File: raxml.py

package info (click to toggle)
python-dendropy 4.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 68,392 kB
  • ctags: 3,947
  • sloc: python: 41,840; xml: 1,400; makefile: 15
file content (678 lines) | stat: -rw-r--r-- 37,099 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
#! /usr/bin/env python

##############################################################################
##  DendroPy Phylogenetic Computing Library.
##
##  Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
##  All rights reserved.
##
##  See "LICENSE.rst" for terms and conditions of usage.
##
##  If you use this work or any portion thereof in published work,
##  please cite it as:
##
##     Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
##     for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################

"""
Wrapper around calls to RAxML.
"""

import sys
import os
import subprocess
import tempfile
import dendropy
import random

from dendropy.utility.messaging import ConsoleMessenger
from dendropy.utility import processio

def get_messenger(verbosity=1):
    if verbosity == 0:
        messaging_level = ConsoleMessenger.ERROR_MESSAGING_LEVEL
    else:
        messaging_level = ConsoleMessenger.INFO_MESSAGING_LEVEL
    messenger = ConsoleMessenger(name="raxml-map-bipartitions",
                    messaging_level=messaging_level)
    return messenger

###############################################################################
## RAXML WRAPPER
# raxmlHPC[-SSE3|-PTHREADS|-PTHREADS-SSE3|-HYBRID|-HYBRID-SSE3]
#   -s sequenceFileName -n outputFileName -m substitutionModel
#   [-a weightFileName] [-A secondaryStructureSubstModel]
#   [-b bootstrapRandomNumberSeed] [-B wcCriterionThreshold]
#   [-c numberOfCategories] [-C] [-d] [-D]
#   [-e likelihoodEpsilon] [-E excludeFileName]
#   [-f a|A|b|c|d|e|E|F|g|h|i|I|j|J|m|n|o|p|r|s|S|t|u|v|w|x|y] [-F]
#   [-g groupingFileName] [-G placementThreshold] [-h]
#   [-i initialRearrangementSetting] [-I autoFC|autoMR|autoMRE|autoMRE_IGN]
#   [-j] [-J MR|MR_DROP|MRE|STRICT|STRICT_DROP] [-k] [-K] [-M]
#   [-o outGroupName1[,outGroupName2[,...]]]
#   [-p parsimonyRandomSeed] [-P proteinModel]
#   [-q multipleModelFileName] [-r binaryConstraintTree]
#   [-R binaryModelParamFile] [-S secondaryStructureFile] [-t userStartingTree]
#   [-T numberOfThreads] [-U] [-v] [-w outputDirectory] [-W slidingWindowSize]
#   [-x rapidBootstrapRandomNumberSeed] [-X] [-y]
#   [-z multipleTreesFile] [-#|-N numberOfRuns|autoFC|autoMR|autoMRE|autoMRE_IGN]
#   -a      Specify a column weight file name to assign individual weights to each column of
#           the alignment. Those weights must be integers separated by any type and number
#           of whitespaces whithin a separate file, see file "example_weights" for an example.
#   -A      Specify one of the secondary structure substitution models implemented in RAxML.
#           The same nomenclature as in the PHASE manual is used, available models:
#           S6A, S6B, S6C, S6D, S6E, S7A, S7B, S7C, S7D, S7E, S7F, S16, S16A, S16B
#           DEFAULT: 16-state GTR model (S16)
#   -b      Specify an integer number (random seed) and turn on bootstrapping
#           DEFAULT: OFF
#   -B      specify a floating point number between 0.0 and 1.0 that will be used as cutoff threshold
#           for the MR-based bootstopping criteria. The recommended setting is 0.03.
#           DEFAULT: 0.03 (recommended empirically determined setting)
#   -c      Specify number of distinct rate catgories for RAxML when modelOfEvolution
#           is set to GTRCAT or GTRMIX
#           Individual per-site rates are categorized into numberOfCategories rate
#           categories to accelerate computations.
#           DEFAULT: 25
#   -C      Conduct model parameter optimization on gappy, partitioned multi-gene alignments with per-partition
#           branch length estimates (-M enabled) using the fast method with pointer meshes described in:
#           Stamatakis and Ott: "Efficient computation of the phylogenetic likelihood function on multi-gene alignments and multi-core processors"
#           WARNING: We can not conduct useful tree searches using this method yet! Does not work with Pthreads version.
#   -d      start ML optimization from random starting tree
#           DEFAULT: OFF
#   -D      ML search convergence criterion. This will break off ML searches if the relative
#           Robinson-Foulds distance between the trees obtained from two consecutive lazy SPR cycles
#           is smaller or equal to 1%. Usage recommended for very large datasets in terms of taxa.
#           On trees with more than 500 taxa this will yield execution time improvements of approximately 50%
#           While yielding only slightly worse trees.
#           DEFAULT: OFF
#   -e      set model optimization precision in log likelihood units for final
#           optimization of tree topology under MIX/MIXI or GAMMA/GAMMAI
#           DEFAULT: 0.1   for models not using proportion of invariant sites estimate
#                    0.001 for models using proportion of invariant sites estimate
#   -E      specify an exclude file name, that contains a specification of alignment positions you wish to exclude.
#           Format is similar to Nexus, the file shall contain entries like "100-200 300-400", to exclude a
#           single column write, e.g., "100-100", if you use a mixed model, an appropriatly adapted model file
#           will be written.
#   -f      select algorithm:
#           "-f a": rapid Bootstrap analysis and search for best-scoring ML tree in one program run
#           "-f A": compute marginal ancestral states on a ROOTED reference tree provided with "t"
#           "-f b": draw bipartition information on a tree provided with "-t" based on multiple trees
#                   (e.g., from a bootstrap) in a file specifed by "-z"
#           "-f c": check if the alignment can be properly read by RAxML
#           "-f d": new rapid hill-climbing
#                   DEFAULT: ON
#           "-f e": optimize model+branch lengths for given input tree under GAMMA/GAMMAI only
#           "-f E": execute very fast experimental tree search, at present only for testing
#           "-f F": execute fast experimental tree search, at present only for testing
#           "-f g": compute per site log Likelihoods for one ore more trees passed via
#                   "-z" and write them to a file that can be read by CONSEL
#           "-f h": compute log likelihood test (SH-test) between best tree passed via "-t"
#                   and a bunch of other trees passed via "-z"
#           "-f i": EXPERIMENTAL do not use for real tree inferences: conducts a single cycle of fast lazy SPR moves
#                   on a given input tree, to be used in combination with -C and -M
#           "-f I": EXPERIMENTAL do not use for real tree inferences: conducts a single cycle of thorough lazy SPR moves
#                   on a given input tree, to be used in combination with -C and -M
#           "-f j": generate a bunch of bootstrapped alignment files from an original alignemnt file.
#                   You need to specify a seed with "-b" and the number of replicates with "-#"
#           "-f J": Compute SH-like support values on a given tree passed via "-t".
#           "-f m": compare bipartitions between two bunches of trees passed via "-t" and "-z"
#                   respectively. This will return the Pearson correlation between all bipartitions found
#                   in the two tree files. A file called RAxML_bipartitionFrequencies.outpuFileName
#                   will be printed that contains the pair-wise bipartition frequencies of the two sets
#           "-f n": compute the log likelihood score of all trees contained in a tree file provided by
#                   "-z" under GAMMA or GAMMA+P-Invar
#           "-f o": old and slower rapid hill-climbing without heuristic cutoff
#           "-f p": perform pure stepwise MP addition of new sequences to an incomplete starting tree and exit
#           "-f r": compute pairwise Robinson-Foulds (RF) distances between all pairs of trees in a tree file passed via "-z"
#                   if the trees have node labales represented as integer support values the program will also compute two flavors of
#                   the weighted Robinson-Foulds (WRF) distance
#           "-f s": split up a multi-gene partitioned alignment into the respective subalignments
#           "-f S": compute site-specific placement bias using a leave one out test inspired by the evolutionary placement algorithm
#           "-f t": do randomized tree searches on one fixed starting tree
#           "-f u": execute morphological weight calibration using maximum likelihood, this will return a weight vector.
#                   you need to provide a morphological alignment and a reference tree via "-t"
#           "-f v": classify a bunch of environmental sequences into a reference tree using thorough read insertions
#                   you will need to start RAxML with a non-comprehensive reference tree and an alignment containing all sequences (reference + query)
#           "-f w": compute ELW test on a bunch of trees passed via "-z"
#           "-f x": compute pair-wise ML distances, ML model parameters will be estimated on an MP
#                   starting tree or a user-defined tree passed via "-t", only allowed for GAMMA-based
#                   models of rate heterogeneity
#           "-f y": classify a bunch of environmental sequences into a reference tree using parsimony
#                   you will need to start RAxML with a non-comprehensive reference tree and an alignment containing all sequences (reference + query)
#           DEFAULT for "-f": new rapid hill climbing
#   -F      enable ML tree searches under CAT model for very large trees without switching to
#           GAMMA in the end (saves memory).
#           This option can also be used with the GAMMA models in order to avoid the thorough optimization
#           of the best-scoring ML tree in the end.
#           DEFAULT: OFF
#   -g      specify the file name of a multifurcating constraint tree
#           this tree does not need to be comprehensive, i.e. must not contain all taxa
#   -G      enable the ML-based evolutionary placement algorithm heuristics
#           by specifiyng a threshold value (fraction of insertion branches to be evaluated
#           using slow insertions under ML).
#   -h      Display this help message.
#   -i      Initial rearrangement setting for the subsequent application of topological
#           changes phase
#   -I      a posteriori bootstopping analysis. Use:
#          "-I autoFC" for the frequency-based criterion
#          "-I autoMR" for the majority-rule consensus tree criterion
#          "-I autoMRE" for the extended majority-rule consensus tree criterion
#          "-I autoMRE_IGN" for metrics similar to MRE, but include bipartitions under the threshold whether they are compatible
#                           or not. This emulates MRE but is faster to compute.
#           You also need to pass a tree file containg several bootstrap replicates via "-z"
#   -j      Specifies that intermediate tree files shall be written to file during the standard ML and BS tree searches.
#           DEFAULT: OFF
#   -J      Compute majority rule consensus tree with "-J MR" or extended majority rule consensus tree with "-J MRE"
#           or strict consensus tree with "-J STRICT".
#           Options "-J STRICT_DROP" and "-J MR_DROP" will execute an algorithm that identifies dropsets which contain
#           rogue taxa as proposed by Pattengale et al. in the paper "Uncovering hidden phylogenetic consensus".
#           You will also need to provide a tree file containing several UNROOTED trees via "-z"
#   -k      Specifies that bootstrapped trees should be printed with branch lengths.
#           The bootstraps will run a bit longer, because model parameters will be optimized
#           at the end of each run under GAMMA or GAMMA+P-Invar respectively.
#           DEFAULT: OFF
#   -K      Specify one of the multi-state substitution models (max 32 states) implemented in RAxML.
#           Available models are: ORDERED, MK, GTR
#           DEFAULT: GTR model
#   -m      Model of Binary (Morphological), Nucleotide, Multi-State, or Amino Acid Substitution:
#           BINARY:
#             "-m BINCAT"         : Optimization of site-specific
#                                   evolutionary rates which are categorized into numberOfCategories distinct
#                                   rate categories for greater computational efficiency. Final tree might be evaluated
#                                   automatically under BINGAMMA, depending on the tree search option
#             "-m BINCATI"        : Optimization of site-specific
#                                   evolutionary rates which are categorized into numberOfCategories distinct
#                                   rate categories for greater computational efficiency. Final tree might be evaluated
#                                   automatically under BINGAMMAI, depending on the tree search option
#             "-m BINGAMMA"       : GAMMA model of rate
#                                   heterogeneity (alpha parameter will be estimated)
#             "-m BINGAMMAI"      : Same as BINGAMMA, but with estimate of proportion of invariable sites
#           NUCLEOTIDES:
#             "-m GTRCAT"         : GTR + Optimization of substitution rates + Optimization of site-specific
#                                   evolutionary rates which are categorized into numberOfCategories distinct
#                                   rate categories for greater computational efficiency.  Final tree might be evaluated
#                                   under GTRGAMMA, depending on the tree search option
#             "-m GTRCATI"        : GTR + Optimization of substitution rates + Optimization of site-specific
#                                   evolutionary rates which are categorized into numberOfCategories distinct
#                                   rate categories for greater computational efficiency.  Final tree might be evaluated
#                                   under GTRGAMMAI, depending on the tree search option
#             "-m GTRGAMMA"       : GTR + Optimization of substitution rates + GAMMA model of rate
#                                   heterogeneity (alpha parameter will be estimated)
#             "-m GTRGAMMAI"      : Same as GTRGAMMA, but with estimate of proportion of invariable sites
#           MULTI-STATE:
#             "-m MULTICAT"         : Optimization of site-specific
#                                   evolutionary rates which are categorized into numberOfCategories distinct
#                                   rate categories for greater computational efficiency. Final tree might be evaluated
#                                   automatically under MULTIGAMMA, depending on the tree search option
#             "-m MULTICATI"        : Optimization of site-specific
#                                   evolutionary rates which are categorized into numberOfCategories distinct
#                                   rate categories for greater computational efficiency. Final tree might be evaluated
#                                   automatically under MULTIGAMMAI, depending on the tree search option
#             "-m MULTIGAMMA"       : GAMMA model of rate
#                                   heterogeneity (alpha parameter will be estimated)
#             "-m MULTIGAMMAI"      : Same as MULTIGAMMA, but with estimate of proportion of invariable sites
#             You can use up to 32 distinct character states to encode multi-state regions, they must be used in the following order:
#             0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V
#             i.e., if you have 6 distinct character states you would use 0, 1, 2, 3, 4, 5 to encode these.
#             The substitution model for the multi-state regions can be selected via the "-K" option
#           AMINO ACIDS:
#             "-m PROTCATmatrixName[F]"         : specified AA matrix + Optimization of substitution rates + Optimization of site-specific
#                                                 evolutionary rates which are categorized into numberOfCategories distinct
#                                                 rate categories for greater computational efficiency.   Final tree might be evaluated
#                                                 automatically under PROTGAMMAmatrixName[f], depending on the tree search option
#             "-m PROTCATImatrixName[F]"        : specified AA matrix + Optimization of substitution rates + Optimization of site-specific
#                                                 evolutionary rates which are categorized into numberOfCategories distinct
#                                                 rate categories for greater computational efficiency.   Final tree might be evaluated
#                                                 automatically under PROTGAMMAImatrixName[f], depending on the tree search option
#             "-m PROTGAMMAmatrixName[F]"       : specified AA matrix + Optimization of substitution rates + GAMMA model of rate
#                                                 heterogeneity (alpha parameter will be estimated)
#             "-m PROTGAMMAImatrixName[F]"      : Same as PROTGAMMAmatrixName[F], but with estimate of proportion of invariable sites
#             Available AA substitution models: DAYHOFF, DCMUT, JTT, MTREV, WAG, RTREV, CPREV, VT, BLOSUM62, MTMAM, LG, MTART, MTZOA, PMB, HIVB, HIVW, JTTDCMUT, FLU, GTR
#             With the optional "F" appendix you can specify if you want to use empirical base frequencies
#             Please note that for mixed models you can in addition specify the per-gene AA model in
#             the mixed model file (see manual for details). Also note that if you estimate AA GTR parameters on a partitioned
#             dataset, they will be linked (estimated jointly) across all partitions to avoid over-parametrization
#   -M      Switch on estimation of individual per-partition branch lengths. Only has effect when used in combination with "-q"
#           Branch lengths for individual partitions will be printed to separate files
#           A weighted average of the branch lengths is computed by using the respective partition lengths
#           DEFAULT: OFF
#   -n      Specifies the name of the output file.
#   -o      Specify the name of a single outgrpoup or a comma-separated list of outgroups, eg "-o Rat"
#           or "-o Rat,Mouse", in case that multiple outgroups are not monophyletic the first name
#           in the list will be selected as outgroup, don't leave spaces between taxon names!
#   -p      Specify a random number seed for the parsimony inferences. This allows you to reproduce your results
#           and will help me debug the program.
#   -P      Specify the file name of a user-defined AA (Protein) substitution model. This file must contain
#           420 entries, the first 400 being the AA substitution rates (this must be a symmetric matrix) and the
#           last 20 are the empirical base frequencies
#   -q      Specify the file name which contains the assignment of models to alignment
#           partitions for multiple models of substitution. For the syntax of this file
#           please consult the manual.
#   -r      Specify the file name of a binary constraint tree.
#           this tree does not need to be comprehensive, i.e. must not contain all taxa
#   -R      Specify the file name of a binary model parameter file that has previously been generated
#           with RAxML using the -f e tree evaluation option. The file name should be:
#           RAxML_binaryModelParameters.runID
#   -s      Specify the name of the alignment data file in PHYLIP format
#   -S      Specify the name of a secondary structure file. The file can contain "." for
#           alignment columns that do not form part of a stem and characters "()<>[]{}" to define
#           stem regions and pseudoknots
#   -t      Specify a user starting tree file name in Newick format
#   -T      PTHREADS VERSION ONLY! Specify the number of threads you want to run.
#           Make sure to set "-T" to at most the number of CPUs you have on your machine,
#           otherwise, there will be a huge performance decrease!
#   -U      Try to save memory by using SEV-based implementation for gap columns on large gappy alignments
#           WARNING: this will only work for DNA under GTRGAMMA and is still in an experimental state.
#   -v      Display version information
#   -w      FULL (!) path to the directory into which RAxML shall write its output files
#           DEFAULT: current directory
#   -W      Sliding window size for leave-one-out site-specific placement bias algorithm
#           only effective when used in combination with "-f S"
#           DEFAULT: 100 sites
#   -x      Specify an integer number (random seed) and turn on rapid bootstrapping
#           CAUTION: unlike in version 7.0.4 RAxML will conduct rapid BS replicates under
#           the model of rate heterogeneity you specified via "-m" and not by default under CAT
#   -X      EXPERIMENTAL OPTION: This option will do a per-site estimate of protein substitution models
#           by looping over all given, fixed models LG, WAG, JTT, etc and using their respective base frequencies to independently
#           assign a prot subst. model to each site via ML optimization
#           At present this option only works with the GTR+GAMMA model, unpartitioned datasets, and in the sequential
#           version only.
#           DEFAULT: OFF
#   -y      If you want to only compute a parsimony starting tree with RAxML specify "-y",
#           the program will exit after computation of the starting tree
#           DEFAULT: OFF
#   -z      Specify the file name of a file containing multiple trees e.g. from a bootstrap
#           that shall be used to draw bipartition values onto a tree provided with "-t",
#           It can also be used to compute per site log likelihoods in combination with "-f g"
#           and to read a bunch of trees for a couple of other options ("-f h", "-f m", "-f n").
#   -#|-N   Specify the number of alternative runs on distinct starting trees
#           In combination with the "-b" option, this will invoke a multiple boostrap analysis
#           Note that "-N" has been added as an alternative since "-#" sometimes caused problems
#           with certain MPI job submission systems, since "-#" is often used to start comments.
#           If you want to use the bootstopping criteria specify "-# autoMR" or "-# autoMRE" or "-# autoMRE_IGN"
#           for the majority-rule tree based criteria (see -I option) or "-# autoFC" for the frequency-based criterion.
#           Bootstopping will only work in combination with "-x" or "-b"
#           DEFAULT: 1 single analysis

class RaxmlRunner(object):

    def __init__(self,
            working_dir_path=None,
            replace=None,
            postclean=None,
            name=None,
            verbosity=1,
            raxml_path="raxmlHPC"):
        self.dirs_to_clean = []
        self.files_to_clean = []
        if working_dir_path is None:
            self.working_dir_path = None
            self.replace = False
            self.postclean = postclean if postclean is not None else True
        else:
            self.working_dir_path = working_dir_path
            self.replace = replace if replace is not None else True
            self.postclean = postclean if postclean is not None else False
        self._name = name
        self.verbosity = verbosity
        self.messenger = get_messenger(self.verbosity)
        self.input_format = "nexus"
        self.output_format = "nexus"
        self.raxml_path = raxml_path
        self.taxon_label_map = {}

    @property
    def name(self):
        if self._name is None:
            self._name = "dendropy_raxml"
        return self._name

    def _compose_fname(self, s):
        return "RAxML_%s.%s" % (s, self.name)

    @property
    def input_seq_fname(self):
        return "%s.seqs" % self.name

    @property
    def best_tree_fname(self):
        return self._compose_fname("bestTree")

    @property
    def bipartitions_fname(self):
        return self._compose_fname("bipartitions")

    @property
    def info_fname(self):
        return self._compose_fname("info")

    @property
    def log_fname(self):
        return self._compose_fname("log")

    @property
    def parsimony_tree_fname(self):
        return self._compose_fname("parsimonyTree")

    @property
    def result_fname(self):
        return self._compose_fname("result")

    def _raxml_output_filenames(self):
        return [self.input_seq_fname,
                self.best_tree_fname,
                self.bipartitions_fname,
                self.info_fname,
                self.log_fname,
                self.parsimony_tree_fname,
                self.result_fname]

    def _raxml_output_filepaths(self):
        return [os.path.join(self.working_dir_path, fp) for fp in self._raxml_output_filenames()]

    def _get_trees(self, tree_filepath, tree_list=None, **kwargs):
        if tree_list is None:
            tree_list = dendropy.TreeList()
        tree_list.read_from_path(tree_filepath,
                self.input_format,
                **kwargs)
        return tree_list

    def _expand_path(self, path):
        return os.path.expanduser(os.path.expandvars(path))

    def _check_overwrite(self, path):
        if os.path.exists(path) and not self.replace:
            ok = input("Overwrite existing file '{}'? (y/n/all [n])? ".format(path))
            if not ok:
                return False
            ok = ok[0].lower()
            if ok == "a":
                self.replace = True
                return True
            if ok == "y":
                return True
            return False
        else:
            return True

    # def _send_info(self, msg):
    #     self.messenger.send_info(msg, wrap=False)

    # def _send_warning(self, msg):
    #     self.messenger.send_warning(msg, wrap=False)

    # def _send_error(self, msg):
    #     self.messenger.send_info(msg, wrap=False)

    def _write_dummy_seqs(self, taxon_namespace, out):
        nchar = 19
        out.write("{} {}\n".format(len(taxon_namespace), nchar))
        bases = ["A", "C", "G", "T"]
        for idx, taxon in enumerate(taxon_namespace):
            base_seq = [random.choice(bases) for x in range(nchar)]
            out.write("{}    {}\n".format(taxon.label, "".join(base_seq)))

    def _remap_taxon_labels(self, taxa):
        for idx, taxon in enumerate(taxa):
            label = "T{}".format(idx)
            self.taxon_label_map[label] = taxon.label
            taxon.label = label

    def _create_working_dir(self):
        if self.working_dir_path is None:
            self.working_dir_path = tempfile.mkdtemp()
            self.dirs_to_clean.append(self.working_dir_path)
        if not os.path.exists(self.working_dir_path):
            # self._send_info("Creating work directory: {}".format(self.working_dir_path))
            os.makedirs(self.working_dir_path)

    def _clean_working_files(self):
        for fpath in self._raxml_output_filepaths():
            if not self._check_overwrite(fpath):
                sys.exit(0)
            if os.path.exists(fpath):
                os.remove(fpath)

    def _preclean_working_dir(self):
        self._clean_working_files()

    def _postclean_working_dir(self):
        if self.postclean:
            # self._send_info("Cleaning up run files")
            for fpath in self.files_to_clean:
                # self._send_info("Deleting file: {}".format(fpath))
                try:
                    os.remove(fpath)
                except OSError as e:
                    pass
            for dir_path in self.dirs_to_clean:
                # self._send_info("Deleting directory: {}".format(dir_path))
                try:
                    os.rmdir(dir_path)
                except OSError as e:
                    pass

    def estimate_tree(self,
            char_matrix,
            raxml_args=None):

        # set up taxa
        taxa = char_matrix.taxon_namespace

        # create working directory
        self._create_working_dir()

        # remap taxon labels
        self.taxon_label_map = {}
        self._remap_taxon_labels(taxa)

        # clean working directory of previous runs
        self._preclean_working_dir()

        # write input sequences
        raxml_seqs_filepath = os.path.join(self.working_dir_path, self.input_seq_fname)
        # self._send_info("Creating RAxML dummy sequences file: {}".format(raxml_seqs_filepath))
        # if not self._check_overwrite(raxml_seqs_filepath):
        #     sys.exit(0)
        raxml_seqs_filepath_out = open(raxml_seqs_filepath, "w")
        char_matrix.write_to_stream(raxml_seqs_filepath_out, "phylip")
        raxml_seqs_filepath_out.flush()
        raxml_seqs_filepath_out.close()
        self.files_to_clean.append(raxml_seqs_filepath)
        self.files_to_clean.append(raxml_seqs_filepath + ".reduced")

        # run RAxML
        if raxml_args is None:
            raxml_args = []
        cmd = [self.raxml_path,
                '-m',
                'GTRCAT',
                '-s', raxml_seqs_filepath,
                '-n', self.name,
                '-p', str(random.randint(0, sys.maxsize))] + raxml_args
        # self._send_info("Executing: {}".format(" ".join(cmd)))
        if self.verbosity >= 2:
            stdout_pipe = None
            stderr_pipe = None
        else:
            stdout_pipe = subprocess.PIPE
            stderr_pipe = subprocess.PIPE
        p = subprocess.Popen(cmd,
            stdout=stdout_pipe,
            stderr=stderr_pipe,
            cwd=self.working_dir_path)
        stdout, stderr = processio.communicate(p)
        if p.returncode != 0:
            sys.stderr.write("[RAxML run failed]:\n\n%s\n\n" % (" ".join(cmd)))
            sys.stdout.write(stdout)
            sys.stderr.write(stderr)
            sys.exit(p.returncode)

        # # read result
        raxml_best_tree_fpath = os.path.join(self.working_dir_path, self.best_tree_fname)
        if not os.path.exists(raxml_best_tree_fpath):
            self._send_error("RAxML result not found: {}".format(raxml_best_tree_fpath))
            sys.exit(1)
        best_tree = dendropy.Tree.get_from_path(raxml_best_tree_fpath,
                "newick",
                taxon_namespace=taxa)

        # remap labels
        for taxon in best_tree.taxon_namespace:
            taxon.label = self.taxon_label_map[taxon.label]

        # # write results
        # mapped_tree.write_to_stream(self.output_dest, self.output_format)

        # clean-up
        self._postclean_working_dir()

        # # return result
        return best_tree

    def map_bipartitions(self, target_tree_fpath, bootstrap_trees_fpaths):

        # set up taxa
        taxa = dendropy.TaxonNamespace()
        taxon_label_map = {}

        # read target tree
        target_tree_fpath = self._expand_path(target_tree_fpath)
        # self._send_info("Reading target tree file: {}".format(target_tree_fpath))
        target_tree = self._get_trees(target_tree_fpath, taxon_namespace=taxa)[0]

        # read boostrap trees
        boot_trees = dendropy.TreeList()
        for fpath in bootstrap_trees_fpaths:
            fpath = self._expand_path(fpath)
            # self._send_info("Reading bootstrap tree file: {}".format(fpath))
            self._get_trees(tree_filepath=fpath, tree_list=boot_trees, taxon_namespace=taxa)
        # self._send_info("Read: {} taxa, {} bootstrap trees".format(len(taxa), len(boot_trees)))

        # create working directory
        self._create_working_dir()

        # remap taxon labels
        self.taxon_label_map = {}
        self._remap_taxon_labels(taxa)

        # write input target tree
        raxml_target_tree_filepath = os.path.join(self.working_dir_path, "{}.target_tree".format(self.name))
        # self._send_info("Creating RAxML target tree file: {}".format(raxml_target_tree_filepath))
        if not self._check_overwrite(raxml_target_tree_filepath):
            sys.exit(0)
        target_tree.write_to_path(raxml_target_tree_filepath, "newick")
        self.files_to_clean.append(raxml_target_tree_filepath)

        # write input bootstrap trees
        raxml_bootstrap_trees_filepath = os.path.join(self.working_dir_path, "{}.boot_trees".format(self.name))
        # self._send_info("Creating RAxML bootstrap tree file: {}".format(raxml_bootstrap_trees_filepath))
        if not self._check_overwrite(raxml_bootstrap_trees_filepath):
            sys.exit(0)
        boot_trees.write_to_path(raxml_bootstrap_trees_filepath, "newick")
        self.files_to_clean.append(raxml_bootstrap_trees_filepath)

        # write input (dummy) sequences
        raxml_seqs_filepath = os.path.join(self.working_dir_path, "{}.seqs".format(self.name))
        # self._send_info("Creating RAxML dummy sequences file: {}".format(raxml_seqs_filepath))
        if not self._check_overwrite(raxml_seqs_filepath):
            sys.exit(0)
        raxml_seqs_filepath_out = open(raxml_seqs_filepath, "w")
        self._write_dummy_seqs(taxa, raxml_seqs_filepath_out)
        raxml_seqs_filepath_out.flush()
        raxml_seqs_filepath_out.close()
        self.files_to_clean.append(raxml_seqs_filepath)

        # clean working directory of previous runs
        self._preclean_working_dir()

        # run RAxML
        cmd = [self.raxml_path, '-f', 'b',
                '-t', os.path.basename(raxml_target_tree_filepath),
                '-z', os.path.basename(raxml_bootstrap_trees_filepath),
                '-s', os.path.basename(raxml_seqs_filepath),
                '-m', 'GTRCAT',
                '-n', self.name]
        # self._send_info("Executing: {}".format(" ".join(cmd)))
        if self.verbosity >= 2:
            stdout_pipe = None
            stderr_pipe = None
        else:
            stdout_pipe = subprocess.PIPE
            stderr_pipe = subprocess.PIPE
        p = subprocess.Popen(cmd,
            stdout=stdout_pipe,
            stderr=stderr_pipe,
            cwd=self.working_dir_path)
        stdout, stderr = processio.communicate(p)
        if p.returncode != 0:
            self._send_error("RAxML run failed")
            if self.verbosity < 2:
                sys.stdout.write(stdout)
                sys.stderr.write(stderr)
            sys.exit(p.returncode)

        # read result
        raxml_mapped_tree_fpath = os.path.join(self.working_dir_path, self.bipartitions_fname)
        if not os.path.exists(raxml_mapped_tree_fpath):
            self._send_error("RAxML result not found: {}".format(raxml_mapped_tree_fpath))
            sys.exit(1)
        mapped_tree = dendropy.Tree.get_from_path(raxml_mapped_tree_fpath, "newick")

        # remap labels
        for taxon in mapped_tree.taxon_namespace:
            taxon.label = taxon_label_map[taxon.label]

#         # write results
#         mapped_tree.write_to_stream(self.output_dest, self.output_format)

        # clean-up
        self.files_to_clean.append(raxml_mapped_tree_fpath)
        self.files_to_clean.append(self.info_fname)
        self._postclean_working_dir()

        # return result
        return mapped_tree

    # def estimate_tree(self,
    #         char_matrix,
    #         raxml_args=None):
    #     command = [self.raxml_path] + self.raxml_args + raxml_args
    #     for dup_cmd in ['-n', '-s']:
    #         if dup_cmd in command:
    #             raise Exception("Cannot specify '%s' option when running through wrapper"  % dup_cmd)

    #     # if '-w' not in command:
    #     #     work_dir = tempfile.mkdtemp()
    #     #     clean_up_dir = True
    #     #     command.a
    #     #     command.extend(['-w', work_dir])
    #     # else:
    #     #     arg_idx = command(command.index('-w')+1)
    #     #     work_dir = os.path.abspath(arg_idx)
    #     #     command[arg_idx] = work_dir
    #     #     clean_up_dir = False
    #     work_dir = os.path.abspath('.')

    #     input_data_path = os.path.join(work_dir, "input.phy")
    #     char_matrix.write_to_path(input_data_path, "phylip")
    #     command.extend(['-n', 'dendropy.raxml'])
    #     command.extend(['-s', input_data_path])
    #     run = subprocess.Popen(command,
    #             stdin=subprocess.PIPE,
    #             stdout=subprocess.PIPE,
    #             stderr=subprocess.PIPE)
    #     stdout, stderr = processio.communicate(run)
    #     results = stdout.split("\n")
    #     if run.returncode:
    #         sys.stderr.write("\n*** ERROR FROM RAxML:\n")
    #         sys.stderr.write(stdout)
    #         sys.stderr.write("\n\n*** COMMAND SENT TO RAxML:\n    ")
    #         sys.stderr.write(' '.join(command))
    #         sys.stderr.write("\n")
    #         sys.exit(1)
    #     return results