1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
|
#! /usr/bin/env python
##############################################################################
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.rst" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
"""
This module handles the core definition of classes that model collections of
trees.
"""
import collections
import math
import copy
import sys
from dendropy.utility import container
from dendropy.utility import error
from dendropy.utility import bitprocessing
from dendropy.utility import deprecate
from dendropy.utility import constants
from dendropy.calculate import statistics
from dendropy.datamodel import basemodel
from dendropy.datamodel import taxonmodel
from dendropy.datamodel import treemodel
from dendropy import dataio
##############################################################################
### TreeList
class TreeList(
taxonmodel.TaxonNamespaceAssociated,
basemodel.Annotable,
basemodel.Deserializable,
basemodel.MultiReadable,
basemodel.Serializable,
basemodel.DataObject):
"""
A collection of |Tree| objects, all referencing the same "universe" of
opeational taxonomic unit concepts through the same |TaxonNamespace|
object reference.
"""
def _parse_and_create_from_stream(cls,
stream,
schema,
collection_offset=None,
tree_offset=None,
**kwargs):
"""
Constructs a new |TreeList| object and populates it with trees from
file-like object ``stream``.
Notes
-----
*All* operational taxonomic unit concepts in the data source will be included
in the |TaxonNamespace| object associated with the new
|TreeList| object and its contained |Tree| objects, even those
not associated with trees or the particular trees being retrieved.
Parameters
----------
stream : file or file-like object
Source of data.
schema : string
Identifier of format of data in ``stream``
collection_offset : integer or None
0-based index indicating collection of trees to parse. If |None|,
then all tree collections are retrieved, with each distinct
collection parsed into a separate |TreeList| object. If the
tree colleciton offset index is equal or greater than the number of
tree collections in the data source, then IndexError is raised.
Negative offsets work like negative list indexes; e.g., a
``collection_offset`` of -1 means to read the last collection of
trees in the data source. For data formats that do not support the
concept of distinct tree collections (e.g. NEWICK) are considered
single-collection data source (i.e, the only acceptable
``collection_offset`` values are -1 or 0).
tree_offset : integer or None
0-based index indicating particular tree within a particular
collection of trees at which to begin reading. If not specified or
|None| (default), then all trees are parsed. Otherwise, must be an
integer value up the length of the collection minus 1. A positive
offset indicates the number of trees in the collection to skip;
e.g. a ``tree_offset`` of 20 means to skip the first 20 trees in the
collection. Negative offsets work like negative list indexes;
e.g., a ``tree_offset`` value of -10 means to retrieve the last 10
trees in the collection. If the tree offset index is equal or
greater than the number of trees in the collection, then IndexError
is raised. Requires that a particular tree collection has been
identified using the ``tree_collection_offset`` parameter: if
``tree_collection_offset`` is not specified, a TypeError is raised.
\*\*kwargs : keyword arguments
Arguments to customize parsing, instantiation, processing, and
accession of |Tree| objects read from the data source, including
schema- or format-specific handling.
The following optional keyword arguments are recognized and handled
by this function:
* ``label`` Specifies the label or description of the new
|TreeList|.
* ``taxon_namespace`` specifies the |TaxonNamespace|
object to be attached to the new |TreeList| object.
Note that *all* operational taxonomic unit concepts in the
data source will be accessioned into the specified
|TaxonNamespace| instance. This includes the
operation taxonomic unit definitions associated with all
tree collections and character matrices in the data source.
* ``tree_list`` : **SPECIAL** If passed a |TreeList| using
this keyword, then this instance is populated and returned
(instead of a new instance being created).
All other keyword arguments are passed directly to |TreeList|.read()`.
Other keyword arguments may be available, depending on the implementation
of the reader specialized to handle ``schema`` formats.
Notes
-----
Note that in most cases, even if ``collection_offset`` and ``tree_offset``
are specified to restrict the trees returned, the *entire* data source
is still parsed and processed. So this is not more efficient than
reading all the trees and then manually-extracting them later; just
more convenient. If you need just a single subset of trees from a data
source, there is no gain in efficiency. If you need multiple trees or
subsets of trees from the same data source, it would be much more
efficient to read the entire data source, and extract trees as needed.
Returns
-------
A |TreeList| object.
"""
# these must be pulled before passing the kwargs
# down to the reader
tree_list = kwargs.pop("tree_list", None)
taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None)
label = kwargs.pop("label", None)
# get the reader
reader = dataio.get_reader(schema, **kwargs)
# Accommodate an existing TreeList object being passed
if tree_list is None:
tree_list = cls(label=label, taxon_namespace=taxon_namespace)
if collection_offset is None and tree_offset is not None:
collection_offset = 0
if collection_offset is None:
# if tree_offset is not None:
# raise TypeError("Cannot specify ``tree_offset`` without specifying ``collection_offset``")
# coerce all tree products into this list
reader.read_tree_lists(
stream=stream,
taxon_namespace_factory=tree_list._taxon_namespace_pseudofactory,
tree_list_factory=tree_list._tree_list_pseudofactory,
global_annotations_target=None)
else:
tree_lists = reader.read_tree_lists(
stream=stream,
taxon_namespace_factory=tree_list._taxon_namespace_pseudofactory,
tree_list_factory=tree_list.__class__,
global_annotations_target=None)
# if collection_offset < 0:
# raise IndexError("Collection offset out of range: {} (minimum valid tree offset = 0)".format(collection_offset))
if collection_offset >= len(tree_lists):
raise IndexError("Collection offset out of range: {} (number of collections = {}, maximum valid collection offset = {})".format(collection_offset, len(tree_lists), len(tree_lists)-1))
target_tree_list = tree_lists[collection_offset]
tree_list.copy_annotations_from(target_tree_list)
if tree_offset is not None:
# if tree_offset < 0:
# raise IndexError("Tree offset out of range: {} (minimum offset = 0)".format(tree_offset))
if tree_offset >= len(target_tree_list):
raise IndexError("Tree offset out of range: {} (number of trees in source = {}, maximum valid tree offset = {})".format(tree_offset, len(target_tree_list), len(target_tree_list)-1))
for tree in target_tree_list[tree_offset:]:
tree_list._trees.append(tree)
else:
for tree in target_tree_list:
tree_list._trees.append(tree)
return tree_list
# taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None)
# label = kwargs.pop("label", None)
# tree_list = cls(label=label,
# taxon_namespace=taxon_namespace)
# tree_list.read(
# stream=stream,
# schema=schema,
# collection_offset=collection_offset,
# tree_offset=tree_offset,
# **kwargs)
# return tree_list
_parse_and_create_from_stream = classmethod(_parse_and_create_from_stream)
@classmethod
def get(cls, **kwargs):
"""
Instantiate and return a *new* |TreeList| object from a data source.
**Mandatory Source-Specification Keyword Argument (Exactly One Required):**
- **file** (*file*) -- File or file-like object of data opened for reading.
- **path** (*str*) -- Path to file of data.
- **url** (*str*) -- URL of data.
- **data** (*str*) -- Data given directly.
**Mandatory Schema-Specification Keyword Argument:**
- **schema** (*str*) -- Identifier of format of data given by the
"``file``", "``path``", "``data``", or "``url``" argument
specified above: ":doc:`newick </schemas/newick>`", ":doc:`nexus
</schemas/nexus>`", or ":doc:`nexml </schemas/nexml>`". See
"|Schemas|" for more details.
**Optional General Keyword Arguments:**
- **label** (*str*) -- Name or identifier to be assigned to the new
object; if not given, will be assigned the one specified in the
data source, or |None| otherwise.
- **taxon_namespace** (|TaxonNamespace|) -- The |TaxonNamespace|
instance to use to :doc:`manage the taxon names </primer/taxa>`.
If not specified, a new one will be created.
- **collection_offset** (*int*) -- 0-based index of tree block or
collection in source to be parsed. If not specified then the
first collection (offset = 0) is assumed.
- **tree_offset** (*int*) -- 0-based index of first tree within the
collection specified by ``collection_offset`` to be parsed (i.e.,
skipping the first ``tree_offset`` trees). If not
specified, then the first tree (offset = 0) is assumed (i.e., no
trees within the specified collection will be skipped). Use this
to specify, e.g. a burn-in.
- **ignore_unrecognized_keyword_arguments** (*bool*) -- If |True|,
then unsupported or unrecognized keyword arguments will not
result in an error. Default is |False|: unsupported keyword
arguments will result in an error.
**Optional Schema-Specific Keyword Arguments:**
These provide control over how the data is interpreted and
processed, and supported argument names and values depend on
the schema as specified by the value passed as the "``schema``"
argument. See "|Schemas|" for more details.
**Examples:**
::
tlst1 = dendropy.TreeList.get(
file=open('treefile.tre', 'rU'),
schema="newick")
tlst2 = dendropy.TreeList.get(
path='sometrees.nexus',
schema="nexus",
collection_offset=2,
tree_offset=100)
tlst3 = dendropy.TreeList.get(
data="((A,B),(C,D));((A,C),(B,D));",
schema="newick")
tree4 = dendropy.dendropy.TreeList.get(
url="http://api.opentreeoflife.org/v2/study/pg_1144/tree/tree2324.nex",
schema="nexus")
"""
return cls._get_from(**kwargs)
DEFAULT_TREE_TYPE = treemodel.Tree
def tree_factory(cls, *args, **kwargs):
"""
Creates and returns a |Tree| of a type that this list understands how to
manage.
Deriving classes can override this to provide for custom Tree-type
object lists. You can simple override the class-level variable
`DEFAULT_TREE_TYPE` in your derived class if the constructor signature
of the alternate tree type is the same as |Tree|.
If you want to have a TreeList *instance* that generates
custom trees (i.e., as opposed to a TreeList-ish *class* of instances),
set the ``tree_type`` attribute of the TreeList instance.
Parameters
----------
\*args : positional arguments
Passed directly to constructor of |Tree|.
\*\*kwargs : keyword arguments
Passed directly to constructor of |Tree|.
Returns
-------
A |Tree| object.
"""
tree = cls.DEFAULT_TREE_TYPE(*args, **kwargs)
return tree
tree_factory = classmethod(tree_factory)
###########################################################################
### Lifecycle and Identity
def __init__(self, *args, **kwargs):
"""
Constructs a new |TreeList| object, populating it with any iterable
container with Tree object members passed as unnamed argument, or from
a data source if ``stream`` and ``schema`` are passed.
If passed an iterable container, the objects in that container must be
of type |Tree| (or derived). If the container is of type |TreeList|,
then, because each |Tree| object must have the same |TaxonNamespace|
reference as the containing |TreeList|, the trees in the container
passed as an initialization argument will be **deep**-copied (except
for associated |TaxonNamespace| and |Taxon| objects, which will
be shallow-copied). If the container is any other type of
iterable, then the |Tree| objects will be **shallow**-copied.
|TreeList| objects can directly thus be instantiated in the
following ways::
# /usr/bin/env python
from dendropy import TaxonNamespace, Tree, TreeList
# instantiate an empty tree
tlst1 = TreeList()
# TreeList objects can be instantiated from an external data source
# using the 'get()' factory class method
tlst2 = TreeList.get(file=open('treefile.tre', 'rU'), schema="newick")
tlst3 = TreeList.get(path='sometrees.nexus', schema="nexus")
tlst4 = TreeList.get(data="((A,B),(C,D));((A,C),(B,D));", schema="newick")
# can also call `read()` on a TreeList object; each read adds
# (appends) the tree(s) found to the TreeList
tlst5 = TreeList()
tlst5.read(file=open('boot1.tre', 'rU'), schema="newick")
tlst5.read(path="boot3.tre", schema="newick")
tlst5.read(value="((A,B),(C,D));((A,C),(B,D));", schema="newick")
# populated from list of Tree objects
tlist6_1 = Tree.get(
data="((A,B),(C,D))",
schema="newick")
tlist6_2 = Tree.get(
data="((A,C),(B,D))",
schema="newick")
tlist6 = TreeList([tlist5_1, tlist5_2])
# passing keywords to underlying tree parser
tlst8 = TreeList.get(
data="((A,B),(C,D));((A,C),(B,D));",
schema="newick",
taxon_namespace=tlst3.taxon_namespace,
rooting="force-rooted",
extract_comment_metadata=True,
store_tree_weights=False,
preserve_underscores=True)
# Subsets of trees can be read. Note that in most cases, the entire
# data source is parsed, so this is not more efficient than reading
# all the trees and then manually-extracting them later; just more
# convenient
# skip the *first* 100 trees in the *first* (offset=0) collection of trees
trees = TreeList.get(
path="mcmc.tre",
schema="newick",
collection_offset=0,
tree_offset=100)
# get the *last* 10 trees in the *second* (offset=1) collection of trees
trees = TreeList.get(
path="mcmc.tre",
schema="newick",
collection_offset=1,
tree_offset=-10)
# get the last 10 trees in the second-to-last collection of trees
trees = TreeList.get(
path="mcmc.tre",
schema="newick",
collection_offset=-2,
tree_offset=100)
# Slices give shallow-copy: trees are references
tlst4copy0a = t4[:]
assert tlst4copy0a[0] is t4[0]
tlst4copy0b = t4[:4]
assert tlst4copy0b[0] is t4[0]
# 'Taxon-namespace-scoped' copy:
# I.e., Deep-copied objects but taxa and taxon namespace
# are copied as references
tlst4copy1a = TreeList(t4)
tlst4copy1b = TreeList([Tree(t) for t in tlst5])
assert tlst4copy1a[0] is not tlst4[0] # True
assert tlst4copy1a.taxon_namespace is tlst4.taxon_namespace # True
assert tlst4copy1b[0] is not tlst4[0] # True
assert tlst4copy1b.taxon_namespace is tlst4.taxon_namespace # True
"""
if len(args) > 1:
# only allow 1 positional argument
raise error.TooManyArgumentsError(func_name=self.__class__.__name__, max_args=1, args=args)
elif len(args) == 1 and isinstance(args[0], TreeList):
self._clone_from(args[0], kwargs)
else:
basemodel.DataObject.__init__(self, label=kwargs.pop("label", None))
taxonmodel.TaxonNamespaceAssociated.__init__(self,
taxon_namespace=taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, None))
self.tree_type = kwargs.pop("tree_type", self.__class__.DEFAULT_TREE_TYPE)
self._trees = []
self.comments = []
if len(args) == 1:
for aidx, a in enumerate(args[0]):
if not isinstance(a, self.tree_type):
raise ValueError("Cannot add object not of 'Tree' type to 'TreeList'")
self.append(a)
if kwargs:
raise TypeError("Unrecognized or unsupported arguments: {}".format(kwargs))
def __hash__(self):
return id(self)
def __eq__(self, other):
return (
isinstance(other, TreeList)
and (self.taxon_namespace is other.taxon_namespace)
and (self._trees == other._trees)
)
def _clone_from(self, tree_list, kwargs_dict):
memo = {}
# memo[id(tree)] = self
taxon_namespace = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs_dict, tree_list.taxon_namespace)
memo[id(tree_list.taxon_namespace)] = taxon_namespace
if taxon_namespace is not tree_list.taxon_namespace:
for t1 in tree_list.taxon_namespace:
t2 = taxon_namespace.require_taxon(label=t1.label)
memo[id(t1)] = t2
else:
for t1 in tree_list.taxon_namespace:
memo[id(t1)] = t1
t = copy.deepcopy(tree_list, memo)
self.__dict__ = t.__dict__
self.label = kwargs_dict.pop("label", tree_list.label)
return self
def __copy__(self):
other = TreeList(label=self.label, taxon_namespace=self.taxon_namespace)
other._trees = list(self._trees)
memo = {}
memo[id(self)] = other
other.deep_copy_annotations_from(self, memo)
return other
def taxon_namespace_scoped_copy(self, memo=None):
if memo is None:
memo = {}
# this populates ``memo`` with references to the
# the TaxonNamespace and Taxon objects
self.taxon_namespace.populate_memo_for_taxon_namespace_scoped_copy(memo)
return self.__deepcopy__(memo=memo)
def __deepcopy__(self, memo=None):
return basemodel.Annotable.__deepcopy__(self, memo=memo)
###########################################################################
### Representation
def __str__(self):
return "<TreeList {} '{}': [{}]>".format(hex(id(self)), self.label, ", ".join(repr(i) for i in self._trees))
###########################################################################
### Data I/O
def _taxon_namespace_pseudofactory(self, **kwargs):
"""
Dummy factory to coerce all |TaxonNamespace| objects required when
parsing a data source to reference ``self.taxon_namespace``.
"""
if "label" in kwargs and kwargs["label"] is not None and self.taxon_namespace.label is None:
self.taxon_namespace.label = kwargs["label"]
return self.taxon_namespace
def _tree_list_pseudofactory(self, **kwargs):
"""
Dummy factory to coerce all |TreeList| objects required when
parsing a data source to reference ``self``.
"""
if "label" in kwargs and kwargs["label"] is not None and self.label is None:
self.label = kwargs["label"]
return self
def _parse_and_add_from_stream(self,
stream,
schema,
collection_offset=None,
tree_offset=None,
**kwargs):
"""
Parses |Tree| objects from data source and adds to this collection.
Notes
-----
*All* operational taxonomic unit concepts in the data source will be included
in the |TaxonNamespace| object associated with the new
|TreeList| object and its contained |Tree| objects, even those
not associated with trees or the particular trees being retrieved.
Parameters
----------
stream : file or file-like object
Source of data.
schema : string
Identifier of format of data in ``stream``.
collection_offset : integer or None
0-based index indicating collection of trees to parse. If |None|,
then all tree collections are retrieved, with each distinct
collection parsed into a separate |TreeList| object. If the
tree colleciton offset index is equal or greater than the number of
tree collections in the data source, then IndexError is raised.
Negative offsets work like negative list indexes; e.g., a
``collection_offset`` of -1 means to read the last collection of
trees in the data source. For data formats that do not support the
concept of distinct tree collections (e.g. NEWICK) are considered
single-collection data source (i.e, the only acceptable
``collection_offset`` values are -1 or 0).
tree_offset : integer or None
0-based index indicating particular tree within a particular
collection of trees at which to begin reading. If not specified or
|None| (default), then all trees are parsed. Otherwise, must be an
integer value up the length of the collection minus 1. A positive
offset indicates the number of trees in the collection to skip;
e.g. a ``tree_offset`` of 20 means to skip the first 20 trees in the
collection. Negative offsets work like negative list indexes;
e.g., a ``tree_offset`` value of -10 means to retrieve the last 10
trees in the collection. If the tree offset index is equal or
greater than the number of trees in the collection, then IndexError
is raised. Requires that a particular tree collection has been
identified using the ``tree_collection_offset`` parameter: if
``tree_collection_offset`` is not specified, a TypeError is raised.
\*\*kwargs : keyword arguments
Arguments to customize parsing, instantiation, processing, and
accession of |Tree| objects read from the data source, including
schema- or format-specific handling. These will be passed to the
underlying schema-specific reader for handling.
General (schema-agnostic) keyword arguments are:
* ``rooted`` specifies the default rooting interpretation of the tree.
* ``edge_length_type`` specifies the type of the edge lengths (int or
float; defaults to 'float')
Other keyword arguments are available depending on the schema. See
specific schema handlers (e.g., `NewickReader`, `NexusReader`,
`NexmlReader`) for more details.
Notes
-----
Note that in most cases, even if ``collection_offset`` and ``tree_offset``
are specified to restrict the trees read, the *entire* data source
is still parsed and processed. So this is not more efficient than
reading all the trees and then manually-extracting them later; just
more convenient. If you need just a single subset of trees from a data
source, there is no gain in efficiency. If you need multiple trees or
subsets of trees from the same data source, it would be much more
efficient to read the entire data source, and extract trees as needed.
Returns
-------
n : ``int``
The number of |Tree| objects read.
"""
if "taxon_namespace" in kwargs and kwargs['taxon_namespace'] is not self.taxon_namespace:
raise TypeError("Cannot change ``taxon_namespace`` when reading into an existing TreeList")
kwargs["taxon_namespace"] = self.taxon_namespace
kwargs["tree_list"] = self
cur_size = len(self._trees)
TreeList._parse_and_create_from_stream(
stream=stream,
schema=schema,
collection_offset=collection_offset,
tree_offset=tree_offset,
**kwargs)
new_size = len(self._trees)
return new_size - cur_size
def read(self, **kwargs):
"""
Add |Tree| objects to existing |TreeList| from data source providing
one or more collections of trees.
**Mandatory Source-Specification Keyword Argument (Exactly One Required):**
- **file** (*file*) -- File or file-like object of data opened for reading.
- **path** (*str*) -- Path to file of data.
- **url** (*str*) -- URL of data.
- **data** (*str*) -- Data given directly.
**Mandatory Schema-Specification Keyword Argument:**
- **schema** (*str*) -- Identifier of format of data given by the
"``file``", "``path``", "``data``", or "``url``" argument
specified above: ":doc:`newick </schemas/newick>`", ":doc:`nexus
</schemas/nexus>`", or ":doc:`nexml </schemas/nexml>`". See
"|Schemas|" for more details.
**Optional General Keyword Arguments:**
- **collection_offset** (*int*) -- 0-based index of tree block or
collection in source to be parsed. If not specified then the
first collection (offset = 0) is assumed.
- **tree_offset** (*int*) -- 0-based index of first tree within the
collection specified by ``collection_offset`` to be parsed (i.e.,
skipping the first ``tree_offset`` trees). If not
specified, then the first tree (offset = 0) is assumed (i.e., no
trees within the specified collection will be skipped). Use this
to specify, e.g. a burn-in.
- **ignore_unrecognized_keyword_arguments** (*bool*) -- If |True|,
then unsupported or unrecognized keyword arguments will not
result in an error. Default is |False|: unsupported keyword
arguments will result in an error.
**Optional Schema-Specific Keyword Arguments:**
These provide control over how the data is interpreted and
processed, and supported argument names and values depend on
the schema as specified by the value passed as the "``schema``"
argument. See "|Schemas|" for more details.
**Examples:**
::
tlist = dendropy.TreeList()
tlist.read(
file=open('treefile.tre', 'rU'),
schema="newick",
tree_offset=100)
tlist.read(
path='sometrees.nexus',
schema="nexus",
collection_offset=2,
tree_offset=100)
tlist.read(
data="((A,B),(C,D));((A,C),(B,D));",
schema="newick")
tlist.read(
url="http://api.opentreeoflife.org/v2/study/pg_1144/tree/tree2324.nex",
schema="nexus")
"""
return basemodel.MultiReadable._read_from(self, **kwargs)
def _format_and_write_to_stream(self, stream, schema, **kwargs):
"""
Writes out ``self`` in ``schema`` format to a destination given by
file-like object ``stream``.
Parameters
----------
stream : file or file-like object
Destination for data.
schema : string
Must be a recognized and tree file schema, such as "nexus",
"newick", etc, for which a specialized tree list writer is
available. If this is not implemented for the schema specified, then
a UnsupportedSchemaError is raised.
\*\*kwargs : keyword arguments, optional
Keyword arguments will be passed directly to the writer for the
specified schema. See documentation for details on keyword
arguments supported by writers of various schemas.
"""
writer = dataio.get_writer(schema, **kwargs)
writer.write_tree_list(self, stream)
###########################################################################
### List Interface
def _import_tree_to_taxon_namespace(self,
tree,
taxon_import_strategy="migrate",
**kwargs):
if tree.taxon_namespace is not self.taxon_namespace:
if taxon_import_strategy == "migrate":
tree.migrate_taxon_namespace(taxon_namespace=self.taxon_namespace,
**kwargs)
elif taxon_import_strategy == "add":
tree._taxon_namespace = self.taxon_namespace
tree.update_taxon_namespace()
else:
raise ValueError("Unrecognized taxon import strategy: '{}'".format(taxon_import_strategy))
# assert tree.taxon_namespace is self.taxon_namespace
return tree
def insert(self,
index,
tree,
taxon_import_strategy="migrate",
**kwargs):
"""
Inserts a |Tree| object, ``tree``, into the collection before
``index``.
The |TaxonNamespace| reference of ``tree`` will be set to that of
``self``. Any |Taxon| objects associated with nodes in ``tree``
that are not already in ``self.taxon_namespace`` will be handled
according to ``taxon_import_strategy``:
- 'migrate'
|Taxon| objects associated with ``tree`` that are not already
in ``self.taxon_nameaspace`` will be remapped based on their
labels, with new :class|Taxon| objects being reconstructed if
none with matching labels are found. Specifically,
:meth:`dendropy.datamodel.treemodel.Tree.migrate_taxon_namespace()`
will be called on ``tree``, where ``kwargs`` is as passed to
this function.
- 'add'
|Taxon| objects associated with ``tree`` that are not already
in ``self.taxon_namespace`` will be added. Note that this might
result in |Taxon| objects with duplicate labels as no
attempt at mapping to existing |Taxon| objects based on
label-matching is done.
Parameters
----------
index : integer
Position before which to insert ``tree``.
tree : A |Tree| instance
The |Tree| object to be added.
taxon_import_strategy : string
If ``tree`` is associated with a different |TaxonNamespace|,
this argument determines how new |Taxon| objects in ``tree``
are handled: 'migrate' or 'add'. See above for details.
\*\*kwargs : keyword arguments
These arguments will be passed directly to
'migrate_taxon_namespace()' method call on ``tree``.
See Also
--------
:meth:`Tree.migrate_taxon_namespace`
"""
self._import_tree_to_taxon_namespace(
tree=tree,
taxon_import_strategy=taxon_import_strategy,
**kwargs)
self._trees.insert(index, tree)
def append(self,
tree,
taxon_import_strategy="migrate",
**kwargs):
"""
Adds a |Tree| object, ``tree``, to the collection.
The |TaxonNamespace| reference of ``tree`` will be set to that of
``self``. Any |Taxon| objects associated with nodes in ``tree``
that are not already in ``self.taxon_namespace`` will be handled
according to ``taxon_import_strategy``:
- 'migrate'
|Taxon| objects associated with ``tree`` that are not already
in ``self.taxon_nameaspace`` will be remapped based on their
labels, with new :class|Taxon| objects being reconstructed if
none with matching labels are found. Specifically,
:meth:`dendropy.datamodel.treemodel.Tree.migrate_taxon_namespace()`
will be called on ``tree``, where ``kwargs`` is as passed to this
function.
- 'add'
|Taxon| objects associated with ``tree`` that are not already
in ``self.taxon_namespace`` will be added. Note that this might
result in |Taxon| objects with duplicate labels as no
attempt at mapping to existing |Taxon| objects based on
label-matching is done.
Parameters
----------
tree : A |Tree| instance
The |Tree| object to be added.
taxon_import_strategy : string
If ``tree`` is associated with a different |TaxonNamespace|,
this argument determines how new |Taxon| objects in ``tree``
are handled: 'migrate' or 'add'. See above for details.
\*\*kwargs : keyword arguments
These arguments will be passed directly to
'migrate_taxon_namespace()' method call on ``tree``.
See Also
--------
:meth:`Tree.migrate_taxon_namespace`
"""
self._import_tree_to_taxon_namespace(
tree=tree,
taxon_import_strategy=taxon_import_strategy,
**kwargs)
self._trees.append(tree)
def extend(self, other):
"""
In-place addition of |Tree| objects in ``other`` to ``self``.
If ``other`` is a |TreeList|, then the trees are *copied*
and migrated into ``self.taxon_namespace``; otherwise, the original
objects are migrated into ``self.taxon_namespace`` and added directly.
Parameters
----------
other : iterable of |Tree| objects
Returns
-------
``self`` : |TreeList|
"""
if isinstance(other, TreeList):
for t0 in other:
t1 = self.tree_type(t0, taxon_namespace=self.taxon_namespace)
self._trees.append(t1)
else:
for t0 in other:
self.append(t0)
return self
def __iadd__(self, other):
"""
In-place addition of |Tree| objects in ``other`` to ``self``.
If ``other`` is a |TreeList|, then the trees are *copied*
and migrated into ``self.taxon_namespace``; otherwise, the original
objects are migrated into ``self.taxon_namespace`` and added directly.
Parameters
----------
other : iterable of |Tree| objects
Returns
-------
``self`` : |TreeList|
"""
return self.extend(other)
def __add__(self, other):
"""
Creates and returns new |TreeList| with clones of all trees in ``self``
as well as all |Tree| objects in ``other``. If ``other`` is a
|TreeList|, then the trees are *cloned* and migrated into
``self.taxon_namespace``; otherwise, the original objects are migrated into
``self.taxon_namespace`` and added directly.
Parameters
----------
other : iterable of |Tree| objects
Returns
-------
tlist : |TreeList| object
|TreeList| object containing clones of |Tree| objects
in ``self`` and ``other``.
"""
tlist = TreeList(taxon_namespace=self.taxon_namespace)
tlist += self
tlist += other
return tlist
def __contains__(self, tree):
return tree in self._trees
def __delitem__(self, tree):
del self._trees[tree]
def __iter__(self):
return iter(self._trees)
def __reversed__(self):
return reversed(self._trees)
def __len__(self):
return len(self._trees)
def __getitem__(self, index):
"""
If ``index`` is an integer, then |Tree| object at position ``index``
is returned. If ``index`` is a slice, then a |TreeList| is returned
with references (i.e., not copies or clones, but the actual original
instances themselves) to |Tree| objects in the positions given
by the slice. The |TaxonNamespace| is the same as ``self``.
Parameters
----------
index : integer or slice
Index or slice.
Returns
-------
t : |Tree| object or |TreeList| object
"""
if isinstance(index, slice):
r = self._trees[index]
return TreeList(r,
taxon_namespace=self.taxon_namespace)
else:
return self._trees[index]
def __setitem__(self, index, value):
if isinstance(index, slice):
if isinstance(value, TreeList):
tt = []
for t0 in value:
t1 = self.tree_type(t0,
taxon_namespace=self.taxon_namespace)
tt.append(t1)
value = tt
else:
for t in value:
self._import_tree_to_taxon_namespace(t)
self._trees[index] = value
else:
self._trees[index] = self._import_tree_to_taxon_namespace(value)
def clear(self):
# list.clear() only with 3.4 or so ...
self._trees = []
def index(self, tree):
return self._trees.index(tree)
def pop(self, index=-1):
return self._trees.pop(index)
def remove(self, tree):
self._trees.remove(tree)
def reverse(self):
self._trees.reverse()
def sort(self, key=None, reverse=False):
self._trees.sort(key=key, reverse=reverse)
def new_tree(self, *args, **kwargs):
tns = taxonmodel.process_kwargs_dict_for_taxon_namespace(kwargs, self.taxon_namespace)
if tns is not self.taxon_namespace:
raise TypeError("Cannot create new Tree with different TaxonNamespace")
kwargs["taxon_namespace"] = self.taxon_namespace
if self.tree_type is not None:
tree = self.tree_type(*args, **kwargs)
else:
tree = self.tree_factory(*args, **kwargs)
self._trees.append(tree)
return tree
##############################################################################
## Taxon Handling
def reconstruct_taxon_namespace(self,
unify_taxa_by_label=True,
taxon_mapping_memo=None):
if taxon_mapping_memo is None:
taxon_mapping_memo = {}
for tree in self._trees:
tree._taxon_namespace = self.taxon_namespace
tree.reconstruct_taxon_namespace(
unify_taxa_by_label=unify_taxa_by_label,
taxon_mapping_memo=taxon_mapping_memo,
)
def update_taxon_namespace(self):
for tree in self._trees:
tree._taxon_namespace = self.taxon_namespace
tree.update_taxon_namespace()
def poll_taxa(self, taxa=None):
"""
Returns a set populated with all of |Taxon| instances associated
with ``self``.
Parameters
----------
taxa : set()
Set to populate. If not specified, a new one will be created.
Returns
-------
taxa : set[|Taxon|]
Set of taxa associated with ``self``.
"""
if taxa is None:
taxa = set()
for tree in self:
tree.poll_taxa(taxa)
return taxa
def reindex_subcomponent_taxa():
raise NotImplementedError()
##############################################################################
## Special Calculations and Operations on Entire Collection
def _get_tree_array(self,
kwargs_dict,
):
"""
Return TreeArray containing information of trees currently
in self. Processes ``kwargs_dict`` intelligently: removing
and passing on keyword arguments pertaining to TreeArray
construction, and leaving everything else.
"""
# TODO: maybe ignore_node_ages defaults to |False| but ``ultrametricity_precision`` defaults to 0?
ta = TreeArray.from_tree_list(
trees=self,
# taxon_namespace=self.taxon_namespace,
is_rooted_trees=kwargs_dict.pop("is_rooted_trees", None),
ignore_edge_lengths=kwargs_dict.pop("ignore_edge_lengths", False),
ignore_node_ages=kwargs_dict.pop("ignore_node_ages", True),
use_tree_weights=kwargs_dict.pop("use_tree_weights", True),
ultrametricity_precision=kwargs_dict.pop("ultrametricity_precision", constants.DEFAULT_ULTRAMETRICITY_PRECISION),
is_force_max_age=kwargs_dict.pop("is_force_max_age", None),
taxon_label_age_map=kwargs_dict.pop("taxon_label_age_map", None),
is_bipartitions_updated=kwargs_dict.pop("is_bipartitions_updated", False)
)
return ta
def split_distribution(self,
is_bipartitions_updated=False,
default_edge_length_value=None,
**kwargs):
"""
Return `SplitDistribution` collecting information on splits in
contained trees. Keyword arguments get passed directly to
`SplitDistribution` constructor.
"""
assert "taxon_namespace" not in kwargs or kwargs["taxon_namespace"] is self.taxon_namespace
kwargs["taxon_namespace"] = self.taxon_namespace
sd = SplitDistribution(**kwargs)
for tree in self:
sd.count_splits_on_tree(
tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
default_edge_length_value=default_edge_length_value)
return sd
def as_tree_array(self, **kwargs):
"""
Return |TreeArray| collecting information on splits in contained
trees. Keyword arguments get passed directly to |TreeArray|
constructor.
"""
ta = TreeArray.from_tree_list(
trees=self,
**kwargs)
return ta
def consensus(self,
min_freq=constants.GREATER_THAN_HALF,
is_bipartitions_updated=False,
summarize_splits=True,
**kwargs):
"""
Returns a consensus tree of all trees in self, with minumum frequency
of bipartition to be added to the consensus tree given by ``min_freq``.
"""
ta = self._get_tree_array(kwargs)
return ta.consensus_tree(min_freq=min_freq,
summarize_splits=summarize_splits,
**kwargs)
def maximum_product_of_split_support_tree(
self,
include_external_splits=False,
score_attr="log_product_of_split_support"):
"""
Return the tree with that maximizes the product of split supports, also
known as the "Maximum Clade Credibility Tree" or MCCT.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
mcct_tree : Tree
Tree that maximizes the product of split supports.
"""
ta = self._get_tree_array({})
scores, max_score_tree_idx = ta.calculate_log_product_of_split_supports(
include_external_splits=include_external_splits,
)
tree = self[max_score_tree_idx]
if score_attr is not None:
setattr(tree, score_attr, scores[max_score_tree_idx])
return tree
def maximum_sum_of_split_support_tree(
self,
include_external_splits=False,
score_attr="sum_of_split_support"):
"""
Return the tree with that maximizes the *sum* of split supports.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
mcct_tree : Tree
Tree that maximizes the sum of split supports.
"""
ta = self._get_tree_array({})
scores, max_score_tree_idx = ta.calculate_sum_of_split_supports(
include_external_splits=include_external_splits,
)
tree = self[max_score_tree_idx]
if score_attr is not None:
setattr(tree, score_attr, scores[max_score_tree_idx])
return tree
def frequency_of_bipartition(self, **kwargs):
"""
Given a bipartition specified as:
- a |Bipartition| instance given the keyword 'bipartition'
- a split bitmask given the keyword 'split_bitmask'
- a list of |Taxon| objects given with the keyword ``taxa``
- a list of taxon labels given with the keyword ``labels``
this function returns the proportion of trees in self
in which the split is found.
If the tree(s) in the collection are unrooted, then the bipartition
will be normalized for the comparison.
"""
split = None
is_bipartitions_updated = kwargs.pop("is_bipartitions_updated", False)
if "split_bitmask" in kwargs:
split = kwargs["split_bitmask"]
elif "bipartition" in kwargs:
split = kwargs["bipartition"].split_bitmask
elif "taxa" in kwargs or "labels" in kwargs:
split = self.taxon_namespace.taxa_bitmask(**kwargs)
if "taxa" in kwargs:
k = len(kwargs["taxa"])
else:
k = len(kwargs["labels"])
if bitprocessing.num_set_bits(split) != k:
raise IndexError('Not all taxa could be mapped to bipartition (%s): %s' \
% (self.taxon_namespace.bitmask_as_bitstring(split), k))
else:
raise TypeError("Need to specify one of the following keyword arguments: 'split_bitmask', 'bipartition', 'taxa', or 'labels'")
unnormalized_split = split
normalized_split = treemodel.Bipartition.normalize_bitmask(
bitmask=split,
fill_bitmask=self.taxon_namespace.all_taxa_bitmask(),
lowest_relevant_bit=1)
found = 0
total = 0
for tree in self:
if not is_bipartitions_updated or not tree.bipartition_encoding:
tree.encode_bipartitions()
bipartition_encoding = set(b.split_bitmask for b in tree.bipartition_encoding)
total += 1
if tree.is_unrooted and (normalized_split in bipartition_encoding):
found += 1
elif (not tree.is_unrooted) and (unnormalized_split in bipartition_encoding):
found += 1
try:
return float(found)/total
except ZeroDivisionError:
return 0
def frequency_of_split(self, **kwargs):
"""
DEPRECATED: use 'frequency_of_bipartition()' instead.
"""
deprecate.dendropy_deprecation_warning(
message="Deprecated since DendroPy 4: Instead of 'frequency_of_split()' use 'frequency_of_bipartition()'",
stacklevel=4,
)
return self.frequency_of_bipartition(**kwargs)
###############################################################################
### SplitDistribution
class SplitDistribution(taxonmodel.TaxonNamespaceAssociated):
"""
Collects information regarding splits over multiple trees.
"""
SUMMARY_STATS_FIELDNAMES = ('mean', 'median', 'sd', 'hpd95', 'quant_5_95', 'range')
def __init__(self,
taxon_namespace=None,
ignore_edge_lengths=False,
ignore_node_ages=True,
use_tree_weights=True,
ultrametricity_precision=constants.DEFAULT_ULTRAMETRICITY_PRECISION,
is_force_max_age=False,
taxon_label_age_map=None):
# Taxon Namespace
taxonmodel.TaxonNamespaceAssociated.__init__(self,
taxon_namespace=taxon_namespace)
# configuration
self.ignore_edge_lengths = ignore_edge_lengths
self.ignore_node_ages = ignore_node_ages
self.use_tree_weights = use_tree_weights
self.ultrametricity_precision = ultrametricity_precision
# storage/function
self.total_trees_counted = 0
self.sum_of_tree_weights = 0.0
self.tree_rooting_types_counted = set()
self.split_counts = collections.defaultdict(float)
self.split_edge_lengths = collections.defaultdict(list)
self.split_node_ages = collections.defaultdict(list)
self.is_force_max_age = is_force_max_age
self.is_force_min_age = False
self.taxon_label_age_map = taxon_label_age_map
# secondary/derived/generated/collected data
self._is_rooted = False
self._split_freqs = None
self._trees_counted_for_freqs = 0
self._split_edge_length_summaries = None
self._split_node_age_summaries = None
self._trees_counted_for_summaries = 0
# services
self.tree_decorator = None
###########################################################################
### Utility
def normalize_bitmask(self, bitmask):
"""
"Normalizes" split, by ensuring that the least-significant bit is
always 1 (used on unrooted trees to establish split identity
independent of rotation).
Parameters
----------
bitmask : integer
Split bitmask hash to be normalized.
Returns
-------
h : integer
Normalized split bitmask.
"""
return treemodel.Bipartition.normalize_bitmask(
bitmask=bitmask,
fill_bitmask=self.taxon_namespace.all_taxa_bitmask(),
lowest_relevant_bit=1)
###########################################################################
### Configuration
def _is_rooted_deprecation_warning(self):
deprecate.dendropy_deprecation_warning(
message="Deprecated since DendroPy 4: 'SplitDistribution.is_rooted' and 'SplitDistribution.is_unrooted' are no longer valid attributes; rooting state tracking and management is now the responsibility of client code.",
stacklevel=4,
)
def _get_is_rooted(self):
self._is_rooted_deprecation_warning()
return self._is_rooted
def _set_is_rooted(self, val):
self._is_rooted_deprecation_warning()
self._is_rooted = val
is_rooted = property(_get_is_rooted, _set_is_rooted)
def _get_is_unrooted(self):
self._is_rooted_deprecation_warning()
return not self._is_rooted
def _set_is_unrooted(self, val):
self._is_rooted_deprecation_warning()
self._is_rooted = not val
is_unrooted = property(_get_is_unrooted, _set_is_unrooted)
###########################################################################
### Split Counting and Book-Keeping
def add_split_count(self, split, count=1):
self.split_counts[split] += count
def count_splits_on_tree(self,
tree,
is_bipartitions_updated=False,
default_edge_length_value=None):
"""
Counts splits in this tree and add to totals. ``tree`` must be decorated
with splits, and no attempt is made to normalize taxa.
Parameters
----------
tree : a |Tree| object.
The tree on which to count the splits.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
Returns
--------
s : iterable of splits
A list of split bitmasks from ``tree``.
e :
A list of edge length values from ``tree``.
a :
A list of node age values from ``tree``.
"""
assert tree.taxon_namespace is self.taxon_namespace
self.total_trees_counted += 1
if not self.ignore_node_ages:
if self.taxon_label_age_map:
set_node_age_fn = self._set_node_age
else:
set_node_age_fn = None
tree.calc_node_ages(
ultrametricity_precision=self.ultrametricity_precision,
is_force_max_age=self.is_force_max_age,
is_force_min_age=self.is_force_min_age,
set_node_age_fn=set_node_age_fn,
)
if tree.weight is not None and self.use_tree_weights:
weight_to_use = float(tree.weight)
else:
weight_to_use = 1.0
self.sum_of_tree_weights += weight_to_use
if tree.is_rooted:
self.tree_rooting_types_counted.add(True)
else:
self.tree_rooting_types_counted.add(False)
if not is_bipartitions_updated:
tree.encode_bipartitions()
splits = []
edge_lengths = []
node_ages = []
for bipartition in tree.bipartition_encoding:
split = bipartition.split_bitmask
## if edge is stored as an attribute, might be faster to:
# edge = bipartition.edge
edge = tree.bipartition_edge_map[bipartition]
splits.append(split)
self.split_counts[split] += weight_to_use
if not self.ignore_edge_lengths:
sel = self.split_edge_lengths.setdefault(split,[])
if edge.length is None:
elen = default_edge_length_value
else:
elen = edge.length
sel.append(elen)
edge_lengths.append(elen)
else:
sel = None
if not self.ignore_node_ages:
sna = self.split_node_ages.setdefault(split, [])
if edge.head_node is not None:
nage = edge.head_node.age
else:
nage = None
sna.append(nage)
node_ages.append(nage)
else:
sna = None
return splits, edge_lengths, node_ages
def splits_considered(self):
"""
Returns 4 values:
total number of splits counted
total *weighted* number of unique splits counted
total number of non-trivial splits counted
total *weighted* number of unique non-trivial splits counted
"""
if not self.split_counts:
return 0, 0, 0, 0
num_splits = 0
num_unique_splits = 0
num_nt_splits = 0
num_nt_unique_splits = 0
taxa_mask = self.taxon_namespace.all_taxa_bitmask()
for s in self.split_counts:
num_unique_splits += 1
num_splits += self.split_counts[s]
if not treemodel.Bipartition.is_trivial_bitmask(s, taxa_mask):
num_nt_unique_splits += 1
num_nt_splits += self.split_counts[s]
return num_splits, num_unique_splits, num_nt_splits, num_nt_unique_splits
def calc_freqs(self):
"Forces recalculation of frequencies."
self._split_freqs = {}
if self.total_trees_counted == 0:
for split in self.split_counts:
self._split_freqs[split] = 1.0
else:
normalization_weight = self.calc_normalization_weight()
for split in self.split_counts:
count = self.split_counts[split]
self._split_freqs[split] = float(self.split_counts[split]) / normalization_weight
self._trees_counted_for_freqs = self.total_trees_counted
self._split_edge_length_summaries = None
self._split_node_age_summaries = None
return self._split_freqs
def calc_normalization_weight(self):
if not self.sum_of_tree_weights:
return self.total_trees_counted
else:
return float(self.sum_of_tree_weights)
def update(self, split_dist):
self.total_trees_counted += split_dist.total_trees_counted
self.sum_of_tree_weights += split_dist.sum_of_tree_weights
self._split_edge_length_summaries = None
self._split_node_age_summaries = None
self._trees_counted_for_summaries = 0
self.tree_rooting_types_counted.update(split_dist.tree_rooting_types_counted)
for split in split_dist.split_counts:
self.split_counts[split] += split_dist.split_counts[split]
self.split_edge_lengths[split] += split_dist.split_edge_lengths[split]
self.split_node_ages[split] += split_dist.split_node_ages[split]
###########################################################################
### Basic Information Access
def __len__(self):
return len(self.split_counts)
def __iter__(self):
for s in self.split_counts:
yield s
def __getitem__(self, split_bitmask):
"""
Returns freqency of split_bitmask.
"""
return self._get_split_frequencies().get(split_bitmask, 0.0)
def _get_split_frequencies(self):
if self._split_freqs is None or self._trees_counted_for_freqs != self.total_trees_counted:
self.calc_freqs()
return self._split_freqs
split_frequencies = property(_get_split_frequencies)
def is_mixed_rootings_counted(self):
return ( (True in self.tree_rooting_types_counted)
and (False in self.tree_rooting_types_counted or None in self.tree_rooting_types_counted) )
def is_all_counted_trees_rooted(self):
return (True in self.tree_rooting_types_counted) and (len(self.tree_rooting_types_counted) == 1)
def is_all_counted_trees_strictly_unrooted(self):
return (False in self.tree_rooting_types_counted) and (len(self.tree_rooting_types_counted) == 1)
def is_all_counted_trees_treated_as_unrooted(self):
return True not in self.tree_rooting_types_counted
###########################################################################
### Summarization
def split_support_iter(self,
tree,
is_bipartitions_updated=False,
include_external_splits=False,
traversal_strategy="preorder",
node_support_attr_name=None,
edge_support_attr_name=None,
):
"""
Returns iterator over support values for the splits of a given tree,
where the support value is given by the proportional frequency of the
split in the current split distribution.
Parameters
----------
tree : |Tree|
The |Tree| which will be scored.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
include_external_splits : bool
If |True|, then non-internal split posteriors will be included.
If |False|, then these are skipped. This should only make a
difference when dealing with splits collected from trees of
different leaf sets.
traversal_strategy : str
One of: "preorder" or "postorder". Specfies order in which splits
are visited.
Returns
-------
s : list of floats
List of values for splits in the tree corresponding to the
proportional frequency that the split is found in the current
distribution.
"""
if traversal_strategy == "preorder":
if include_external_splits:
iter_fn = tree.preorder_node_iter
else:
iter_fn = tree.preorder_internal_node_iter
elif traversal_strategy == "postorder":
if include_external_splits:
iter_fn = tree.postorder_node_iter
else:
iter_fn = tree.postorder_internal_node_iter
else:
raise ValueError("Traversal strategy not supported: '{}'".format(traversal_strategy))
if not is_bipartitions_updated:
tree.encode_bipartitions()
split_frequencies = self._get_split_frequencies()
for nd in iter_fn():
split = nd.edge.split_bitmask
support = split_frequencies.get(split, 0.0)
yield support
def calc_split_edge_length_summaries(self):
self._split_edge_length_summaries = {}
for split, elens in self.split_edge_lengths.items():
if not elens:
continue
try:
self._split_edge_length_summaries[split] = statistics.summarize(elens)
except ValueError:
pass
return self._split_edge_length_summaries
def calc_split_node_age_summaries(self):
self._split_node_age_summaries = {}
for split, ages in self.split_node_ages.items():
if not ages:
continue
try:
self._split_node_age_summaries[split] = statistics.summarize(ages)
except ValueError:
pass
return self._split_node_age_summaries
def _set_node_age(self, nd):
if nd.taxon is None or nd._child_nodes:
return None
else:
return self.taxon_label_age_map.get(nd.taxon.label, 0.0)
def _get_split_edge_length_summaries(self):
if self._split_edge_length_summaries is None \
or self._trees_counted_for_summaries != self.total_trees_counted:
self.calc_split_edge_length_summaries()
return self._split_edge_length_summaries
split_edge_length_summaries = property(_get_split_edge_length_summaries)
def _get_split_node_age_summaries(self):
if self._split_node_age_summaries is None \
or self._trees_counted_for_summaries != self.total_trees_counted:
self.calc_split_node_age_summaries()
return self._split_node_age_summaries
split_node_age_summaries = property(_get_split_node_age_summaries)
def log_product_of_split_support_on_tree(self,
tree,
is_bipartitions_updated=False,
include_external_splits=False,
):
"""
Calculates the (log) product of the support of the splits of the
tree, where the support is given by the proportional frequency of the
split in the current split distribution.
The tree that has the highest product of split support out of a sample
of trees corresponds to the "maximum credibility tree" for that sample.
This can also be referred to as the "maximum clade credibility tree",
though this latter term is sometimes use for the tree that has the
highest *sum* of split support (see
:meth:`SplitDistribution.sum_of_split_support_on_tree()`).
Parameters
----------
tree : |Tree|
The tree for which the score should be calculated.
is_bipartitions_updated : bool
If |True|, then the splits are assumed to have already been encoded
and will not be updated on the trees.
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
s : numeric
The log product of the support of the splits of the tree.
"""
log_product_of_split_support = 0.0
for split_support in self.split_support_iter(
tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
include_external_splits=include_external_splits,
traversal_strategy="preorder",
):
if split_support:
log_product_of_split_support += math.log(split_support)
return log_product_of_split_support
def sum_of_split_support_on_tree(self,
tree,
is_bipartitions_updated=False,
include_external_splits=False,
):
"""
Calculates the sum of the support of the splits of the tree, where the
support is given by the proportional frequency of the split in the
current distribtion.
Parameters
----------
tree : |Tree|
The tree for which the score should be calculated.
is_bipartitions_updated : bool
If |True|, then the splits are assumed to have already been encoded
and will not be updated on the trees.
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
s : numeric
The sum of the support of the splits of the tree.
"""
sum_of_split_support = 0.0
for split_support in self.split_support_iter(
tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
include_external_splits=include_external_splits,
traversal_strategy="preorder",
):
sum_of_split_support += split_support
return sum_of_split_support
def collapse_edges_with_less_than_minimum_support(self,
tree,
min_freq=constants.GREATER_THAN_HALF,
):
"""
Collapse edges on tree that have support less than indicated by
``min_freq``.
"""
if not tree.is_rooted and self.is_all_counted_trees_rooted():
raise ValueError("Tree is interpreted as unrooted, but split support is based on rooted trees")
elif tree.is_rooted and self.is_all_counted_trees_treated_as_unrooted():
raise ValueError("Tree is interpreted as rooted, but split support is based on unrooted trees")
tree.encode_bipartitions()
split_frequencies = self._get_split_frequencies()
to_collapse = []
for nd in tree.postorder_node_iter():
s = nd.edge.bipartition.split_bitmask
if s not in split_frequencies:
to_collapse.append(nd)
elif split_frequencies[s] < min_freq:
to_collapse.append(nd)
for nd in to_collapse:
nd.edge.collapse(adjust_collapsed_head_children_edge_lengths=True)
def consensus_tree(self,
min_freq=constants.GREATER_THAN_HALF,
is_rooted=None,
summarize_splits=True,
**split_summarization_kwargs
):
"""
Returns a consensus tree from splits in ``self``.
Parameters
----------
min_freq : real
The minimum frequency of a split in this distribution for it to be
added to the tree.
is_rooted : bool
Should tree be rooted or not? If *all* trees counted for splits are
explicitly rooted or unrooted, then this will default to |True| or
|False|, respectively. Otherwise it defaults to |None|.
\*\*split_summarization_kwargs : keyword arguments
These will be passed directly to the underlying
`SplitDistributionSummarizer` object. See
:meth:`SplitDistributionSummarizer.configure` for options.
Returns
-------
t : consensus tree
"""
if is_rooted is None:
if self.is_all_counted_trees_rooted():
is_rooted = True
elif self.is_all_counted_trees_strictly_unrooted():
is_rooted = False
split_frequencies = self._get_split_frequencies()
to_try_to_add = []
_almost_one = lambda x: abs(x - 1.0) <= 0.0000001
for s in split_frequencies:
freq = split_frequencies[s]
if (min_freq is None) or (freq >= min_freq) or (_almost_one(min_freq) and _almost_one(freq)):
to_try_to_add.append((freq, s))
to_try_to_add.sort(reverse=True)
splits_for_tree = [i[1] for i in to_try_to_add]
con_tree = treemodel.Tree.from_split_bitmasks(
split_bitmasks=splits_for_tree,
taxon_namespace=self.taxon_namespace,
is_rooted=is_rooted)
if summarize_splits:
self.summarize_splits_on_tree(
tree=con_tree,
is_bipartitions_updated=False,
**split_summarization_kwargs
)
return con_tree
def summarize_splits_on_tree(self,
tree,
is_bipartitions_updated=False,
**split_summarization_kwargs
):
"""
Summarizes support of splits/edges/node on tree.
Parameters
----------
tree: |Tree| instance
Tree to be decorated with support values.
is_bipartitions_updated: bool
If |True|, then bipartitions will not be recalculated.
\*\*split_summarization_kwargs : keyword arguments
These will be passed directly to the underlying
`SplitDistributionSummarizer` object. See
:meth:`SplitDistributionSummarizer.configure` for options.
"""
if self.taxon_namespace is not tree.taxon_namespace:
raise error.TaxonNamespaceIdentityError(self, tree)
if self.tree_decorator is None:
self.tree_decorator = SplitDistributionSummarizer()
self.tree_decorator.configure(**split_summarization_kwargs)
self.tree_decorator.summarize_splits_on_tree(
split_distribution=self,
tree=tree,
is_bipartitions_updated=is_bipartitions_updated)
return tree
###########################################################################
### legacy
def _get_taxon_set(self):
from dendropy import taxonmodel
taxon_model.taxon_set_deprecation_warning()
return self.taxon_namespace
def _set_taxon_set(self, v):
from dendropy import taxonmodel
taxon_model.taxon_set_deprecation_warning()
self.taxon_namespace = v
def _del_taxon_set(self):
from dendropy import taxonmodel
taxon_model.taxon_set_deprecation_warning()
taxon_set = property(_get_taxon_set, _set_taxon_set, _del_taxon_set)
###############################################################################
### SplitDistributionSummarizer
class SplitDistributionSummarizer(object):
def __init__(self, **kwargs):
"""
See :meth:`SplitDistributionSummarizer.configure` for configuration
options.
"""
self.configure(**kwargs)
def configure(self, **kwargs):
"""
Configure rendition/mark-up.
Parameters
----------
set_edge_lengths : string
For each edge, set the length based on:
- "support": use support values split corresponding to edge
- "mean-length": mean of edge lengths for split
- "median-length": median of edge lengths for split
- "mean-age": such that split age is equal to mean of ages
- "median-age": such that split age is equal to mean of ages
- |None|: do not set edge lengths
add_support_as_node_attribute: bool
Adds each node's support value as an attribute of the node,
"``support``".
add_support_as_node_annotation: bool
Adds support as a metadata annotation, "``support``". If
``add_support_as_node_attribute`` is |True|, then the value will be
dynamically-bound to the value of the node's "``support``" attribute.
set_support_as_node_label : bool
Sets the ``label`` attribute of each node to the support value.
add_node_age_summaries_as_node_attributes: bool
Summarizes the distribution of the ages of each node in the
following attributes:
- ``age_mean``
- ``age_median``
- ``age_sd``
- ``age_hpd95``
- ``age_range``
add_node_age_summaries_as_node_annotations: bool
Summarizes the distribution of the ages of each node in the
following metadata annotations:
- ``age_mean``
- ``age_median``
- ``age_sd``
- ``age_hpd95``
- ``age_range``
If ``add_node_age_summaries_as_node_attributes`` is |True|, then the
values will be dynamically-bound to the corresponding node
attributes.
add_edge_length_summaries_as_edge_attributes: bool
Summarizes the distribution of the lengths of each edge in the
following attribtutes:
- ``length_mean``
- ``length_median``
- ``length_sd``
- ``length_hpd95``
- ``length_range``
add_edge_length_summaries_as_edge_annotations: bool
Summarizes the distribution of the lengths of each edge in the
following metadata annotations:
- ``length_mean``
- ``length_median``
- ``length_sd``
- ``length_hpd95``
- ``length_range``
If ``add_edge_length_summaries_as_edge_attributes`` is |True|, then the
values will be dynamically-bound to the corresponding edge
attributes.
support_label_decimals: int
Number of decimal places to express when rendering the support
value as a string for the node label.
support_as_percentages: bool
Whether or not to express the support value as percentages (default
is probability or proportion).
minimum_edge_length : numeric
All edge lengths calculated to have a value less than this will be
set to this.
error_on_negative_edge_lengths : bool
If |True|, an inferred edge length that is less than 0 will result
in a ValueError.
"""
self.set_edge_lengths = kwargs.pop("set_edge_lengths", None)
self.add_support_as_node_attribute = kwargs.pop("add_support_as_node_attribute", True)
self.add_support_as_node_annotation = kwargs.pop("add_support_as_node_annotation", True)
self.set_support_as_node_label = kwargs.pop("set_support_as_node_label", None)
self.add_node_age_summaries_as_node_attributes = kwargs.pop("add_node_age_summaries_as_node_attributes", True)
self.add_node_age_summaries_as_node_annotations = kwargs.pop("add_node_age_summaries_as_node_annotations", True)
self.add_edge_length_summaries_as_edge_attributes = kwargs.pop("add_edge_length_summaries_as_edge_attributes", True)
self.add_edge_length_summaries_as_edge_annotations = kwargs.pop("add_edge_length_summaries_as_edge_annotations", True)
self.support_label_decimals = kwargs.pop("support_label_decimals", 4)
self.support_as_percentages = kwargs.pop("support_as_percentages", False)
self.support_label_compose_fn = kwargs.pop("support_label_compose_fn", None)
self.primary_fieldnames = ["support",]
self.summary_stats_fieldnames = SplitDistribution.SUMMARY_STATS_FIELDNAMES
self.no_data_values = {
'hpd95': [],
'quant_5_95': [],
'range': [],
}
self.node_age_summaries_fieldnames = list("age_{}".format(f) for f in self.summary_stats_fieldnames)
self.edge_length_summaries_fieldnames = list("length_{}".format(f) for f in self.summary_stats_fieldnames)
self.fieldnames = self.primary_fieldnames + self.node_age_summaries_fieldnames + self.edge_length_summaries_fieldnames
for fieldname in self.fieldnames:
setattr(self, "{}_attr_name".format(fieldname), kwargs.pop("{}_attr_name".format(fieldname), fieldname))
setattr(self, "{}_annotation_name".format(fieldname), kwargs.pop("{}_annotation_name".format(fieldname), fieldname))
setattr(self, "is_{}_annotation_dynamic".format(fieldname), kwargs.pop("is_{}_annotation_dynamic".format(fieldname), True))
self.minimum_edge_length = kwargs.pop("minimum_edge_length", None)
self.error_on_negative_edge_lengths = kwargs.pop("error_on_negative_edge_lengths", False)
if kwargs:
TypeError("Unrecognized or unsupported arguments: {}".format(kwargs))
def _decorate(self,
target,
fieldname,
value,
set_attribute,
set_annotation,
):
attr_name = getattr(self, "{}_attr_name".format(fieldname))
annotation_name = getattr(self, "{}_annotation_name".format(fieldname))
if set_attribute:
setattr(target, attr_name, value)
if set_annotation:
target.annotations.drop(name=annotation_name)
if getattr(self, "is_{}_annotation_dynamic".format(fieldname)):
target.annotations.add_bound_attribute(
attr_name=attr_name,
annotation_name=annotation_name,
)
else:
target.annotations.add_new(
name=annotation_name,
value=value,
)
elif set_annotation:
target.annotations.drop(name=annotation_name)
target.annotations.add_new(
name=annotation_name,
value=value,
)
def summarize_splits_on_tree(self,
split_distribution,
tree,
is_bipartitions_updated=False):
if split_distribution.taxon_namespace is not tree.taxon_namespace:
raise error.TaxonNamespaceIdentityError(split_distribution, tree)
if not is_bipartitions_updated:
tree.encode_bipartitions()
if self.support_label_compose_fn is not None:
support_label_fn = lambda freq: self.support_label_compose_fn(freq)
else:
support_label_fn = lambda freq: "{:.{places}f}".format(freq, places=self.support_label_decimals)
node_age_summaries = split_distribution.split_node_age_summaries
edge_length_summaries = split_distribution.split_edge_length_summaries
split_freqs = split_distribution.split_frequencies
assert len(self.node_age_summaries_fieldnames) == len(self.summary_stats_fieldnames)
for node in tree:
split_bitmask = node.edge.bipartition.split_bitmask
split_support = split_freqs.get(split_bitmask, 0.0)
if self.support_as_percentages:
split_support = split_support * 100
self._decorate(
target=node,
fieldname="support",
value=split_support,
set_attribute=self.add_support_as_node_attribute,
set_annotation=self.add_support_as_node_annotation,
)
if self.set_support_as_node_label:
node.label = support_label_fn(split_support)
if (self.add_node_age_summaries_as_node_attributes or self.add_node_age_summaries_as_node_annotations) and node_age_summaries:
for fieldname, stats_fieldname in zip(self.node_age_summaries_fieldnames, self.summary_stats_fieldnames):
no_data_value = self.no_data_values.get(stats_fieldname, 0.0)
if not node_age_summaries or split_bitmask not in node_age_summaries:
value = no_data_value
else:
value = node_age_summaries[split_bitmask].get(stats_fieldname, no_data_value)
self._decorate(
target=node,
fieldname=fieldname,
value=value,
set_attribute=self.add_node_age_summaries_as_node_attributes,
set_annotation=self.add_node_age_summaries_as_node_annotations,
)
if (self.add_edge_length_summaries_as_edge_attributes or self.add_edge_length_summaries_as_edge_annotations) and edge_length_summaries:
for fieldname, stats_fieldname in zip(self.edge_length_summaries_fieldnames, self.summary_stats_fieldnames):
no_data_value = self.no_data_values.get(stats_fieldname, 0.0)
if not edge_length_summaries or split_bitmask not in edge_length_summaries:
value = no_data_value
else:
value = edge_length_summaries[split_bitmask].get(stats_fieldname, no_data_value)
self._decorate(
target=node.edge,
fieldname=fieldname,
value=value,
set_attribute=self.add_edge_length_summaries_as_edge_attributes,
set_annotation=self.add_edge_length_summaries_as_edge_annotations,
)
if self.set_edge_lengths is None:
pass
elif self.set_edge_lengths == "keep":
pass
elif self.set_edge_lengths == "support":
node.edge.length = split_support
elif self.set_edge_lengths == "clear":
edge.length = None
elif self.set_edge_lengths in ("mean-age", "median-age"):
if not node_age_summaries:
raise ValueError("Node ages not available")
if self.set_edge_lengths == "mean-age":
try:
node.age = node_age_summaries[split_bitmask]["mean"]
except KeyError:
node.age = self.no_data_values.get("mean", 0.0)
elif self.set_edge_lengths == "median-age":
try:
node.age = node_age_summaries[split_bitmask]["median"]
except KeyError:
node.age = self.no_data_values.get("median", 0.0)
else:
raise ValueError(self.set_edge_lengths)
elif self.set_edge_lengths in ("mean-length", "median-length"):
if not edge_length_summaries:
raise ValueError("Edge lengths not available")
if self.set_edge_lengths == "mean-length":
try:
node.edge.length = edge_length_summaries[split_bitmask]["mean"]
except KeyError:
node.edge.length = self.no_data_values.get("mean", 0.0)
elif self.set_edge_lengths == "median-length":
try:
node.edge.length = edge_length_summaries[split_bitmask]["median"]
except KeyError:
node.edge.length = self.no_data_values.get("median", 0.0)
else:
raise ValueError(self.set_edge_lengths)
if self.minimum_edge_length is not None and edge.length < self.minimum_edge_length:
edge.length = self.minimum_edge_length
else:
raise ValueError(self.set_edge_lengths)
if self.set_edge_lengths in ("mean-age", "median-age"):
tree.set_edge_lengths_from_node_ages(
minimum_edge_length=self.minimum_edge_length,
error_on_negative_edge_lengths=self.error_on_negative_edge_lengths)
elif self.set_edge_lengths not in ("keep", "clear", None) and self.minimum_edge_length is not None:
for node in tree:
if node.edge.length is None:
node.edge.length = self.minimum_edge_length
elif node.edge.length < self.minimum_edge_length:
node.edge.length = self.minimum_edge_length
return tree
###############################################################################
### TreeArray
class TreeArray(
taxonmodel.TaxonNamespaceAssociated,
basemodel.MultiReadable,
):
"""
High-performance collection of tree structures.
Storage of minimal tree structural information as represented by toplogy
and edge lengths, minimizing memory and processing time.
This class stores trees as collections of splits and edge lengths. All
other information, such as labels, metadata annotations, etc. will be
discarded. A full |Tree| instance can be reconstructed as needed
from the structural information stored by this class, at the cost of
computation time.
"""
class IncompatibleTreeArrayUpdate(Exception):
pass
class IncompatibleRootingTreeArrayUpdate(IncompatibleTreeArrayUpdate):
pass
class IncompatibleEdgeLengthsTreeArrayUpdate(IncompatibleTreeArrayUpdate):
pass
class IncompatibleNodeAgesTreeArrayUpdate(IncompatibleTreeArrayUpdate):
pass
class IncompatibleTreeWeightsTreeArrayUpdate(IncompatibleTreeArrayUpdate):
pass
##############################################################################
## Factory Function
@classmethod
def from_tree_list(cls,
trees,
is_rooted_trees=None,
ignore_edge_lengths=False,
ignore_node_ages=True,
use_tree_weights=True,
ultrametricity_precision=constants.DEFAULT_ULTRAMETRICITY_PRECISION,
is_force_max_age=None,
taxon_label_age_map=None,
is_bipartitions_updated=False,
):
taxon_namespace = trees.taxon_namespace
ta = cls(
taxon_namespace=taxon_namespace,
is_rooted_trees=is_rooted_trees,
ignore_edge_lengths=ignore_edge_lengths,
ignore_node_ages=ignore_node_ages,
use_tree_weights=use_tree_weights,
ultrametricity_precision=ultrametricity_precision,
is_force_max_age=is_force_max_age,
taxon_label_age_map=taxon_label_age_map,
)
ta.add_trees(
trees=trees,
is_bipartitions_updated=is_bipartitions_updated)
return ta
##############################################################################
## Life-Cycle
def __init__(self,
taxon_namespace=None,
is_rooted_trees=None,
ignore_edge_lengths=False,
ignore_node_ages=True,
use_tree_weights=True,
ultrametricity_precision=constants.DEFAULT_ULTRAMETRICITY_PRECISION,
is_force_max_age=None,
taxon_label_age_map=None,
):
"""
Parameters
----------
taxon_namespace : |TaxonNamespace|
The operational taxonomic unit concept namespace to manage taxon
references.
is_rooted_trees : bool
If not set, then it will be set based on the rooting state of the
first tree added. If |True|, then trying to add an unrooted tree
will result in an error. If |False|, then trying to add a rooted
tree will result in an error.
ignore_edge_lengths : bool
If |True|, then edge lengths of splits will not be stored. If
|False|, then edge lengths will be stored.
ignore_node_ages : bool
If |True|, then node ages of splits will not be stored. If
|False|, then node ages will be stored.
use_tree_weights : bool
If |False|, then tree weights will not be used to weight splits.
"""
taxonmodel.TaxonNamespaceAssociated.__init__(self,
taxon_namespace=taxon_namespace)
# Configuration
self._is_rooted_trees = is_rooted_trees
self.ignore_edge_lengths = ignore_edge_lengths
self.ignore_node_ages = ignore_node_ages
self.use_tree_weights = use_tree_weights
self.default_edge_length_value = 0 # edge.length of |None| gets this value
self.tree_type = treemodel.Tree
self.taxon_label_age_map = taxon_label_age_map
# Storage
self._tree_split_bitmasks = []
self._tree_edge_lengths = []
self._tree_leafset_bitmasks = []
self._tree_weights = []
self._split_distribution = SplitDistribution(
taxon_namespace=self.taxon_namespace,
ignore_edge_lengths=self.ignore_edge_lengths,
ignore_node_ages=self.ignore_node_ages,
ultrametricity_precision=ultrametricity_precision,
is_force_max_age=is_force_max_age,
taxon_label_age_map=self.taxon_label_age_map,
)
##############################################################################
## Book-Keeping
def _get_is_rooted_trees(self):
return self._is_rooted_trees
is_rooted_trees = property(_get_is_rooted_trees)
def _get_split_distribution(self):
return self._split_distribution
split_distribution = property(_get_split_distribution)
def validate_rooting(self, rooting_of_other):
if self._is_rooted_trees is None:
self._is_rooted_trees = rooting_of_other
elif self._is_rooted_trees != rooting_of_other:
if self._is_rooted_trees:
ta = "rooted"
t = "unrooted"
else:
ta = "unrooted"
t = "rooted"
raise error.MixedRootingError("Cannot add {tree_rooting} tree to TreeArray with {tree_array_rooting} trees".format(
tree_rooting=t,
tree_array_rooting=ta))
##############################################################################
## Updating from Another TreeArray
def update(self, other):
if len(self) > 0:
# self.validate_rooting(other._is_rooted_trees)
if self._is_rooted_trees is not other._is_rooted_trees:
raise TreeArray.IncompatibleRootingTreeArrayUpdate("Updating from incompatible TreeArray: 'is_rooted_trees' should be '{}', but is instead '{}'".format(other._is_rooted_trees, self._is_rooted_trees, ))
if self.ignore_edge_lengths is not other.ignore_edge_lengths:
raise TreeArray.IncompatibleEdgeLengthsTreeArrayUpdate("Updating from incompatible TreeArray: 'ignore_edge_lengths' is not: {} ".format(other.ignore_edge_lengths, self.ignore_edge_lengths, ))
if self.ignore_node_ages is not other.ignore_node_ages:
raise TreeArray.IncompatibleNodeAgesTreeArrayUpdate("Updating from incompatible TreeArray: 'ignore_node_ages' should be '{}', but is instead '{}'".format(other.ignore_node_ages, self.ignore_node_ages))
if self.use_tree_weights is not other.use_tree_weights:
raise TreeArray.IncompatibleTreeWeightsTreeArrayUpdate("Updating from incompatible TreeArray: 'use_tree_weights' should be '{}', but is instead '{}'".format(other.use_tree_weights, self.use_tree_weights))
else:
self._is_rooted_trees = other._is_rooted_trees
self.ignore_edge_lengths = other.ignore_edge_lengths
self.ignore_node_ages = other.ignore_node_ages
self.use_tree_weights = other.use_tree_weights
self._tree_split_bitmasks.extend(other._tree_split_bitmasks)
self._tree_edge_lengths.extend(other._tree_edge_lengths)
self._tree_leafset_bitmasks.extend(other._tree_leafset_bitmasks)
self._tree_weights.extend(other._tree_weights)
self._split_distribution.update(other._split_distribution)
##############################################################################
## Fundamental Tree Accession
def add_tree(self,
tree,
is_bipartitions_updated=False,
index=None):
"""
Adds the structure represented by a |Tree| instance to the
collection.
Parameters
----------
tree : |Tree|
A |Tree| instance. This must have the same rooting state as
all the other trees accessioned into this collection as well as
that of ``self.is_rooted_trees``.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
index : integer
Insert before index.
Returns
-------
index : int
The index of the accession.
s : iterable of splits
A list of split bitmasks from ``tree``.
e :
A list of edge length values from ``tree``.
"""
if self.taxon_namespace is not tree.taxon_namespace:
raise error.TaxonNamespaceIdentityError(self, tree)
self.validate_rooting(tree.is_rooted)
splits, edge_lengths, node_ages = self._split_distribution.count_splits_on_tree(
tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
default_edge_length_value=self.default_edge_length_value)
# pre-process splits
splits = tuple(splits)
# pre-process edge lengths
if self.ignore_edge_lengths:
# edge_lengths = tuple( [None] * len(splits) )
edge_lengths = tuple( None for x in range(len(splits)) )
else:
assert len(splits) == len(edge_lengths), "Unequal vectors:\n Splits: {}\n Edges: {}\n".format(splits, edge_lengths)
edge_lengths = tuple(edge_lengths)
# pre-process weights
if tree.weight is not None and self.use_tree_weights:
weight_to_use = float(tree.weight)
else:
weight_to_use = 1.0
# accession info
if index is None:
index = len(self._tree_split_bitmasks)
self._tree_split_bitmasks.append(splits)
self._tree_leafset_bitmasks.append(tree.seed_node.edge.bipartition.leafset_bitmask)
self._tree_edge_lengths.append(edge_lengths)
self._tree_weights.append(weight_to_use)
else:
self._tree_split_bitmasks.insert(index, splits)
self._tree_leafset_bitmasks.insert(index,
tree.seed_node.edge.bipartition.leafset_bitmask)
self._tree_edge_lengths.insert(index, edge_lengths)
self._tree_weights.insert(index, weight_to_use)
return index, splits, edge_lengths, weight_to_use
def add_trees(self, trees, is_bipartitions_updated=False):
"""
Adds multiple structures represneted by an iterator over or iterable of
|Tree| instances to the collection.
Parameters
----------
trees : iterator over or iterable of |Tree| instances
An iterator over or iterable of |Tree| instances. Thess must
have the same rooting state as all the other trees accessioned into
this collection as well as that of ``self.is_rooted_trees``.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
"""
for tree in trees:
self.add_tree(tree,
is_bipartitions_updated=is_bipartitions_updated)
##############################################################################
## I/O
def read_from_files(self,
files,
schema,
**kwargs):
"""
Adds multiple structures from one or more external file sources to the
collection.
Parameters
----------
files : iterable of strings and/or file objects
A list or some other iterable of file paths or file-like objects
(string elements will be assumed to be paths to files, while all
other types of elements will be assumed to be file-like
objects opened for reading).
schema : string
The data format of the source. E.g., "nexus", "newick", "nexml".
\*\*kwargs : keyword arguments
These will be passed directly to the underlying schema-specific
reader implementation.
"""
if "taxon_namespace" in kwargs:
if kwargs["taxon_namespace"] is not self.taxon_namespace:
raise ValueError("TaxonNamespace object passed as keyword argument is not the same as self's TaxonNamespace reference")
kwargs.pop("taxon_namespace")
target_tree_offset = kwargs.pop("tree_offset", 0)
tree_yielder = self.tree_type.yield_from_files(
files=files,
schema=schema,
taxon_namespace=self.taxon_namespace,
**kwargs)
current_source_index = None
current_tree_offset = None
for tree_idx, tree in enumerate(tree_yielder):
current_yielder_index = tree_yielder.current_file_index
if current_source_index != current_yielder_index:
current_source_index = current_yielder_index
current_tree_offset = 0
if current_tree_offset >= target_tree_offset:
self.add_tree(tree=tree, is_bipartitions_updated=False)
current_tree_offset += 1
def _parse_and_add_from_stream(self,
stream,
schema,
**kwargs):
cur_size = len(self._tree_split_bitmasks)
self.read_from_files(files=[stream], schema=schema, **kwargs)
new_size = len(self._tree_split_bitmasks)
return new_size - cur_size
def read(self, **kwargs):
"""
Add |Tree| objects to existing |TreeList| from data source providing
one or more collections of trees.
**Mandatory Source-Specification Keyword Argument (Exactly One Required):**
- **file** (*file*) -- File or file-like object of data opened for reading.
- **path** (*str*) -- Path to file of data.
- **url** (*str*) -- URL of data.
- **data** (*str*) -- Data given directly.
**Mandatory Schema-Specification Keyword Argument:**
- **schema** (*str*) -- Identifier of format of data given by the
"``file``", "``path``", "``data``", or "``url``" argument
specified above: ":doc:`newick </schemas/newick>`", ":doc:`nexus
</schemas/nexus>`", or ":doc:`nexml </schemas/nexml>`". See
"|Schemas|" for more details.
**Optional General Keyword Arguments:**
- **collection_offset** (*int*) -- 0-based index of tree block or
collection in source to be parsed. If not specified then the
first collection (offset = 0) is assumed.
- **tree_offset** (*int*) -- 0-based index of first tree within the
collection specified by ``collection_offset`` to be parsed (i.e.,
skipping the first ``tree_offset`` trees). If not
specified, then the first tree (offset = 0) is assumed (i.e., no
trees within the specified collection will be skipped). Use this
to specify, e.g. a burn-in.
- **ignore_unrecognized_keyword_arguments** (*bool*) -- If |True|,
then unsupported or unrecognized keyword arguments will not
result in an error. Default is |False|: unsupported keyword
arguments will result in an error.
**Optional Schema-Specific Keyword Arguments:**
These provide control over how the data is interpreted and
processed, and supported argument names and values depend on
the schema as specified by the value passed as the "``schema``"
argument. See "|Schemas|" for more details.
**Examples:**
::
tree_array = dendropy.TreeArray()
tree_array.read(
file=open('treefile.tre', 'rU'),
schema="newick",
tree_offset=100)
tree_array.read(
path='sometrees.nexus',
schema="nexus",
collection_offset=2,
tree_offset=100)
tree_array.read(
data="((A,B),(C,D));((A,C),(B,D));",
schema="newick")
tree_array.read(
url="http://api.opentreeoflife.org/v2/study/pg_1144/tree/tree2324.nex",
schema="nexus")
"""
return basemodel.MultiReadable._read_from(self, **kwargs)
##############################################################################
## Container (List) Interface
def append(tree, is_bipartitions_updated=False):
"""
Adds a |Tree| instance to the collection before position given
by ``index``.
Parameters
----------
tree : |Tree|
A |Tree| instance. This must have the same rooting state as
all the other trees accessioned into this collection as well as
that of ``self.is_rooted_trees``.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
"""
return self.add_tree(tree=tree,
is_bipartitions_updated=is_bipartitions_updated)
def insert(index, tree, is_bipartitions_updated=False):
"""
Adds a |Tree| instance to the collection before position given
by ``index``.
Parameters
----------
index : integer
Insert before index.
tree : |Tree|
A |Tree| instance. This must have the same rooting state as
all the other trees accessioned into this collection as well as
that of ``self.is_rooted_trees``.
is_bipartitions_updated : bool
If |False| [default], then the tree will have its splits encoded or
updated. Otherwise, if |True|, then the tree is assumed to have its
splits already encoded and updated.
Returns
-------
index : int
The index of the accession.
s : iterable of splits
A list of split bitmasks from ``tree``.
e :
A list of edge length values ``tree``.
"""
return self.add_tree(tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
index=index)
def extend(self, tree_array):
"""
Accession of data from ``tree_array`` to self.
Parameters
----------
tree_array : |TreeArray|
A |TreeArray| instance from which to add data.
"""
assert self.taxon_namespace is tree_array.taxon_namespace
assert self._is_rooted_trees is tree_array._is_rooted_trees
assert self.ignore_edge_lengths is tree_array.ignore_edge_lengths
assert self.ignore_node_ages is tree_array.ignore_node_ages
assert self.use_tree_weights is tree_array.use_tree_weights
self._tree_split_bitmasks.extend(tree_array._tree_split_bitmasks)
self._tree_edge_lengths.extend(tree_array._tree_edge_lengths)
self._tree_weights.extend(other._tree_weights)
self._split_distribution.update(tree_array._split_distribution)
return self
def __iadd__(self, tree_array):
"""
Accession of data from ``tree_array`` to self.
Parameters
----------
tree_array : |TreeArray|
A |TreeArray| instance from which to add data.
"""
return self.extend(tree_array)
def __add__(self, other):
"""
Creates and returns new |TreeArray|.
Parameters
----------
other : iterable of |Tree| objects
Returns
-------
tlist : |TreeArray| object
|TreeArray| object containing clones of |Tree| objects
in ``self`` and ``other``.
"""
ta = TreeArray(
taxon_namespace=self.taxon_namespace,
is_rooted_trees=self._is_rooted_trees,
ignore_edge_lengths=self.ignore_edge_lengths,
ignore_node_ages=self.ignore_node_ages,
use_tree_weights=self.use_tree_weights,
ultrametricity_precision=self._split_distribution.ultrametricity_precision,
)
ta.default_edge_length_value = self.default_edge_length_value
ta.tree_type = self.tree_type
ta += self
ta += other
return ta
def __contains__(self, splits):
# expensive!!
return tuple(splits) in self._tree_split_bitmasks
def __delitem__(self, index):
raise NotImplementedError
# expensive!!
# tree_split_bitmasks = self._trees_splits[index]
### TODO: remove this "tree" from underlying splits distribution
# for split in tree_split_bitmasks:
# self._split_distribution.split_counts[split] -= 1
# etc.
# becomes complicated because tree weights need to be updated etc.
# del self._tree_split_bitmasks[index]
# del self._tree_edge_lengths[index]
# return
def __iter__(self):
"""
Yields pairs of (split, edge_length) from the store.
"""
for split, edge_length in zip(self._tree_split_bitmasks, self._tree_edge_lengths):
yield split, edge_length
def __reversed__(self):
raise NotImplementedError
def __len__(self):
return len(self._tree_split_bitmasks)
def __getitem__(self, index):
raise NotImplementedError
# """
# Returns a pair of tuples, ( (splits...), (lengths...) ), corresponding
# to the "tree" at ``index``.
# """
# return self._tree_split_bitmasks[index], self._tree_edge_lengths[index]
def __setitem__(self, index, value):
raise NotImplementedError
def clear(self):
raise NotImplementedError
self._tree_split_bitmasks = []
self._tree_edge_lengths = []
self._tree_leafset_bitmasks = []
self._split_distribution.clear()
def index(self, splits):
raise NotImplementedError
return self._tree_split_bitmasks.index(splits)
def pop(self, index=-1):
raise NotImplementedError
def remove(self, tree):
raise NotImplementedError
def reverse(self):
raise NotImplementedError
def sort(self, key=None, reverse=False):
raise NotImplementedError
##############################################################################
## Accessors/Settors
def get_split_bitmask_and_edge_tuple(self, index):
"""
Returns a pair of tuples, ( (splits...), (lengths...) ), corresponding
to the "tree" at ``index``.
"""
return self._tree_split_bitmasks[index], self._tree_edge_lengths[index]
##############################################################################
## Calculations
def calculate_log_product_of_split_supports(self,
include_external_splits=False,
):
"""
Calculates the log product of split support for each of the trees in
the collection.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
s : tuple(list[numeric], integer)
Returns a tuple, with the first element being the list of scores
and the second being the index of the highest score. The element order
corresponds to the trees accessioned in the collection.
"""
assert len(self._tree_leafset_bitmasks) == len(self._tree_split_bitmasks)
scores = []
max_score = None
max_score_tree_idx = None
split_frequencies = self._split_distribution.split_frequencies
for tree_idx, (tree_leafset_bitmask, split_bitmasks) in enumerate(zip(self._tree_leafset_bitmasks, self._tree_split_bitmasks)):
log_product_of_split_support = 0.0
for split_bitmask in split_bitmasks:
if (include_external_splits
or split_bitmask == tree_leafset_bitmask # count root edge (following BEAST)
or not treemodel.Bipartition.is_trivial_bitmask(split_bitmask, tree_leafset_bitmask)
):
split_support = split_frequencies.get(split_bitmask, 0.0)
if split_support:
log_product_of_split_support += math.log(split_support)
if max_score is None or max_score < log_product_of_split_support:
max_score = log_product_of_split_support
max_score_tree_idx = tree_idx
scores.append(log_product_of_split_support)
return scores, max_score_tree_idx
def maximum_product_of_split_support_tree(self,
include_external_splits=False,
summarize_splits=True,
**split_summarization_kwargs
):
"""
Return the tree with that maximizes the product of split supports, also
known as the "Maximum Clade Credibility Tree" or MCCT.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
mcct_tree : Tree
Tree that maximizes the product of split supports.
"""
scores, max_score_tree_idx = self.calculate_log_product_of_split_supports(
include_external_splits=include_external_splits,
)
tree = self.restore_tree(
index=max_score_tree_idx,
**split_summarization_kwargs)
tree.log_product_of_split_support = scores[max_score_tree_idx]
if summarize_splits:
self._split_distribution.summarize_splits_on_tree(
tree=tree,
is_bipartitions_updated=True,
**split_summarization_kwargs
)
return tree
def calculate_sum_of_split_supports(self,
include_external_splits=False,
):
"""
Calculates the *sum* of split support for all trees in the
collection.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
s : tuple(list[numeric], integer)
Returns a tuple, with the first element being the list of scores
and the second being the index of the highest score. The element order
corresponds to the trees accessioned in the collection.
"""
assert len(self._tree_leafset_bitmasks) == len(self._tree_split_bitmasks)
scores = []
max_score = None
max_score_tree_idx = None
split_frequencies = self._split_distribution.split_frequencies
for tree_idx, (tree_leafset_bitmask, split_bitmasks) in enumerate(zip(self._tree_leafset_bitmasks, self._tree_split_bitmasks)):
sum_of_support = 0.0
for split_bitmask in split_bitmasks:
if (include_external_splits
or split_bitmask == tree_leafset_bitmask # count root edge (following BEAST)
or not treemodel.Bipartition.is_trivial_bitmask(split_bitmask, tree_leafset_bitmask)
):
split_support = split_frequencies.get(split_bitmask, 0.0)
sum_of_support += split_support
if max_score is None or max_score < sum_of_support:
max_score = sum_of_support
max_score_tree_idx = tree_idx
scores.append(sum_of_support)
return scores, max_score_tree_idx
def maximum_sum_of_split_support_tree(self,
include_external_splits=False,
summarize_splits=True,
**split_summarization_kwargs
):
"""
Return the tree with that maximizes the *sum* of split supports.
Parameters
----------
include_external_splits : bool
If |True|, then non-internal split posteriors will be included in
the score. Defaults to |False|: these are skipped. This should only
make a difference when dealing with splits collected from trees of
different leaf sets.
Returns
-------
mst_tree : Tree
Tree that maximizes the sum of split supports.
"""
scores, max_score_tree_idx = self.calculate_sum_of_split_supports(
include_external_splits=include_external_splits,
)
tree = self.restore_tree(
index=max_score_tree_idx,
**split_summarization_kwargs
)
tree.sum_of_split_support = scores[max_score_tree_idx]
if summarize_splits:
self._split_distribution.summarize_splits_on_tree(
tree=tree,
is_bipartitions_updated=True,
**split_summarization_kwargs
)
return tree
def collapse_edges_with_less_than_minimum_support(self,
tree,
min_freq=constants.GREATER_THAN_HALF,
):
return self.split_distribution.collapse_edges_with_less_than_minimum_support(
tree=tree,
min_freq=min_freq)
def consensus_tree(self,
min_freq=constants.GREATER_THAN_HALF,
summarize_splits=True,
**split_summarization_kwargs
):
"""
Returns a consensus tree from splits in ``self``.
Parameters
----------
min_freq : real
The minimum frequency of a split in this distribution for it to be
added to the tree.
is_rooted : bool
Should tree be rooted or not? If *all* trees counted for splits are
explicitly rooted or unrooted, then this will default to |True| or
|False|, respectively. Otherwise it defaults to |None|.
\*\*split_summarization_kwargs : keyword arguments
These will be passed directly to the underlying
`SplitDistributionSummarizer` object. See
:meth:`SplitDistributionSummarizer.configure` for options.
Returns
-------
t : consensus tree
"""
tree = self._split_distribution.consensus_tree(
min_freq=min_freq,
is_rooted=self.is_rooted_trees,
summarize_splits=summarize_splits,
**split_summarization_kwargs
)
# return self._split_distribution.consensus_tree(*args, **kwargs)
return tree
##############################################################################
## Mapping of Split Support
def summarize_splits_on_tree(self,
tree,
is_bipartitions_updated=False,
**kwargs):
if self.taxon_namespace is not tree.taxon_namespace:
raise error.TaxonNamespaceIdentityError(self, tree)
self._split_distribution.summarize_splits_on_tree(
tree=tree,
is_bipartitions_updated=is_bipartitions_updated,
**kwargs
)
##############################################################################
## Tree Reconstructions
def restore_tree(self,
index,
summarize_splits_on_tree=False,
**split_summarization_kwargs
):
split_bitmasks = self._tree_split_bitmasks[index]
if self.ignore_edge_lengths:
split_edge_lengths = None
else:
assert len(self._tree_split_bitmasks) == len(self._tree_edge_lengths)
edge_lengths = self._tree_edge_lengths[index]
split_edge_lengths = dict(zip(split_bitmasks, edge_lengths))
tree = self.tree_type.from_split_bitmasks(
split_bitmasks=split_bitmasks,
taxon_namespace=self.taxon_namespace,
is_rooted=self._is_rooted_trees,
split_edge_lengths=split_edge_lengths,
)
# if update_bipartitions:
# tree.encode_bipartitions()
if summarize_splits_on_tree:
split_summarization_kwargs["is_bipartitions_updated"] = True
self._split_distribution.summarize_splits_on_tree(
tree=tree,
**split_summarization_kwargs)
return tree
##############################################################################
## Topology Frequencies
def split_bitmask_set_frequencies(self):
"""
Returns a dictionary with keys being sets of split bitmasks and values
being the frequency of occurrence of trees represented by those split
bitmask sets in the collection.
"""
split_bitmask_set_count_map = collections.Counter()
assert len(self._tree_split_bitmasks) == len(self._tree_weights)
for split_bitmask_set, weight in zip(self._tree_split_bitmasks, self._tree_weights):
split_bitmask_set_count_map[frozenset(split_bitmask_set)] += (1.0 * weight)
split_bitmask_set_freqs = {}
normalization_weight = self._split_distribution.calc_normalization_weight()
# print("===> {}".format(normalization_weight))
for split_bitmask_set in split_bitmask_set_count_map:
split_bitmask_set_freqs[split_bitmask_set] = split_bitmask_set_count_map[split_bitmask_set] / normalization_weight
return split_bitmask_set_freqs
def bipartition_encoding_frequencies(self):
"""
Returns a dictionary with keys being bipartition encodings of trees
(as ``frozenset`` collections of |Bipartition| objects) and
values the frequency of occurrence of trees represented by that
encoding in the collection.
"""
# split_bitmask_set_freqs = self.split_bitmask_set_frequencies()
# bipartition_encoding_freqs = {}
# for split_bitmask_set, freq in split_bitmask_set_freqs.items():
# bipartition_encoding = []
# inferred_leafset = max(split_bitmask_set)
# for split_bitmask in split_bitmask_set:
# bipartition = treemodel.Bipartition(
# bitmask=split_bitmask,
# tree_leafset_bitmask=inferred_leafset,
# is_rooted=self._is_rooted_trees,
# is_mutable=False,
# compile_bipartition=True,
# )
# bipartition_encoding.append(bipartition)
# bipartition_encoding_freqs[frozenset(bipartition_encoding)] = freq
# return bipartition_encoding_freqs
bipartition_encoding_freqs = {}
topologies = self.topologies()
for tree in topologies:
bipartition_encoding_freqs[ frozenset(tree.encode_bipartitions()) ] = tree.frequency
return bipartition_encoding_freqs
def topologies(self,
sort_descending=None,
frequency_attr_name="frequency",
frequency_annotation_name="frequency",
):
"""
Returns a |TreeList| instance containing the reconstructed tree
topologies (i.e. |Tree| instances with no edge weights) in the
collection, with the frequency added as an attributed.
Parameters
----------
sort_descending : bool
If |True|, then topologies will be sorted in *descending* frequency
order (i.e., topologies with the highest frequencies will be listed
first). If |False|, then they will be sorted in *ascending*
frequency. If |None| (default), then they will not be sorted.
frequency_attr_name : str
Name of attribute to add to each |Tree| representing
the frequency of that topology in the collection. If |None|
then the attribute will not be added.
frequency_annotation_name : str
Name of annotation to add to the annotations of each |Tree|,
representing the frequency of that topology in the collection. The
value of this annotation will be dynamically-bound to the attribute
specified by ``frequency_attr_name`` unless that is |None|. If
``frequency_annotation_name`` is |None| then the annotation will not
be added.
"""
if sort_descending is not None and frequency_attr_name is None:
raise ValueError("Attribute needs to be set on topologies to enable sorting")
split_bitmask_set_freqs = self.split_bitmask_set_frequencies()
topologies = TreeList(taxon_namespace=self.taxon_namespace)
for split_bitmask_set, freq in split_bitmask_set_freqs.items():
tree = self.tree_type.from_split_bitmasks(
split_bitmasks=split_bitmask_set,
taxon_namespace=self.taxon_namespace,
is_rooted=self._is_rooted_trees,
)
if frequency_attr_name is not None:
setattr(tree, frequency_attr_name, freq)
if frequency_annotation_name is not None:
tree.annotations.add_bound_attribute(
attr_name=frequency_attr_name,
annotation_name=frequency_annotation_name,
)
else:
tree.annotations.add_new(
frequency_annotation_name,
freq,
)
topologies.append(tree)
if sort_descending is not None:
topologies.sort(key=lambda t: getattr(t, frequency_attr_name), reverse=sort_descending)
return topologies
|