File: birthdeath.py

package info (click to toggle)
python-dendropy 4.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 68,392 kB
  • ctags: 3,947
  • sloc: python: 41,840; xml: 1,400; makefile: 15
file content (653 lines) | stat: -rw-r--r-- 28,118 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
#! /usr/bin/env python

##############################################################################
##  DendroPy Phylogenetic Computing Library.
##
##  Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
##  All rights reserved.
##
##  See "LICENSE.rst" for terms and conditions of usage.
##
##  If you use this work or any portion thereof in published work,
##  please cite it as:
##
##     Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
##     for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################

"""
Models, modeling and model-fitting of birth-death processes.
"""

import sys
import math
import collections
import itertools
from dendropy.calculate import probability
from dendropy.utility import GLOBAL_RNG
from dendropy.utility.error import TreeSimTotalExtinctionException
from dendropy.utility import constants

import dendropy

def birth_death_tree(birth_rate, death_rate, birth_rate_sd=0.0, death_rate_sd=0.0, **kwargs):
    """
    Returns a birth-death tree with birth rate specified by ``birth_rate``, and
    death rate specified by ``death_rate``, with edge lengths in continuous (real)
    units.

    ``birth_rate_sd`` is the standard deviation of the normally-distributed mutation
    added to the birth rate as it is inherited by daughter nodes; if 0, birth
    rate does not evolve on the tree.

    ``death_rate_sd`` is the standard deviation of the normally-distributed mutation
    added to the death rate as it is inherited by daughter nodes; if 0, death
    rate does not evolve on the tree.

    Tree growth is controlled by one or more of the following arguments, of which
    at least one must be specified:

        - If ``ntax`` is given as a keyword argument, tree is grown until the number of
          tips == ntax.
        - If ``taxon_namespace`` is given as a keyword argument, tree is grown until the
          number of tips == len(taxon_namespace), and the taxa are assigned randomly to the
          tips.
        - If 'max_time' is given as a keyword argument, tree is grown for
          a maximum of ``max_time``.
        - If ``gsa_ntax`` is given then the tree will be simulated up to this number of
          tips (or 0 tips), then a tree will be randomly selected from the
          intervals which corresond to times at which the tree had exactly ``ntax``
          leaves (or len(taxon_namespace) tips). This allows for simulations according to
          the "General Sampling Approach" of Hartmann et al. (2010).


    If more than one of the above is given, then tree growth will terminate when
    *any* of the termination conditions (i.e., number of tips == ``ntax``, or number
    of tips == len(taxon_namespace) or maximum time = ``max_time``) are met.

    Also accepts a Tree object (with valid branch lengths) as an argument passed
    using the keyword ``tree``: if given, then this tree will be used; otherwise
    a new one will be created.

    If ``assign_taxa`` is False, then taxa will *not* be assigned to the tips;
    otherwise (default), taxa will be assigned. If ``taxon_namespace`` is given
    (``tree.taxon_namespace``, if ``tree`` is given), and the final number of tips on the
    tree after the termination condition is reached is less then the number of
    taxa in ``taxon_namespace`` (as will be the case, for example, when
    ``ntax`` < len(``taxon_namespace``)), then a random subset of taxa in ``taxon_namespace`` will
    be assigned to the tips of tree. If the number of tips is more than the number
    of taxa in the ``taxon_namespace``, new Taxon objects will be created and added
    to the ``taxon_namespace`` if the keyword argument ``create_required_taxa`` is not given as
    False.

    Under some conditions, it is possible for all lineages on a tree to go extinct.
    In this case, if the keyword argument ``repeat_until_success`` is |True| (the
    default), then a new branching process is initiated.
    If |False| (default), then a TreeSimTotalExtinctionException is raised.

    A Random() object or equivalent can be passed using the ``rng`` keyword;
    otherwise GLOBAL_RNG is used.

    References
    ----------

    Hartmann, Wong, and Stadler "Sampling Trees from Evolutionary Models" Systematic Biology. 2010. 59(4). 465-476

    """
    target_num_taxa = kwargs.get('ntax')
    max_time = kwargs.get('max_time')
    taxon_namespace = kwargs.get('taxon_namespace')
    if (target_num_taxa is None) and (taxon_namespace is not None):
        target_num_taxa = len(taxon_namespace)
    elif taxon_namespace is None:
        taxon_namespace = dendropy.TaxonNamespace()
    gsa_ntax = kwargs.get('gsa_ntax')
    terminate_at_full_tree = False
    if target_num_taxa is None:
        if gsa_ntax is not None:
            raise ValueError("When 'gsa_ntax' is used, either 'ntax' or 'taxon_namespace' must be used")
        if max_time is None:
            raise ValueError("At least one of the following must be specified: 'ntax', 'taxon_namespace', or 'max_time'")
    else:
        if gsa_ntax is None:
            terminate_at_full_tree = True
            gsa_ntax = 1 + target_num_taxa
        elif gsa_ntax < target_num_taxa:
            raise ValueError("gsa_ntax must be greater than target_num_taxa")
    repeat_until_success = kwargs.get('repeat_until_success', True)
    rng = kwargs.get('rng', GLOBAL_RNG)

    # initialize tree
    if "tree" in kwargs:
        tree = kwargs['tree']
        if "taxon_namespace" in kwargs and kwargs['taxon_namespace'] is not tree.taxon_namespace:
            raise ValueError("Cannot specify both ``tree`` and ``taxon_namespace``")
    else:
        tree = dendropy.Tree(taxon_namespace=taxon_namespace)
        tree.is_rooted = True
        tree.seed_node.edge.length = 0.0
        tree.seed_node.birth_rate = birth_rate
        tree.seed_node.death_rate = death_rate

    # grow tree
    leaf_nodes = tree.leaf_nodes()
    #_LOG.debug("Will generate a tree with no more than %s leaves to get a tree of %s leaves" % (str(gsa_ntax), str(target_num_taxa)))
    curr_num_leaves = len(leaf_nodes)
    total_time = 0
    # for the GSA simulations targetted_time_slices is a list of tuple
    #   the first element in the tuple is the duration of the amount
    #   that the simulation spent at the (targetted) number of taxa
    #   and a list of edge information. The list of edge information includes
    #   a list of terminal edges in the tree and the length for that edge
    #   that marks the beginning of the time slice that corresponds to the
    #   targetted number of taxa.

    targetted_time_slices = []
    extinct_tips = []
    while True:
        if gsa_ntax is None:
            assert (max_time is not None)
            if total_time >= max_time:
                break
        elif curr_num_leaves >= gsa_ntax:
            break

        # get vector of birth/death probabilities, and
        # associate with nodes/events
        event_rates = []
        event_nodes = []
        for nd in leaf_nodes:
            if not hasattr(nd, 'birth_rate'):
                nd.birth_rate = birth_rate
            if not hasattr(nd, 'death_rate'):
                nd.death_rate = death_rate
            event_rates.append(nd.birth_rate)
            event_nodes.append((nd, True)) # birth event = True
            event_rates.append(nd.death_rate)
            event_nodes.append((nd, False)) # birth event = False; i.e. death

        # get total probability of any birth/death
        rate_of_any_event = sum(event_rates)

        # waiting time based on above probability
        #_LOG.debug("rate_of_any_event = %f" % (rate_of_any_event))
        waiting_time = rng.expovariate(rate_of_any_event)
        #_LOG.debug("Drew waiting time of %f from hazard parameter of %f" % (waiting_time, rate_of_any_event))

        if (gsa_ntax is not None) and (curr_num_leaves == target_num_taxa):
            edge_and_start_length = []
            for nd in leaf_nodes:
                e = nd.edge
                edge_and_start_length.append((e, e.length))
            targetted_time_slices.append((waiting_time, edge_and_start_length))
            #_LOG.debug("Recording slice with %d edges" % len(edge_and_start_length))
            if terminate_at_full_tree:
                break

        # add waiting time to nodes
        for nd in leaf_nodes:
            try:
                nd.edge.length += waiting_time
            except TypeError:
                nd.edge.length = waiting_time
        #_LOG.debug("Next waiting_time = %f" % waiting_time)
        total_time += waiting_time

        # if event occurs within time constraints
        if max_time is None or total_time <= max_time:

            # normalize probability
            for i in range(len(event_rates)):
                event_rates[i] = event_rates[i]/rate_of_any_event

            # select node/event and process
            nd, birth_event = probability.weighted_choice(event_nodes, event_rates, rng=rng)
            leaf_nodes.remove(nd)
            curr_num_leaves -= 1
            if birth_event:
                #_LOG.debug("Speciation")
                c1 = nd.new_child()
                c2 = nd.new_child()
                c1.edge.length = 0
                c2.edge.length = 0
                c1.birth_rate = nd.birth_rate + rng.gauss(0, birth_rate_sd)
                c1.death_rate = nd.death_rate + rng.gauss(0, death_rate_sd)
                c2.birth_rate = nd.birth_rate + rng.gauss(0, birth_rate_sd)
                c2.death_rate = nd.death_rate + rng.gauss(0, death_rate_sd)
                leaf_nodes.append(c1)
                leaf_nodes.append(c2)
                curr_num_leaves += 2
            else:
                #_LOG.debug("Extinction")
                if curr_num_leaves > 0:
                    #_LOG.debug("Will delete " + str(id(nd)) + " with parent = " + str(id(nd.parent_node)))
                    extinct_tips.append(nd)
                else:
                    if (gsa_ntax is not None):
                        if (len(targetted_time_slices) > 0):
                            break
                    if not repeat_until_success:
                        raise TreeSimTotalExtinctionException()
                    # We are going to basically restart the simulation because the tree has gone extinct (without reaching the specified ntax)
                    leaf_nodes = [tree.seed_node]
                    curr_num_leaves = 1
                    for nd in tree.seed_node.child_nodes():
                        tree.prune_subtree(nd, suppress_unifurcations=False)
                    extinct_tips = []
                    total_time = 0
            assert(curr_num_leaves == len(leaf_nodes))
            #_LOG.debug("Current tree \n%s" % (tree.as_ascii_plot(plot_metric='length', show_internal_node_labels=True)))
    #tree._debug_tree_is_valid()
    #_LOG.debug("Terminated with %d leaves (%d, %d  according to len(leaf_nodes))" % (curr_num_leaves, len(leaf_nodes), len(tree.leaf_nodes())))
    if gsa_ntax is not None:
        total_duration_at_target_n_tax = 0.0
        for i in targetted_time_slices:
            total_duration_at_target_n_tax += i[0]
        r = rng.random()*total_duration_at_target_n_tax
        #_LOG.debug("Selected rng = %f out of (0, %f)" % (r, total_duration_at_target_n_tax))
        selected_slice = None
        for n, i in enumerate(targetted_time_slices):
            r -= i[0]
            if r < 0.0:
                selected_slice = i
        assert(selected_slice is not None)
        #_LOG.debug("Selected time slice index %d" % n)
        edges_at_slice = selected_slice[1]
        last_waiting_time = selected_slice[0]
        for e, prev_length in edges_at_slice:
            daughter_nd = e.head_node
            for nd in daughter_nd.child_nodes():
                tree.prune_subtree(nd, suppress_unifurcations=False)
                #_LOG.debug("After pruning %s:\n%s" % (str(id(nd)), tree.as_ascii_plot(plot_metric='length', show_internal_node_labels=True)))
                try:
                    extinct_tips.remove(nd)
                except:
                    pass
            try:
                extinct_tips.remove(daughter_nd)
            except:
                pass
            e.length = prev_length + last_waiting_time



#     tree._debug_tree_is_valid()
#     for nd in extinct_tips:
#         _LOG.debug("Will be deleting " + str(id(nd)))

    for nd in extinct_tips:
        bef = len(tree.leaf_nodes())
        while (nd.parent_node is not None) and (len(nd.parent_node.child_nodes()) == 1):
            nd = nd.parent_node
#         _LOG.debug("Deleting " + str(nd.__dict__) + '\n' + str(nd.edge.__dict__))
#         for n, pnd in enumerate(tree.postorder_node_iter()):
#             _LOG.debug("%d %s" % (n, repr(pnd)))
#        _LOG.debug("Before prune of %s:\n%s" % (str(id(nd)), tree.as_ascii_plot(plot_metric='length', show_internal_node_labels=True)))
        if nd.parent_node:
            tree.prune_subtree(nd, suppress_unifurcations=False)
#         _LOG.debug("Deleted " + str(nd.__dict__))
#         for n, pnd in enumerate(tree.postorder_node_iter()):
#             _LOG.debug("%d %s" % (n, repr(pnd)))
#         tree._debug_tree_is_valid()
    tree.suppress_unifurcations()
#    tree._debug_tree_is_valid()
#    _LOG.debug("After deg2suppression:\n%s" % (tree.as_ascii_plot(plot_metric='length', show_internal_node_labels=True)))

    if kwargs.get("assign_taxa", True):
        tree.randomly_assign_taxa(create_required_taxa=True, rng=rng)


    # return
    return tree


def discrete_birth_death_tree(birth_rate, death_rate, birth_rate_sd=0.0, death_rate_sd=0.0, **kwargs):
    """
    Returns a birth-death tree with birth rate specified by ``birth_rate``, and
    death rate specified by ``death_rate``, with edge lengths in discrete (integer)
    units.

    ``birth_rate_sd`` is the standard deviation of the normally-distributed mutation
    added to the birth rate as it is inherited by daughter nodes; if 0, birth
    rate does not evolve on the tree.

    ``death_rate_sd`` is the standard deviation of the normally-distributed mutation
    added to the death rate as it is inherited by daughter nodes; if 0, death
    rate does not evolve on the tree.

    Tree growth is controlled by one or more of the following arguments, of which
    at least one must be specified:

        - If ``ntax`` is given as a keyword argument, tree is grown until the number of
          tips == ntax.
        - If ``taxon_namespace`` is given as a keyword argument, tree is grown until the
          number of tips == len(taxon_namespace), and the taxa are assigned randomly to the
          tips.
        - If 'max_time' is given as a keyword argument, tree is grown for ``max_time``
          number of generations.

    If more than one of the above is given, then tree growth will terminate when
    *any* of the termination conditions (i.e., number of tips == ``ntax``, or number
    of tips == len(taxon_namespace) or number of generations = ``max_time``) are met.

    Also accepts a Tree object (with valid branch lengths) as an argument passed
    using the keyword ``tree``: if given, then this tree will be used; otherwise
    a new one will be created.

    If ``assign_taxa`` is False, then taxa will *not* be assigned to the tips;
    otherwise (default), taxa will be assigned. If ``taxon_namespace`` is given
    (``tree.taxon_namespace``, if ``tree`` is given), and the final number of tips on the
    tree after the termination condition is reached is less then the number of
    taxa in ``taxon_namespace`` (as will be the case, for example, when
    ``ntax`` < len(``taxon_namespace``)), then a random subset of taxa in ``taxon_namespace`` will
    be assigned to the tips of tree. If the number of tips is more than the number
    of taxa in the ``taxon_namespace``, new Taxon objects will be created and added
    to the ``taxon_namespace`` if the keyword argument ``create_required_taxa`` is not given as
    False.

    Under some conditions, it is possible for all lineages on a tree to go extinct.
    In this case, if the keyword argument ``repeat_until_success`` is |True|, then a new
    branching process is initiated.
    If |False| (default), then a TreeSimTotalExtinctionException is raised.

    A Random() object or equivalent can be passed using the ``rng`` keyword;
    otherwise GLOBAL_RNG is used.
    """
    if 'ntax' not in kwargs \
        and 'taxon_namespace' not in kwargs \
        and 'max_time' not in kwargs:
            raise ValueError("At least one of the following must be specified: 'ntax', 'taxon_namespace', or 'max_time'")
    target_num_taxa = None
    taxon_namespace = None
    target_num_gens = kwargs.get('max_time', None)
    if 'taxon_namespace' in kwargs:
        taxon_namespace = kwargs.get('taxon_namespace')
        target_num_taxa = kwargs.get('ntax', len(taxon_namespace))
    elif 'ntax' in kwargs:
        target_num_taxa = kwargs['ntax']
    if taxon_namespace is None:
        taxon_namespace = dendropy.TaxonNamespace()
    repeat_until_success = kwargs.get('repeat_until_success', False)
    rng = kwargs.get('rng', GLOBAL_RNG)

    # grow tree
    if "tree" in kwargs:
        tree = kwargs['tree']
        if "taxon_namespace" in kwargs and kwargs['taxon_namespace'] is not tree.taxon_namespace:
            raise ValueError("Cannot specify both ``tree`` and ``taxon_namespace``")
    else:
        tree = dendropy.Tree(taxon_namespace=taxon_namespace)
        tree.is_rooted = True
        tree.seed_node.edge.length = 0
        tree.seed_node.birth_rate = birth_rate
        tree.seed_node.death_rate = death_rate
    leaf_nodes = tree.leaf_nodes()
    num_gens = 0
    while (target_num_taxa is None or len(leaf_nodes) < target_num_taxa) \
            and (target_num_gens is None or num_gens < target_num_gens):
        for nd in leaf_nodes:
            if not hasattr(nd, 'birth_rate'):
                nd.birth_rate = birth_rate
            if not hasattr(nd, 'death_rate'):
                nd.death_rate = death_rate
            try:
                nd.edge.length += 1
            except TypeError:
                nd.edge.length = 1
            u = rng.uniform(0, 1)
            if u < nd.birth_rate:
                c1 = nd.new_child()
                c2 = nd.new_child()
                c1.edge.length = 0
                c2.edge.length = 0
                c1.birth_rate = nd.birth_rate + rng.gauss(0, birth_rate_sd)
                c1.death_rate = nd.death_rate + rng.gauss(0, death_rate_sd)
                c2.birth_rate = nd.birth_rate + rng.gauss(0, birth_rate_sd)
                c2.death_rate = nd.death_rate + rng.gauss(0, death_rate_sd)
            elif u > nd.birth_rate and u < (nd.birth_rate + nd.death_rate):
                if nd is not tree.seed_node:
                    tree.prune_subtree(nd)
                elif not repeat_until_success:
                    # all lineages are extinct: raise exception
                    raise TreeSimTotalExtinctionException()
                else:
                    # all lineages are extinct: repeat
                    num_gens = 0

        num_gens += 1
        leaf_nodes = tree.leaf_nodes()

    # If termination condition specified by ntax or taxon_namespace, then the last
    # split will have a daughter edges of length == 0;
    # so we continue growing the edges until the next birth/death event *or*
    # the max number of generations condition is given and met
    gens_to_add = 0
    while (target_num_gens is None or num_gens < target_num_gens):
        u = rng.uniform(0, 1)
        if u < (birth_rate + death_rate):
            break
        gens_to_add += 1
    for nd in tree.leaf_nodes():
        nd.edge.length += gens_to_add

    if kwargs.get("assign_taxa", True):
        tree.randomly_assign_taxa(create_required_taxa=True, rng=rng)

    # return
    return tree

def uniform_pure_birth_tree(taxon_namespace, birth_rate=1.0, rng=None):
    "Generates a uniform-rate pure-birth process tree. "
    if rng is None:
        rng = GLOBAL_RNG # use the global rng by default
    tree = dendropy.Tree(taxon_namespace=taxon_namespace)
    tree.seed_node.edge.length = 0.0
    leaf_nodes = tree.leaf_nodes()
    while len(leaf_nodes) < len(taxon_namespace):
        waiting_time = rng.expovariate(len(leaf_nodes)/birth_rate)
        for nd in leaf_nodes:
            nd.edge.length += waiting_time
        parent_node = rng.choice(leaf_nodes)
        c1 = parent_node.new_child()
        c2 = parent_node.new_child()
        c1.edge.length = 0.0
        c2.edge.length = 0.0
        leaf_nodes = tree.leaf_nodes()
    leaf_nodes = tree.leaf_nodes()
    waiting_time = rng.expovariate(len(leaf_nodes)/birth_rate)
    for nd in leaf_nodes:
        nd.edge.length += waiting_time
    for idx, leaf in enumerate(leaf_nodes):
        leaf.taxon = taxon_namespace[idx]
    tree.is_rooted = True
    return tree

def fit_pure_birth_model(**kwargs):
    """
    Calculates the maximum-likelihood estimate of the birth rate of a set of
    *internal* node ages under a Yule (pure-birth) model.

    Requires either a |Tree| object or an interable of *internal* node
    ages to be passed in via keyword arguments ``tree`` or ``internal_node_ages``,
    respectively. The former is more convenient when doing one-off
    calculations, while the latter is more efficient if the list of internal
    node ages needs to be used in other places and you already have it
    calculated and want to avoid re-calculating it here.

    Parameters
    ----------
    \*\*kwargs : keyword arguments, mandatory

        Exactly *one* of the following *must* be specified:

            tree : a |Tree| object.
                A |Tree| object. The tree needs to be ultrametric for the
                internal node ages (time from each internal node to the tips)
                to make sense. The precision by which the ultrametricity is
                checked can be specified using the ``ultrametricity_precision`` keyword
                argument (see below). If ``tree`` is given, then
                ``internal_node_ages`` cannot be given, and vice versa. If ``tree``
                is not given, then ``internal_node_ages`` must be given.
            internal_node_ages : iterable (of numerical values)
                Iterable of node ages of the internal nodes of a tree, i.e., the
                list of sum of the edge lengths between each internal node and
                the tips of the tree. If ``internal_node_ages`` is given, then
                ``tree`` cannot be given, and vice versa. If ``internal_node_ages``
                is not given, then ``tree`` must be given.

        While the following is optional, and is only used if internal node ages
        need to be calculated (i.e., 'tree' is passed in).

            ultrametricity_precision : float
                When calculating the node ages, an error will be raised if the tree in
                o ultrametric. This error may be due to floating-point or numerical
                imprecision. You can set the precision of the ultrametricity validation
                by setting the ``ultrametricity_precision`` parameter. E.g., use
                ``ultrametricity_precision=0.01`` for a more relaxed precision,
                down to 2 decimal places. Use ``ultrametricity_precision=False``
                to disable checking of ultrametricity precision.

            ignore_likelihood_calculation_failure: bool (default: False)
                In some cases (typically, abnormal trees, e.g., 1-tip), the
                likelihood estimation will fail. In this case a ValueError will
                be raised. If ``ignore_likelihood_calculation_failure`` is
                |True|, then the function call will still succeed, with the
                likelihood set to -``inf``.

    Returns
    -------
    m : dictionary

    A dictionary with keys being parameter names and values being
    estimates:

        "birth_rate"
            The birth rate.
        "log_likelihood"
            The log-likelihood of the model and given birth rate.

    Examples
    --------

    Given trees such as::

        import dendropy
        from dendropy.model import birthdeath
        trees = dendropy.TreeList.get_from_path(
                "pythonidae.nex", "nexus")

    Birth rates can be estimated by passing in trees directly::

        for idx, tree in enumerate(trees):
            m = birthdeath.fit_pure_birth_model(tree=tree)
            print("Tree {}: birth rate = {} (logL = {})".format(
                idx+1, m["birth_rate"], m["log_likelihood"]))

    Or by pre-calculating and passing in a list of node ages::

        for idx, tree in enumerate(trees):
            m = birthdeath.fit_pure_birth_model(
                    internal_node_ages=tree.internal_node_ages())
            print("Tree {}: birth rate = {} (logL = {})".format(
                idx+1, m["birth_rate"], m["log_likelihood"]))


    Notes
    -----
    Adapted from the laser package for R:

        -   Dan Rabosky and Klaus Schliep (2013). laser: Likelihood Analysis of
            Speciation/Extinction Rates from Phylogenies. R package version
            2.4-1. http://CRAN.R-project.org/package=laser

    See also:

        -   Nee, S.  2001.  Inferring speciation rates from phylogenies.
            Evolution 55:661-668.
        -   Yule, G. U. 1924. A mathematical theory of evolution based on the
            conclusions of Dr.  J. C. Willis. Phil. Trans. R. Soc. Lond. B
            213:21-87.

    """
    tree = kwargs.get("tree", None)
    if tree is not None:
        internal_node_ages = tree.internal_node_ages(ultrametricity_precision=kwargs.get("ultrametricity_precision", 0.0000001))
    else:
        try:
            internal_node_ages = kwargs["internal_node_ages"]
        except KeyError:
            raise TypeError("Need to specify 'tree' or 'internal_node_ages'")
    x = sorted(internal_node_ages, reverse=True)
    st1 = x[0]
    st2 = 0
    nvec = range(2, len(x)+2)
    nv = [i for i in x if (i < st1) and (i >= st2)]
    lo = max(nvec[idx] for idx, i in enumerate(x) if i >= st1)
    up = max(nvec[idx] for idx, i in enumerate(x) if i >= st2)
    if st1 <= x[0]:
        nv.insert(0, st1)
        nv = [i - st2 for i in nv]
    else:
        nv = [i - st2 for i in nv]
    t1 = (up-lo)
    t2 = (lo*nv[0])
    t3 = sum( nv[1:(up-lo+1)] )
    smax = t1/(t2 + t3)

    try:
        s1 = sum(map(math.log, range(lo,up)))
        s2 = (up-lo) * math.log(smax)
        s3 = lo - up
        lh = s1 + s2 + s3
    except ValueError:
        if kwargs.get("ignore_likelihood_calculation_failure", False):
            raise ValueError("Likelihood estimation failure")
        else:
            lh = float("-inf")

    result = {
        "birth_rate" : smax,
        "log_likelihood" : lh,
    }
    return result

def fit_pure_birth_model_to_tree(tree, ultrametricity_precision=constants.DEFAULT_ULTRAMETRICITY_PRECISION):
    """
    Calculates the maximum-likelihood estimate of the birth rate a tree under a
    Yule (pure-birth) model.

    Parameters
    ----------
    tree : |Tree| object
        A tree to be fitted.

    Returns
    -------
    m : dictionary

    A dictionary with keys being parameter names and values being
    estimates:

        -   "birth_rate"
            The birth rate.
        -   "log_likelihood"
            The log-likelihood of the model and given birth rate.

    Examples
    --------

    ::

        import dendropy
        from dendropy.model import birthdeath
        trees = dendropy.TreeList.get_from_path(
                "pythonidae.nex", "nexus")
        for idx, tree in enumerate(trees):
            m = birthdeath.fit_pure_birth_model_to_tree(tree)
            print("Tree {}: birth rate = {} (logL = {})".format(
                idx+1, m["birth_rate"], m["log_likelihood"]))

    """
    return fit_pure_birth_model(tree=tree, ultrametricity_precision=ultrametricity_precision)