1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
|
#! /usr/bin/env python
##############################################################################
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.rst" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
"""
Wrapper around calls to PAUP*, mainly for testing purposes rather than analysis.
"""
import os
import sys
import subprocess
import tempfile
import re
import csv
import dendropy
from dendropy.utility import textprocessing
from dendropy.utility import error
from dendropy.utility import metavar
from dendropy.utility import container
from dendropy.utility import messaging
from dendropy.utility import filesys
from dendropy.utility import processio
from dendropy.dataio import nexuswriter
_LOG = messaging.get_logger(__name__)
import dendropy
PAUP_PATH = os.environ.get(metavar.DENDROPY_PAUP_PATH_ENVAR, "NONE")
if PAUP_PATH == "NONE":
DENDROPY_PAUP_INTEROPERABILITY = False
else:
DENDROPY_PAUP_INTEROPERABILITY = True
STANDARD_PREAMBLE = "set warnreset=no increase=auto warnroot=no warnReset=no warnTree=no warnTSave=no warnBlkName=no errorStop=no errorBeep=no queryBeep=no"
class PaupService(object):
@staticmethod
def call(
paup_commands,
suppress_standard_preamble=False,
ignore_error_returncode=False,
ignore_nonempty_stderr=False,
strip_extraneous_prompts_from_stdout=True,
strip_extraneous_prompts_from_stderr=True,
cwd=None,
env=None,
paup_path=PAUP_PATH,
timeout=None,
):
"""
Executes a sequence of commands in PAUP* and returns the results.
Parameters
----------
paup_commands : iterable of strings
A list or some other iterable of strings representing PAUP
commands.
suppress_standard_preamble : bool
If |True|, then the command sequence will not be prefaced by the
standard preamble.
ignore_error_returncode : bool
If |True|, then a non-0 return code from the PAUP process will not
result in an exception being raised.
ignore_nonempty_stderr : bool
If |True|, then the PAUP process writing to standard error will not
result in an exception being raised.
strip_extraneous_prompts_from_stdout : bool
If |True|, then all occurrences of 'paup>' will be removed from the
standard output contents.
strip_extraneous_prompts_from_stderr : bool
If |True|, then all occurrences of 'paup>' will be removed from the
standard error contents.
cwd : string
Set the working directory of the PAUP* process to this directory.
env : dictionary
Environmental variables to set for the PAUP* process.
paup_path : string
Path to the PAUP* executable.
Returns
-------
returncode : exit value of PAUP process.
stdout : string
Contents of the PAUP process standard output.
stderr : string
Contents of the PAUP process standard error.
"""
if textprocessing.is_str_type(paup_commands):
commands = [paup_commands]
else:
commands = list(paup_commands)
if not suppress_standard_preamble:
commands.insert(0, STANDARD_PREAMBLE)
commands.append("quit")
paup_block = ";\n".join(commands) + ";\n"
invocation_command = [paup_path, "-n", "-u"]
p = subprocess.Popen(
invocation_command,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
cwd=cwd,
env=env,
)
raw_stdout, raw_stderr = processio.communicate(p, paup_block, timeout=timeout)
# try:
# raw_stdout, raw_stderr = processio.communicate(p, paup_block, timeout=timeout)
# except TypeError as e:
# raise
# if str(e) == "communicate() got an unexpected keyword argument 'timeout'":
# raw_stdout, raw_stderr = processio.communicate(p, paup_block)
# else:
# raise
stdout = raw_stdout
stderr = raw_stderr
if strip_extraneous_prompts_from_stdout:
# weird dev/paup error ... lots or prompts spring up
stdout = stdout.replace("paup>", "")
if strip_extraneous_prompts_from_stderr:
# weird dev/paup error ... lots or prompts spring up
stderr = stderr.replace("paup>", "")
chk_stderr = stderr
else:
chk_stderr = stderr.replace("paup>", "")
if (p.returncode != 0 and not ignore_error_returncode) or (chk_stderr != "" and not ignore_nonempty_stderr):
raise error.ExternalServiceError(
service_name="PAUP*",
invocation_command=invocation_command,
service_input=paup_block,
returncode = p.returncode,
stdout=raw_stdout,
stderr=raw_stderr)
return p.returncode, stdout, stderr
@staticmethod
def bipartition_groups_to_split_bitmask(group_string, normalized=None):
"""
This converts a PAUP* group representation (i.e. a string of askterisks
and periods, where the asterisks denote the taxon index counting from
left to right) to a mask representation:
- a clade mask, where 1's represent descendents of the split/edge
(with taxon index counting from right to left, i.e., first taxon
is right-most bit)
- a split mask, an unrooted normalized version of the above, where
if the right most bit is not 1 the clade mask is complemented
(and not changed otherwise).
"""
group_string = group_string[::-1] # flip to get correct orientation
split_bitmask = int(group_string.replace("*", "1").replace(".", "0"), 2)
if normalized:
mask=((2 ** len(group_string)) -1)
return container.NormalizedBitmaskDict.normalize(split_bitmask, mask, 1)
else:
return split_bitmask
def __init__(self,
suppress_standard_preamble=False,
ignore_error_returncode=False,
strip_extraneous_prompts_from_stderr=True,
strip_extraneous_prompts_from_stdout=True,
cwd=None,
env=None,
paup_path=PAUP_PATH):
self.suppress_standard_preamble = suppress_standard_preamble
self.ignore_error_returncode = ignore_error_returncode
self.strip_extraneous_prompts_from_stderr = strip_extraneous_prompts_from_stderr
self.strip_extraneous_prompts_from_stdout = strip_extraneous_prompts_from_stdout
self.cwd = cwd
self.env = env
self.paup_path = paup_path
self._nexus_writer = nexuswriter.NexusWriter()
self.commands = []
def count_splits_from_files(self,
tree_filepaths=None,
is_rooted=None,
use_tree_weights=None,
burnin=None,
taxa_definition_filepath=None,
taxon_namespace=None):
"""
Counts splits (bipartitions) in trees from files and returns the results.
Parameters
----------
tree_filepaths : iterable of strings
A list or some other iterable of file paths containing trees in
NEXUS format.
is_rooted : bool
If |True| then trees will be treated as rooted. If |False|, then
rooting follows that specified in the tree statements, defaulting
to unrooted if not specified.
use_tree_weights : bool
If |False| then tree weighting statements are disregarded.
Otherwise, they will be regarded.
burnin : integer
Skip these many trees (from beginning of each source).
taxa_definition_filepath : str
Path of file containing TAXA block to execute. This is crucial to
getting the taxon order (and hence, indexes, and hence, split
bitmasks) correct. If not given, will use the first file
given in ``tree_filepaths``.
taxon_namespace : |TaxonNamespace|
The |TaxonNamespace| object to populate.
Returns
-------
d : dictionary
A dictionary with the following keys and values:
- "bipartition_counts" : dictionary with split bitmasks as keys
and (weighted) counts of occurrences as values
- "bipartition_frequencies" : dictionary with split bitmasks as keys
and (weighted) proportional frequencies of occurrences as values
- "num_trees" : number of trees counted
- "taxon_namespace" : |TaxonNamespace| instance
corresponding to the taxa <=> split bitmask mapping
- "is_rooted" : indicates whether the trees were rooted or not
"""
self.commands = []
if taxa_definition_filepath is not None:
self.stage_execute_file(
taxa_definition_filepath,
clear_trees=True)
self.stage_load_trees(
tree_filepaths=tree_filepaths,
is_rooted=is_rooted,
use_tree_weights=use_tree_weights,
burnin=burnin,
mode=7)
self.stage_list_taxa()
self.stage_tree_info()
self.stage_count_splits(use_tree_weights=use_tree_weights)
# print("\n".join(self.commands))
returncode, stdout, stderr = self._execute_command_sequence()
# print("\n".join(stdout))
taxon_namespace = self.parse_taxon_namespace(stdout,
taxon_namespace=taxon_namespace)
is_rooted = self.parse_is_tree_rooted(stdout)
tree_count, bipartition_counts, bipartition_freqs = self.parse_group_freqs(stdout, is_rooted=is_rooted)
d = {
"num_trees" : tree_count,
"bipartition_counts" : bipartition_counts,
"bipartition_freqs" : bipartition_freqs,
"taxon_namespace" : taxon_namespace,
"is_rooted" : is_rooted,
}
return d
def get_split_distribution_from_files(self,
tree_filepaths=None,
is_rooted=None,
use_tree_weights=None,
burnin=None,
taxa_definition_filepath=None,
taxon_namespace=None,
split_distribution=None):
"""
Returns a SplitDistribution object based on splits given in
tree files.
tree_filepaths : iterable of strings
A list or some other iterable of file paths containing trees in
NEXUS format.
is_rooted : bool
If |True| then trees will be treated as rooted. If |False|, then
rooting follows that specified in the tree statements, defaulting
to unrooted if not specified.
use_tree_weights : bool
If |False| then tree weighting statements are disregarded.
Otherwise, they will be regarded.
burnin : integer
Skip these many trees (from beginning of each source).
taxa_definition_filepath : str
Path of file containing TAXA block to execute. This is crucial to
getting the taxon order (and hence, indexes, and hence, split
bitmasks) correct. If not given, will use the first file
given in ``tree_filepaths``.
taxon_namespace : |TaxonNamespace|
|TaxonNamespace| object to use.
split_distribution : `SplitDistribution`
`SplitDistribution object to use.
"""
if split_distribution is None:
split_distribution = dendropy.SplitDistribution(taxon_namespace=taxon_namespace)
taxon_namespace = split_distribution.taxon_namespace
else:
if taxon_namespace is None:
taxon_namespace = split_distribution.taxon_namespace
else:
assert split_distribution.taxon_namespace is taxon_namespace
result = self.count_splits_from_files(
tree_filepaths=tree_filepaths,
is_rooted=is_rooted,
use_tree_weights=use_tree_weights,
burnin=burnin,
taxa_definition_filepath=taxa_definition_filepath,
taxon_namespace=taxon_namespace)
for split in result["bipartition_counts"]:
if not is_rooted:
sd_split_key = split_distribution.normalize_bitmask(split)
else:
sd_split_key = split
split_distribution.add_split_count(sd_split_key, result["bipartition_counts"][split])
split_distribution.total_trees_counted = result["num_trees"]
return split_distribution
def stage_execute_file(self,
filepath,
clear_trees=False):
"""Executes file, optionally clearing trees from file if requested"""
self.commands.append("execute {}".format(filepath))
if clear_trees:
self.commands.append("cleartrees")
return commands
def stage_load_trees(self,
tree_filepaths,
is_rooted=None,
use_tree_weights=None,
burnin=None,
mode=7): # keep trees in memory, specify 3 to clear
"""
Composes commands to load a set of trees into PAUP*, with the specified
number of burnin dropped.
"""
if textprocessing.is_str_type(tree_filepaths):
raise Exception("expecting list of filepaths, not string")
if is_rooted is None:
rooting = ""
elif is_rooted:
rooting = "rooted=yes"
else:
rooting = "unrooted=yes"
if use_tree_weights is None:
treewts = ""
elif use_tree_weights:
treewts = "storetreewts=yes"
else:
treewts = "storetreewts=no"
if burnin is None:
burnin = 0
gettree_template = "gett file= '{{tree_filepath}}' storebrlens=yes warntree=no {rooting} {treewts} from={burnin} mode={mode};".format(
rooting=rooting,
treewts=treewts,
burnin=burnin+1,
mode=mode)
for tree_filepath in tree_filepaths:
# self.commands.append(gettree_template.format(tree_filepath=tree_filepath))
# using relpath because of a bug in PAUP* 4.0b10 with long paths passed to gettrees
self.commands.append(gettree_template.format(tree_filepath=os.path.relpath(tree_filepath)))
return self.commands
def stage_list_taxa(self):
"""
Given a data file in memory, this gets PAUP* to print a list of
taxa that can be used to build a TaxaBlock later.
"""
# self.commands.append("[!TAXON LIST BEGIN]\ntstatus / full;\n[!TAXON LIST END]\n")
self.commands.append("[!TAXON LIST BEGIN]\ntstatus / full;\n[!TAXON LIST END]\n")
return self.commands
def stage_tree_info(self):
self.commands.append("[!TREE INFO BEGIN]treeinfo;\n[!TREE INFO END]\n")
return self.commands
def stage_count_splits(self,
use_tree_weights=None,
majrule_filepath=None,
majrule_freq=0.5):
"""
Given trees in memory, this composes a command to count the split
frequencies across the trees as well as a save the majority-rule
consensus tree if a path is given.
"""
percent = int(100 * majrule_freq)
if majrule_filepath is None:
treefile = ""
else:
treefile = " treefile={filepath} replace=yes "
if use_tree_weights is None:
treewts = ""
elif use_tree_weights:
treewts = "usetreewts=yes"
else:
treewts = "usetreewts=no"
commands = []
commands.append("[!SPLITS COUNT BEGIN]")
commands.append("contree / strict=no {treefile} showtree=no grpfreq=yes majrule=yes percent={percent} {treewts}".format(
treefile=treefile,
percent=percent,
treewts=treewts))
commands.append("[!SPLITS COUNT END]")
self.commands.extend(commands)
return self.commands
def stage_execute_file(self, filepath, clear_trees=False):
"""Executes file, optionally clearing trees from file if requested"""
self.commands.append("execute '{}'".format(filepath))
if clear_trees:
self.commands.append("cleartrees")
return self.commands
##############################################################################
## Processing of Output
def parse_taxon_namespace(self, paup_output, taxon_namespace=None):
"""
Given PAUP* output that includes a taxon listing as produced by
``stage_list_taxa``, this parses out and returns a taxon block.
"""
taxlabels = []
taxinfo_pattern = re.compile('\s*(\d+) (.*)\s+\-')
idx = 0
for line in paup_output:
idx += 1
if line == "TAXON LIST BEGIN":
break
for line in paup_output[idx:]:
if line == "TAXON LIST END":
break
ti_match = taxinfo_pattern.match(line)
if ti_match:
label = ti_match.group(2).strip()
taxlabels.append(label)
if taxon_namespace is None:
taxon_namespace = dendropy.TaxonNamespace()
for taxlabel in taxlabels:
taxon_namespace.require_taxon(label=taxlabel)
return taxon_namespace
def parse_is_tree_rooted(self, paup_output):
"""
Given PAUP* output that includes a information produced by
``stage_tree_info``, this parses out and returns the rooting
state of trees in memory
"""
pattern = re.compile(r'\d+ (\w+) trees in memory')
for line in paup_output:
if line == "TREE INFO END":
break
match = pattern.match(line)
if match:
s = match.groups(1)[0]
if s == "unrooted":
return False
elif s == "rooted":
return True
else:
return None
raise Exception("Unable to find tree information")
def parse_group_freqs(self, paup_output, is_rooted=None):
"""
Given PAUP* output that includes a split counting procedure, this
collects the splits and returns a dictionary of split bitmasks and their
frequencies.
"""
bipartitions = []
bipartition_freqs = {}
bipartition_counts = {}
tree_count = None
tree_count_pattern = re.compile('.*Majority-rule consensus of ([\d]*) tree.*', re.I)
bipartition_section = re.compile('Bipartitions found in one or more trees and frequency of occurrence:')
bp_full_row_with_perc_col = re.compile('([\.|\*]+)\s+([\d\.]+)\s+([\d\.]*)%')
bp_full_row_with_no_perc_col = re.compile('([\.|\*]+)\s+([\d\.]+)')
bp_row = re.compile('([\.|\*]+).*')
# find tree count
for idx, line in enumerate(paup_output):
tp_match = tree_count_pattern.match(line)
if tp_match:
break
if not tp_match:
raise Exception("Failed to find tree count in PAUP* output")
tree_count = int(tp_match.group(1))
while not bp_row.match(paup_output[idx]):
idx += 1
split_idx = 0
split_reps = {}
for line in paup_output[idx:]:
if line == "SPLITS COUNT END":
break
bp_match = bp_full_row_with_perc_col.match(line)
if not bp_match:
bp_match = bp_full_row_with_no_perc_col.match(line)
if bp_match:
# full row, or end of partial rows
if len(split_reps) == 0:
split_rep = bp_match.group(1)
else:
split_rep = split_reps[split_idx] + bp_match.group(1)
split_bitmask = PaupService.bipartition_groups_to_split_bitmask(split_rep, normalized=not is_rooted)
bipartition_counts[split_bitmask] = float(bp_match.group(2))
try:
bipartition_freqs[split_bitmask] = float(bp_match.group(3)) / 100
except IndexError:
bipartition_freqs[split_bitmask] = bipartition_counts[split_bitmask] / 100
split_idx += 1
else:
# either (1) partial row or (2) break between sections
bp_match = bp_row.match(line)
if not bp_match:
split_idx = 0
else:
if split_idx in split_reps:
split_reps[split_idx] += bp_match.group(1)
else:
split_reps[split_idx] = bp_match.group(1)
split_idx += 1
return tree_count, bipartition_counts, bipartition_freqs
##############################################################################
## Support
def _execute_command_sequence(self):
returncode, stdout, stderr = PaupService.call(self.commands)
self.commands = []
stdout = stdout.split("\n")
stderr = stderr.split("\n")
return returncode, stdout, stderr
##############################################################################
## Wrappers for PAUP* Services
def call(*args, **kwargs):
return PaupService.call(*args, **kwargs)
def symmetric_difference(tree1, tree2):
if tree1.taxon_namespace is not tree2.taxon_namespace:
trees = dendropy.TreeList([dendropy.Tree(tree1), dendropy.Tree(tree2)])
else:
trees = dendropy.TreeList([tree1, tree2], taxon_namespace=tree1.taxon_namespace)
tf = tempfile.NamedTemporaryFile("w", delete=True)
trees.write_to_stream(tf, schema='nexus')
tf.flush()
assert tree1.is_rooted == tree2.is_rooted
sd = get_split_distribution(
tree_filepaths=[tf.name],
taxa_filepath=tf.name,
is_rooted=tree1.is_rooted,
use_tree_weights=True,
burnin=0)
sf = sd.split_frequencies
conflicts = 0
for k, v in sf.items():
if v < 1.0:
conflicts += 1
return conflicts
def pscore_trees(
trees,
char_matrix,
pset_option_list=None,
pscore_option_list=None,
paup_path=PAUP_PATH):
if pset_option_list is not None:
pset = "pset " + " ".join(pset_option_list)
else:
pset = ""
scorefile = tempfile.NamedTemporaryFile("w+", delete=True)
pscore_command = "pscore / scorefile={}".format(scorefile.name)
if pscore_option_list is not None:
pscore_command = pscore_command + " ".join(pscore_option_list)
else:
pscore_command = pscore_command
post_est_commands = """\
set crit=parsimony;
{pset}
{pscore_command}
""".format(pset=pset, pscore_command=pscore_command)
paup_block = """\
set warnreset=no;
exe '{data_file}';
gettrees file= '{intree_file}' warntree=no;
{post_est_commands};
"""
cf = tempfile.NamedTemporaryFile("w", delete=True)
char_matrix.write_to_stream(cf, schema='nexus')
cf.flush()
input_tree_file_handle = tempfile.NamedTemporaryFile("w", delete=True)
input_tree_filepath = input_tree_file_handle.name
trees.write_to_stream(input_tree_file_handle, schema="nexus")
input_tree_file_handle.flush()
paup_args = {}
paup_args["data_file"] = cf.name
paup_args["intree_file"] = input_tree_filepath
paup_args["post_est_commands"] = post_est_commands
paup_block = paup_block.format(**paup_args)
paup_run = subprocess.Popen(['%s -n' % paup_path],
shell=True,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE)
stdout, stderr = processio.communicate(paup_run, paup_block)
if stderr:
sys.stderr.write("\n*** ERROR FROM PAUP ***")
sys.stderr.write(stderr)
sys.exit(1)
scores_str = open(scorefile.name, "r").read()
score_rows = [r for r in scores_str.split("\n")[1:] if r != ""]
assert len(score_rows) == len(trees)
scores = [int(s.split()[1]) for s in score_rows]
assert len(scores) == len(trees)
cf.close()
input_tree_file_handle.close()
scorefile.close()
return scores
def estimate_ultrametric_tree(
char_matrix,
topology_tree=None,
paup_path=PAUP_PATH):
post_est_commands = """\
set crit=likelihood;
root rootmethod=midpoint;
lset userbr=no nst = 1 basefreq = eq rates = eq clock =yes;
lscore;
"""
if topology_tree is None:
ultrametric_tree = estimate_tree(char_matrix,
tree_est_criterion="nj",
num_states=2,
unequal_base_freqs=False,
gamma_rates=False,
prop_invar=False,
extra_post_est_commands=post_est_commands)
return ultrametric_tree
else:
paup_block = """\
set warnreset=no;
exe '%(data_file)s';
gettrees file= '%(intree_file)s' warntree=no;
%(post_est_commands)s;
savetrees file=%(outtree_file)s format=nexus root=yes brlens=yes taxablk=yes maxdecimals=20;
"""
cf = tempfile.NamedTemporaryFile("w", delete=True)
char_matrix.write_to_stream(cf, schema='nexus')
cf.flush()
input_tree_file_handle = tempfile.NamedTemporaryFile("w", delete=True)
input_tree_filepath = input_tree_file_handle.name
topology_tree.write_to_stream(input_tree_file_handle, schema="nexus")
input_tree_file_handle.flush()
# output_tree_file_handle, output_tree_filepath = tempfile.mkstemp(text=True)
output_tree_file_handle = tempfile.NamedTemporaryFile("w+", delete=True)
output_tree_filepath = output_tree_file_handle.name
paup_args = {}
paup_args["data_file"] = cf.name
paup_args["intree_file"] = input_tree_filepath
paup_args["post_est_commands"] = post_est_commands
paup_args["outtree_file"] = output_tree_filepath
paup_block = paup_block % paup_args
paup_run = subprocess.Popen(['%s -n' % paup_path],
shell=True,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE)
stdout, stderr = processio.communicate(paup_run, paup_block)
t = dendropy.Tree.get_from_path(output_tree_filepath, "nexus", taxon_namespace=char_matrix.taxon_namespace)
cf.close()
input_tree_file_handle.close()
output_tree_file_handle.close()
return t
def estimate_tree(char_matrix,
tree_est_criterion="likelihood",
num_states=6,
unequal_base_freqs=True,
gamma_rates=True,
prop_invar=True,
extra_pre_est_commands=None,
extra_post_est_commands=None,
paup_path='paup',
char_matrix_writing_kwargs=None,
timeout=None,
):
"""
Given a dataset, ``char_matrix``, estimates a tree using the given criterion.
"""
paup_args = {
'nst': num_states,
'basefreq' : unequal_base_freqs and 'estimate' or 'equal',
'rates' : gamma_rates and 'gamma' or 'equal',
'pinvar' : prop_invar and 'estimate' or '0',
}
cf = tempfile.NamedTemporaryFile("w", delete=True)
if not char_matrix_writing_kwargs:
char_matrix_writing_kwargs = {}
char_matrix.write_to_stream(cf, schema='nexus', **char_matrix_writing_kwargs)
cf.flush()
paup_args['datafile'] = cf.name
# output_tree_file_handle, output_tree_filepath = tempfile.mkstemp(text=True)
output_tree_file_handle = tempfile.NamedTemporaryFile("w+", delete=True)
output_tree_filepath = output_tree_file_handle.name
paup_args['est_tree_file'] = output_tree_filepath
if extra_pre_est_commands:
if textprocessing.is_str_type(extra_pre_est_commands):
extra_pre_est_commands = [extra_pre_est_commands]
paup_args["pre_est_commands"] = ";\n".join(extra_pre_est_commands)
else:
paup_args["pre_est_commands"] = ""
if extra_post_est_commands:
if textprocessing.is_str_type(extra_post_est_commands):
extra_post_est_commands = [extra_post_est_commands]
paup_args["post_est_commands"] = ";\n".join(extra_post_est_commands)
else:
paup_args["post_est_commands"] = ""
paup_template = """\
set warnreset=no;
exe %(datafile)s;
"""
if tree_est_criterion.startswith("like"):
paup_template += """\
lset tratio=estimate rmatrix=estimate nst=%(nst)s basefreq=%(basefreq)s rates=%(rates)s shape=estimate pinvar=%(pinvar)s userbrlens=yes;
"""
if tree_est_criterion not in ["nj", "upgma"] :
paup_template += """\
set crit=%s;
""" % tree_est_criterion
paup_template += """\
%(pre_est_commands)s;
"""
if tree_est_criterion in ["nj", "upgma"] :
paup_template += tree_est_criterion + ";"
else:
paup_template += "hsearch;"
paup_template += """\
%(post_est_commands)s;
savetrees file=%(est_tree_file)s format=nexus root=yes brlens=yes taxablk=yes maxdecimals=20;
"""
# paup_run = subprocess.Popen(['%s -n' % paup_path],
# shell=True,
# stdin=subprocess.PIPE,
# stdout=subprocess.PIPE)
# stdout, stderr = processio.communicate(paup_run, paup_template % paup_args)
returncode, stdout, stderr = PaupService.call(
paup_commands=paup_template % paup_args,
paup_path=paup_path,
timeout=timeout,
)
t = dendropy.Tree.get_from_path(output_tree_filepath, "nexus", taxon_namespace=char_matrix.taxon_namespace)
cf.close()
output_tree_file_handle.close()
return t
def estimate_model(char_matrix,
tree_model=None,
num_states=6,
unequal_base_freqs=True,
gamma_rates=True,
prop_invar=True,
tree_est_criterion="likelihood",
tree_user_brlens=True,
paup_path='paup'):
"""
Given a dataset, ``char_matrix``, uses client-supplied tree or estimates a
tree, and character substitution model for the data.
Returns a tuple, consisting of a trees block with the tree(s) used for the
estimated character model, and a dictionary with estimates of rates, kappa,
base_frequencies, alpha, prop_invar, etc. as well as likelihood.
"""
paup_args = {
'nst': num_states,
'basefreq' : unequal_base_freqs and 'estimate' or 'equal',
'rates' : gamma_rates and 'gamma' or 'equal',
'pinvar' : prop_invar and 'estimate' or '0',
}
if tree_model is not None:
assert tree_model.taxon_namespace is char_matrix.taxon_namespace
tf = tempfile.NamedTemporaryFile("w", delete=True)
tree_model.write_to_stream(tf, 'nexus')
tf.flush()
paup_args['tree'] = "gettrees file=%s storebrlens=yes;" % tf.name
else:
if tree_est_criterion in ["nj", "upgma"] :
paup_args['tree'] = tree_est_criterion
else:
paup_args['tree'] = "set crit=%s; hsearch; set crit=like;" % tree_est_criterion
if tree_user_brlens:
paup_args['userbrlens'] = 'yes'
else:
paup_args['userbrlens'] = 'no'
cf = tempfile.NamedTemporaryFile("w", delete=True)
char_matrix.write_to_stream(cf, schema='nexus')
cf.flush()
paup_args['datafile'] = cf.name
# output_tree_file_handle, output_tree_filepath = tempfile.mkstemp(text=True)
output_tree_file_handle = tempfile.NamedTemporaryFile("w+", delete=True)
output_tree_filepath = output_tree_file_handle.name
paup_args['est_tree_file'] = output_tree_filepath
paup_template = """\
set warnreset=no;
exe %(datafile)s;
set crit=like;
lset tratio=estimate rmatrix=estimate nst=%(nst)s basefreq=%(basefreq)s rates=%(rates)s shape=estimate pinvar=%(pinvar)s userbrlens=%(userbrlens)s;
%(tree)s;
lscore 1 / userbrlens=%(userbrlens)s;
savetrees file=%(est_tree_file)s format=nexus root=yes brlens=yes taxablk=yes maxdecimals=20;
"""
paup_run = subprocess.Popen(['%s -n' % paup_path],
shell=True,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE)
stdout, stderr = processio.communicate(paup_run, paup_template % paup_args)
results = {}
patterns = {
'likelihood' : re.compile('-ln L\s+([\d\.]+)'),
'rAC' : re.compile(' AC\s+([\d\.]+)'),
'rAG' : re.compile(' AG\s+([\d\.]+)'),
'rAT' : re.compile(' AT\s+([\d\.]+)'),
'rCG' : re.compile(' CG\s+([\d\.]+)'),
'rCT' : re.compile(' CT\s+([\d\.]+)'),
'rGT' : re.compile(' GT\s+([\d\.]+)'),
'kappa': re.compile(' kappa\s+([\d\.]+)'),
'prop_invar' : re.compile('P_inv\s+([\d\.]+)'),
'alpha' : re.compile('Shape\s+([\S]+)'),
'pA' : re.compile(' A\s+([\d\.]+)'),
'pC' : re.compile(' C\s+([\d\.]+)'),
'pG' : re.compile(' G\s+([\d\.]+)'),
'pT' : re.compile(' T\s+([\d\.]+)'),
}
for value_name in patterns:
results[value_name] = None
for line in stdout.split('\n'):
for value_name in patterns:
m = patterns[value_name].match(line)
if m:
results[value_name] = m.group(1)
for value_name in results.keys():
if value_name == 'likelihood':
results[value_name] = -1 * float(results[value_name])
results["log_likelihood"] = results[value_name]
elif results[value_name] is not None:
try:
results[value_name] = float(results[value_name])
except:
pass
t = dendropy.Tree.get_from_path(output_tree_filepath, "nexus", taxon_namespace=char_matrix.taxon_namespace)
cf.close()
output_tree_file_handle.close()
return t, results
def prune_taxa_from_trees(trees, taxa, paup_path='paup'):
"""
Drops Taxon objects given in container ``taxa`` from TreeList ``trees``
"""
tf = tempfile.NamedTemporaryFile("w", delete=True)
trees.write_to_stream(tf, schema='nexus')
tf.flush()
output_tree_file_handle = tempfile.NamedTemporaryFile("w+", delete=True)
output_tree_filepath = output_tree_file_handle.name
tax_idxs = [ str(trees.taxon_namespace.index(t)+1) for t in taxa ]
tax_idxs = " ".join(tax_idxs)
paup_template = """\
set warnreset=no;
exe %s;
gett file=%s storebrlens=yes;
delete %s / prune;
savetrees file=%s format=nexus brlens=user taxablk=yes maxdecimals=20;
""" % (tf.name,
tf.name,
tax_idxs,
output_tree_filepath)
paup_run = subprocess.Popen(['%s -n' % paup_path],
shell=True,
stdin=subprocess.PIPE,
stdout=subprocess.PIPE)
stdout, stderr = processio.communicate(paup_run, paup_template)
t = dendropy.TreeList.get_from_path(output_tree_filepath,
"nexus",
taxon_namespace=trees.taxon_namespace)
output_tree_file_handle.close()
return t
###############################################################################
## PAUP* WRAPPERS
class PaupSession(processio.Session):
"""
Starts a PAUP* session, which remains active until explicitly closed.
Various commands can get executed and results returned.
"""
EOC_FLAG = "@@@END-OF-COMMAND@@@"
FLAG_DETECT = re.compile(r'^\s*%s\s*$' % EOC_FLAG, re.MULTILINE)
EOC_FLAG_STRIP = re.compile(r"^(paup>)*\s*(\[!)*" + EOC_FLAG + "(\])*\s*$", re.MULTILINE)
# FLAG_DETECT = re.compile(r'[^\[]\s*%s\s*[^\]]' % EOC_FLAG, re.MULTILINE)
def __init__(self, paup_path=None):
processio.Session.__init__(self, join_err_to_out=False)
if paup_path is None:
self.paup_path = PAUP_PATH
else:
self.paup_path = paup_path
self.start([self.paup_path])
def __del__(self):
self.stop()
def stop(self):
if self.process:
try:
self.process.terminate()
except:
pass
self.process = None
def send_command(self, command):
command = command + ";\n"
command = command + "[!" + self.EOC_FLAG + "]\n"
self.process.stdin.write(command)
self.process.stdin.flush()
stdout_block = ""
while True:
stdout = self._stdout_reader.read()
if stdout is not None:
stdout_block = stdout_block + stdout
if self.FLAG_DETECT.search(stdout_block):
stdout_block = self.EOC_FLAG_STRIP.sub("", stdout_block)
break
# else:
# print stdout_block
stderr_block = ""
while True:
stderr = self._stderr_reader.read()
if stderr is not None:
stderr_block += stderr
else:
break
return stdout_block, stderr_block
def execute_file(self, filepath):
return self.send_command("set warnreset=no; execute %s;\n" % filepath)
def read_data(self, data):
"""
Writes ``data`` as NEXUS-formatted file and
executes file within processio.
"""
cf = tempfile.NamedTemporaryFile("w", delete=True)
data.write_to_stream(cf, "nexus")
cf.flush()
stdout, stderr = self.execute_file(cf.name)
return stdout, stderr
|