # def extend_characters(self, other_matrix):
    #     """
    #     DEPRECATED
    #     Extends this matrix by adding characters from sequences of taxa
    #     in given matrix to sequences of taxa with correspond labels in
    #     this one. Taxa in the second matrix that do not exist in the
    #     current one are ignored.
    #     """
    #     self._taxon_sequence_map.extend_characters(other_matrix.taxon_seq_map)

    # def extend_map(self,
    #                   other_map,
    #                   overwrite_existing=False,
    #                   extend_existing=False):
    #     """
    #     DEPRECATED
    #     Extends this matrix by adding taxa and characters from the given
    #     map to this one.  If ``overwrite_existing`` is True and a taxon
    #     in the other map is already present in the current one, then
    #     the sequence associated with the taxon in the second map
    #     replaces the sequence in the current one. If ``extend_existing``
    #     is True and a taxon in the other matrix is already present in
    #     the current one, then the squence map with the taxon in
    #     the second map will be added to the sequence in the current
    #     one. If both are True, then an exception is raised. If neither
    #     are True,  and a taxon in the other map is already present in
    #     the current one, then the sequence is ignored.
    #     """
    #     self._taxon_sequence_map.extend(other_map,
    #         overwrite_existing=overwrite_existing,
    #         extend_existing=extend_existing)
    #     self.update_taxon_namespace()

    # def extend(self,
    #            other_matrix,
    #            overwrite_existing=False,
    #            extend_existing=False):
    #     """
    #     Extends this matrix by adding taxa and characters from the given
    #     matrix to this one.  If ``overwrite_existing`` is True and a taxon
    #     in the other matrix is already present in the current one, then
    #     the sequence associated with the taxon in the second matrix
    #     replaces the sequence in the current one. If ``extend_existing``
    #     is True and a taxon in the other matrix is already present in
    #     the current one, then the sequence associated with the taxon in
    #     the second matrix will be added to the sequence in the current
    #     one. If both are True, then an exception is raised. If neither
    #     are True, and a taxon in the other matrix is already present in
    #     the current one, then the sequence is ignored.
    #     """
    #     self._taxon_sequence_map.extend(other_matrix.taxon_seq_map,
    #         overwrite_existing=overwrite_existing,
    #         extend_existing=extend_existing)
    #     self.update_taxon_namespace()

    ###########################################################################
    ### Character Subset Management

    def add_character_subset(self, char_subset):
        """
        Adds a CharacterSubset object. Raises an error if one already exists
        with the same label.
        """
        label = char_subset.label
        if label in self.character_subsets:
            raise ValueError("Character subset '%s' already defined" % label)
        self.character_subsets[label] = char_subset
        return self.character_subsets[label]

    def new_character_subset(self, label, character_indices):
        """
        Defines a set of character (columns) that make up a character set.
        Raises an error if one already exists with the same label. Column
        indices are 0-based.
        """
        cs = CharacterSubset(character_indices=character_indices, label=label)
        return self.add_character_subset(cs)

    ###########################################################################
    ### CharacterType Management

    def new_character_type(self, *args, **kwargs):
        return CharacterType(*args, **kwargs)

    ###########################################################################
    ### Export

    def export_character_subset(self, character_subset):
        """
        Returns a new CharacterMatrix (of the same type) consisting only
        of columns given by the CharacterSubset, ``character_subset``.
        Note that this new matrix will still reference the same taxon set.
        """
        if textprocessing.is_str_type(character_subset):
            if character_subset not in self.character_subsets:
                raise KeyError(character_subset)
            else:
                character_subset = self.character_subsets[character_subset]
        return self.export_character_indices(character_subset.character_indices)

    def export_character_indices(self, indices):
        """
        Returns a new CharacterMatrix (of the same type) consisting only
        of columns given by the 0-based indices in ``indices``.
        Note that this new matrix will still reference the same taxon set.
        """
        clone = self.__class__(self)
        # clear out character subsets; otherwise all indices will have to be
        # recalculated, which will require some careful and perhaps arbitrary
        # handling of corner cases
        clone.character_subsets = container.OrderedCaselessDict()
        # clone.clone_from(self)
        for vec in clone.values():
            for cell_idx in range(len(vec)-1, -1, -1):
                if cell_idx not in indices:
                    del(vec[cell_idx])
        return clone

    ###########################################################################
    ### Representation

    def description(self, depth=1, indent=0, itemize="", output=None):
        """
        Returns description of object, up to level ``depth``.
        """
        if depth is None or depth < 0:
            return
        output_strio = StringIO()
        label = " (%s: '%s')" % (id(self), self.label)
        output_strio.write('%s%s%s object at %s%s'
                % (indent*' ',
                   itemize,
                   self.__class__.__name__,
                   hex(id(self)),
                   label))
        if depth >= 1:
            output_strio.write(':  %d Sequences' % len(self))
            if depth >= 2:
                if self.taxon_namespace is not None:
                    tlead = "\n%s[Taxon Set]\n" % (" " * (indent+4))
                    output_strio.write(tlead)
                    self.taxon_namespace.description(depth=depth-1, indent=indent+8, itemize="", output=output_strio)
                tlead = "\n%s[Characters]\n" % (" " * (indent+4))
                output_strio.write(tlead)
                indent += 8
                maxlabel = max([len(str(t.label)) for t in self.taxon_namespace])
                for i, t in enumerate(self.taxon_namespace):
                    output_strio.write('%s%s%s : %s characters\n' \
                        % (" " * indent,
                           "[%d] " % i,
                           str(t.label),
                           len(self._taxon_sequence_map[t])))

        s = output_strio.getvalue()
        if output is not None:
            output.write(s)
        return s

    ###########################################################################
    ### Legacy

    def _get_taxon_seq_map(self):
        warnings.warn("All methods and features of 'CharacterMatrix.taxon_seq_map' have been integrated directly into 'CharacterMatrix', or otherwise replaced entirely",
                stacklevel=2)
        return self
    taxon_seq_map = property(_get_taxon_seq_map)

###############################################################################
## Specialized Matrices

### Continuous Characters ##################################################

class ContinuousCharacterDataSequence(CharacterDataSequence):
    """
    A sequence of continuous character values for a particular taxon or entry
    in a data matrix. Specializes `CharacterDataSequence` by assuming all
    values are primitive numerics (i.e., either floats or integers) when
    copying or representing self.
    """

    def symbols_as_list(self):
        """
        Returns list of string representation of values of this vector.

        Returns
        -------
        v : list
            List of string representation of values making up this vector.
        """
        return [str(v) for v in self]

    def symbols_as_string(self, sep=" "):
        # different default
        return CharacterDataSequence.symbols_as_string(self, sep=sep)

class ContinuousCharacterMatrix(CharacterMatrix):
    """
    Specializes |CharacterMatrix| for continuous data.

    Sequences stored using |ContinuousCharacterDataSequence|, with values of
    elements assumed to be ``float`` .
    """

    character_sequence_type = ContinuousCharacterDataSequence
    data_type = "continuous"

    def __init__(self, *args, **kwargs):
        CharacterMatrix.__init__(self, *args, **kwargs)

### Discrete Characters ##################################################

class DiscreteCharacterDataSequence(CharacterDataSequence):
    pass

class DiscreteCharacterMatrix(CharacterMatrix):

    character_sequence_type = DiscreteCharacterDataSequence

    data_type = "discrete"

    def __init__(self, *args, **kwargs):
        CharacterMatrix.__init__(self, *args, **kwargs)
        self.state_alphabets = []
        self._default_state_alphabet = None

    def _get_default_state_alphabet(self):
        if self._default_state_alphabet is not None:
            return self._default_state_alphabet
        elif len(self.state_alphabets) == 1:
            return self.state_alphabets[0]
        elif len(self.state_alphabets) > 1:
            raise TypeError("Multiple state alphabets defined for this matrix with no default specified")
        elif len(self.state_alphabets) == 0:
            raise TypeError("No state alphabets defined for this matrix")
        return None
    def _set_default_state_alphabet(self, s):
        if s not in self.state_alphabets:
            self.state_alphabets.append(s)
        self._default_state_alphabet = s
    default_state_alphabet = property(_get_default_state_alphabet, _set_default_state_alphabet)

    def append_taxon_sequence(self, taxon, state_symbols):
        if taxon not in self:
            self[taxon] = CharacterDataSequence()
        for value in state_symbols:
            if textprocessing.is_str_type(value):
                symbol = value
            else:
                symbol = str(value)
            self[taxon].append(self.default_symbol_state_map[symbol])

    def remap_to_state_alphabet_by_symbol(self,
            state_alphabet,
            purge_other_state_alphabets=True):
        """
        All entities with any reference to a state alphabet will be have the
        reference reassigned to state alphabet ``sa``, and all entities with
        any reference to a state alphabet element will be have the reference
        reassigned to any state alphabet element in ``sa`` that has the same
        symbol. Raises KeyError if no matching symbol can be found.
        """
        for vi, vec in enumerate(self._taxon_sequence_map.values()):
            for ci, cell in enumerate(vec):
                vec[ci] = state_alphabet[cell.symbol]
        for ct in self.character_types:
            if ct is not None:
                ct.state_alphabet = state_alphabet
        if purge_other_state_alphabets:
            self.default_state_alphabet = state_alphabet

    def remap_to_default_state_alphabet_by_symbol(self,
            purge_other_state_alphabets=True):
        """
        All entities with any reference to a state alphabet will be have the
        reference reassigned to the default state alphabet, and all entities
        with any reference to a state alphabet element will be have the
        reference reassigned to any state alphabet element in the default
        state alphabet that has the same symbol. Raises ValueError if no
        matching symbol can be found.
        """
        self.remap_to_state_alphabet_by_symbol(
                state_alphabet=self.default_state_alphabet,
                purge_other_state_alphabets=purge_other_state_alphabets)

    def taxon_state_sets_map(self,
            char_indices=None,
            gaps_as_missing=True,
            gap_state=None,
            no_data_state=None):
        """
        Returns a dictionary that maps taxon objects to lists of sets of
        fundamental state indices.

        Parameters
        ----------

        char_indices : iterable of ints
            An iterable of indexes of characters to include (by column). If not
            given or |None| [default], then all characters are included.

        gaps_as_missing : boolean
            If |True| [default] then gap characters will be treated as missing
            data values. If |False|, then they will be treated as an additional
            (fundamental) state.`

        Returns
        -------
        d : dict
            A dictionary with class:|Taxon| objects as keys and a list of sets
            of fundamental state indexes as values.

            E.g., Given the following matrix of DNA characters:

                T1 AGN
                T2 C-T
                T3 GC?

            Return with ``gaps_as_missing==True`` ::

                {
                    <T1> : [ set([0]), set([2]),        set([0,1,2,3]) ],
                    <T2> : [ set([1]), set([0,1,2,3]),  set([3]) ],
                    <T3> : [ set([2]), set([1]),        set([0,1,2,3]) ],
                }

            Return with ``gaps_as_missing==False`` ::

                {
                    <T1> : [ set([0]), set([2]),        set([0,1,2,3]) ],
                    <T2> : [ set([1]), set([4]),        set([3]) ],
                    <T3> : [ set([2]), set([1]),        set([0,1,2,3,4]) ],
                }

            Note that when gaps are treated as a fundamental state, not only
            does '-' map to a distinct and unique state (4), but '?' (missing
            data) maps to set consisting of all bases *and* the gap
            state, whereas 'N' maps to a set of all bases but not including the
            gap state.

            When gaps are treated as missing, on the other hand, then '?' and
            'N' and '-' all map to the same set, i.e. of all the bases.

        """
        taxon_to_state_indices = {}
        for t in self:
            cdv = self[t]
            if char_indices is None:
                ci = range(len(cdv))
            else:
                ci = char_indices
            v = []
            for char_index in ci:
                state = cdv[char_index]
                if gaps_as_missing:
                    v.append(set(state.fundamental_indexes_with_gaps_as_missing))
                else:
                    v.append(set(state.fundamental_indexes))
            taxon_to_state_indices[t] = v
        return taxon_to_state_indices

### Fixed Alphabet Characters ##################################################

class FixedAlphabetCharacterDataSequence(CharacterDataSequence):
    pass

class FixedAlphabetCharacterMatrix(DiscreteCharacterMatrix):

    character_sequence_type = FixedAlphabetCharacterDataSequence
    data_type = "fixed"
    datatype_alphabet = None

    def __init__(self, *args, **kwargs):
        DiscreteCharacterMatrix.__init__(self, *args, **kwargs)
        self.state_alphabets.append(self.__class__.datatype_alphabet)
        self._default_state_alphabet = self.__class__.datatype_alphabet

    def coerce_values(self, values):
        if self.datatype_alphabet is None:
            raise ValueError("'datatype_alphabet' not set")
        return charstatemodel.coerce_to_state_identities(
                state_alphabet=self.datatype_alphabet,
                values=values)

### DNA Characters ##################################################

class DnaCharacterDataSequence(FixedAlphabetCharacterDataSequence):
    pass

class DnaCharacterMatrix(FixedAlphabetCharacterMatrix):
    """
    Specializes |CharacterMatrix| for DNA data.
    """
    character_sequence_type = DnaCharacterDataSequence
    data_type = "dna"
    datatype_alphabet = DNA_STATE_ALPHABET

### RNA Characters ##################################################

class RnaCharacterDataSequence(FixedAlphabetCharacterDataSequence):
    pass

class RnaCharacterMatrix(FixedAlphabetCharacterMatrix):
    """
    Specializes |CharacterMatrix| for DNA data.
    """
    character_sequence_type = RnaCharacterDataSequence
    data_type = "rna"
    datatype_alphabet = RNA_STATE_ALPHABET

### Nucleotide Characters ##################################################

class NucleotideCharacterDataSequence(FixedAlphabetCharacterDataSequence):
    pass

class NucleotideCharacterMatrix(FixedAlphabetCharacterMatrix):
    """
    Specializes |CharacterMatrix| for RNA data.
    """
    character_sequence_type = NucleotideCharacterDataSequence
    data_type = "nucleotide"
    datatype_alphabet = NUCLEOTIDE_STATE_ALPHABET

### Protein Characters ##################################################

class ProteinCharacterDataSequence(FixedAlphabetCharacterDataSequence):
    pass

class ProteinCharacterMatrix(FixedAlphabetCharacterMatrix):
    """
    Specializes |CharacterMatrix| for protein or amino acid data.
    """
    character_sequence_type = ProteinCharacterDataSequence
    data_type = "protein"
    datatype_alphabet = PROTEIN_STATE_ALPHABET

### Restricted Site Characters ##################################################

class RestrictionSitesCharacterDataSequence(FixedAlphabetCharacterDataSequence):
    pass

class RestrictionSitesCharacterMatrix(FixedAlphabetCharacterMatrix):
    """
    Specializes |CharacterMatrix| for restriction site data.
    """
    character_sequence_type = RestrictionSitesCharacterDataSequence
    data_type = "restriction"
    datatype_alphabet = RESTRICTION_SITES_STATE_ALPHABET

### Infinite Sites Characters ##################################################

class InfiniteSitesCharacterDataSequence(FixedAlphabetCharacterDataSequence):
    pass

class InfiniteSitesCharacterMatrix(FixedAlphabetCharacterMatrix):
    """
    Specializes |CharacterMatrix| for infinite sites data.
    """
    character_sequence_type = InfiniteSitesCharacterDataSequence
    data_type = "infinite"
    datatype_alphabet = INFINITE_SITES_STATE_ALPHABET

### Standard Characters ##################################################

class StandardCharacterDataSequence(DiscreteCharacterDataSequence):
    pass

class StandardCharacterMatrix(DiscreteCharacterMatrix):
    """
    Specializes |CharacterMatrix| for "standard" data (i.e., generic discrete
    character data).

    """
    character_sequence_type = StandardCharacterDataSequence

    data_type = "standard"

    def __init__(self, *args, **kwargs):
        """
        A default state alphabet consisting of state symbols of 0-9 will
        automatically be created unless the ``default_state_alphabet=None`` is
        passed in. To specify a different default state alphabet::

            default_state_alphabet=dendropy.new_standard_state_alphabet("abc")
            default_state_alphabet=dendropy.new_standard_state_alphabet("ij")

        """
        if "default_state_alphabet" in kwargs:
            default_state_alphabet = kwargs.pop("default_state_alphabet")
        else:
            default_state_alphabet = charstatemodel.new_standard_state_alphabet()
        DiscreteCharacterMatrix.__init__(self, *args, **kwargs)
        if default_state_alphabet is not None:
            self.default_state_alphabet = default_state_alphabet

    def coerce_values(self, values):
        if self.default_state_alphabet is None:
            raise ValueError("'default_state_alphabet' not set")
        return charstatemodel.coerce_to_state_identities(
                state_alphabet=self.default_state_alphabet,
                values=values)


###############################################################################
## Main Character Matrix Factory Function

data_type_matrix_map = {
    'continuous' : ContinuousCharacterMatrix,
    'dna' : DnaCharacterMatrix,
    'rna' : RnaCharacterMatrix,
    'nucleotide' : NucleotideCharacterMatrix,
    'protein' : ProteinCharacterMatrix,
    'standard' : StandardCharacterMatrix,
    'restriction' : RestrictionSitesCharacterMatrix,
    'infinite' : InfiniteSitesCharacterMatrix,
}

def get_char_matrix_type(data_type):
    if data_type is None:
        raise TypeError("'data_type' must be specified")
    matrix_type = data_type_matrix_map.get(data_type, None)
    if matrix_type is None:
        raise KeyError("Unrecognized data type specification: '{}'".format(data_type,
            sorted(data_type_matrix_map.keys())))
    return matrix_type

def new_char_matrix(data_type, **kwargs):
    matrix_type = get_char_matrix_type(data_type=data_type)
    m = matrix_type(**kwargs)
    return m