1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
|
#! /usr/bin/env python
##############################################################################
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.rst" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
"""
Models and modeling of continuous character evolution.
"""
import math
from functools import reduce
import operator
import dendropy
from dendropy.utility import GLOBAL_RNG
class PhylogeneticIndependentConstrasts(object):
"""
Phylogenetic Independent Contrasts.
References:
- Felsenstein, J. 1985. Phylogenies and the comparative method. American
Naturalist 125:1-15.
- Garland, T., Jr., Jr., A. F. Bennett, and E. L. Rezende. 2005.
Phylogenetic approaches in comparative physiology. Journal of
Experimental Biology 208:3015-3035.
"""
def __init__(self,
tree,
char_matrix,
polytomy_strategy=None):
"""
Parameters
----------
tree : |Tree| object
Tree to use.
char_matrix : |ContinuousCharacterMatrix|
ContinuousCharacterMatrix that is the source of the data
polytomy_strategy
One of: 'error', 'ignore', 'resolve'.
'error'
Throws an error if tree has polytomies.
'ignore'
No error, but raw contrasts will not be calculated for
polytomies.
'resolve'
Randomly resolve polytomies.
Defaults to 'error' if not specified or set to None.
"""
self._tree = None
self._char_matrix = None
self._is_dirty = None
self._is_fully_analyzed = False
self._polytomy_strategy = None
self._character_contrasts = {}
self._set_polytomy_strategy(polytomy_strategy)
self.tree = tree
self.char_matrix = char_matrix
def _get_polytomy_strategy(self):
return self._polytomy_strategy
def _set_polytomy_strategy(self, polytomy_strategy):
if polytomy_strategy is None:
self._polytomy_strategy = 'error'
else:
polytomy_strategy = polytomy_strategy.lower()
if polytomy_strategy not in ['error', 'ignore', 'resolve']:
raise ValueError("Invalid polytomy strategy: '%s'" % polytomy_strategy)
else:
self._polytomy_strategy = polytomy_strategy
polytomy_strategy = property(_get_polytomy_strategy, None)
def _get_tree(self):
if not self._is_fully_analyzed:
analyzed_chars = self._character_contrasts.keys()
for idx in range(len(self.char_matrix[0])):
if idx in analyzed_chars:
continue
self._get_contrasts(idx)
self._is_fully_analyzed = True
return self._tree
def _set_tree(self, tree):
self._tree = dendropy.Tree(tree)
if self._polytomy_strategy == 'resolve':
self._tree.resolve_polytomies()
self.is_dirty = True
tree = property(_get_tree, _set_tree, None, """\
This tree will have an attribute added to each node, ``pic``. This
attribute will be a dictionary with character (column) index as
keys. Each column index will map to another dictionary that has the
following keys (and values):
- ``pic_state_value``
- ``pic_state_variance``
- ``pic_contrast_raw``
- ``pic_contrast_variance``
- ``pic_contrast_standardized``
- ``pic_edge_length_error``
- ``pic_corrected_edge_length``
""")
def _get_char_matrix(self):
return self._char_matrix
def _set_char_matrix(self, char_matrix):
self._char_matrix = char_matrix
self.is_dirty = True
char_matrix = property(_get_char_matrix, _set_char_matrix)
def _get_is_dirty(self):
return self._is_dirty
def _set_is_dirty(self, is_dirty):
self._is_dirty = is_dirty
if self._is_dirty:
self._character_contrasts = {}
self._is_fully_analyzed = False
is_dirty = property(_get_is_dirty, _set_is_dirty)
def _get_contrasts(self, character_index):
"""
Main work-horse method. If needed, adds an entry to
self._character_constrants, with key being the character index, and a
value being another dictionary that contains the constrast information.
This second dictionary has the node's id as a key and as a value the a
dictionary with the following:
- ``pic_state_value``
- ``pic_state_variance``
- ``pic_contrast_raw``
- ``pic_contrast_variance``
- ``pic_contrast_standardized``
- ``pic_edge_length_error``
- ``pic_corrected_edge_length``
"""
if character_index in self._character_contrasts:
return self._character_contrasts[character_index]
all_results = {}
for nd in self._tree.postorder_node_iter():
nd_results = {}
child_nodes = nd.child_nodes()
if len(child_nodes) == 0:
nd_results['pic_state_value'] = self._char_matrix[nd.taxon][character_index]
nd_results['pic_state_variance'] = None
nd_results['pic_contrast_raw'] = None
nd_results['pic_contrast_variance'] = None
nd_results['pic_contrast_standardized'] = None
nd_results['pic_edge_length_error'] = 0.0
nd_results['pic_corrected_edge_length'] = nd.edge.length
elif len(child_nodes) == 1:
# root node?
nd_results['pic_state_value'] = None
nd_results['pic_state_variance'] = None
nd_results['pic_contrast_raw'] = None
nd_results['pic_contrast_variance'] = None
nd_results['pic_contrast_standardized'] = None
nd_results['pic_edge_length_error'] = None
nd_results['pic_corrected_edge_length'] = None
else:
state_vals = []
corrected_edge_lens = []
actual_edge_lens = []
for cnd in child_nodes:
state_vals.append(all_results[cnd._track_id]['pic_state_value'])
actual_edge_lens.append(cnd.edge.length)
if all_results[cnd._track_id]['pic_corrected_edge_length'] is not None:
corrected_edge_lens.append(all_results[cnd._track_id]['pic_corrected_edge_length'])
else:
corrected_edge_lens.append(cnd.edge.length)
n = len(state_vals)
numerator_fn = lambda i : (1.0/corrected_edge_lens[i]) * state_vals[i]
denominator_fn = lambda i : 1.0/corrected_edge_lens[i]
nd_results['pic_state_value'] = \
sum(numerator_fn(i) for i in range(n)) \
/ sum(denominator_fn(i) for i in range(n))
sum_of_child_edges = sum(corrected_edge_lens)
prod_of_child_edges = reduce(operator.mul, corrected_edge_lens)
nd_results['pic_edge_length_error'] = ( prod_of_child_edges / (sum_of_child_edges) )
if nd.edge.length is not None:
nd_results['pic_corrected_edge_length'] = nd.edge.length + nd_results['pic_edge_length_error']
else:
nd_results['pic_corrected_edge_length'] = None
nd_results['pic_state_variance'] = nd_results['pic_corrected_edge_length']
if len(child_nodes) != 2:
if self._polytomy_strategy == "ignore":
nd_results['pic_contrast_raw'] = None
nd_results['pic_contrast_standardized'] = None
nd_results['pic_contrast_variance'] = sum_of_child_edges
else:
raise ValueError("Tree is not fully-bifurcating")
else:
nd_results['pic_contrast_raw'] = state_vals[0] - state_vals[1]
nd_results['pic_contrast_standardized'] = nd_results['pic_contrast_raw'] / (sum_of_child_edges ** 0.5)
nd_results['pic_contrast_variance'] = sum_of_child_edges
nd._track_id = id(nd) # will get cloned
all_results[nd._track_id] = nd_results
try:
nd.pic[character_index] = dict(nd_results)
except AttributeError:
nd.pic = {character_index: dict(nd_results)}
self._character_contrasts[character_index] = dict(all_results)
return self._character_contrasts[character_index]
def contrasts_tree(self,
character_index,
annotate_pic_statistics=True,
state_values_as_node_labels=False,
corrected_edge_lengths=False):
"""
Returns a Tree object annotated with the following attributes added
to each node (as annotations to be serialized if
``annotate_pic_statistics`` is True):
- ``pic_state_value``
- ``pic_state_variance``
- ``pic_contrast_raw``
- ``pic_contrast_variance``
- ``pic_contrast_standardized``
- ``pic_edge_length_error``
- ``pic_corrected_edge_length``
"""
contrasts = self._get_contrasts(character_index)
tree = dendropy.Tree(self._tree)
for nd in tree.postorder_node_iter():
nd_results = contrasts[nd._track_id]
for k, v in nd_results.items():
setattr(nd, k, v)
if annotate_pic_statistics:
nd.annotations.add_bound_attribute(k)
if corrected_edge_lengths and nd_results['pic_corrected_edge_length'] is not None:
nd.edge.length = nd_results['pic_corrected_edge_length']
if state_values_as_node_labels:
nd.label = str(nd_results['pic_state_value'])
return tree
def evolve_continuous_char(node, rng=None, **kwargs):
"""
Takes a node and a random number generator object, ``rng`` This function
"evolves" a set of rates on the subtree descending from the ``node``.
kwargs keys that are used are:
``roeotroe``
the rate of evolution of the rate of evolution. This
parameter that controls the degree of deviations away from the
molecular clock.
``min_rate``
is the minimum rate (default None)
``max_rate``
is the maximum rate (default None),
``model``
is a string specifying the name of the model. Currently only the
KTB (Kishino, Thorne, Bruno) is supported
``time_attr``
is a string that specifies the name of the attribute
that returns the branch length in terms of time for a node. The
default is "edge_length"
``val_attr``
is the string that specifies the name of the attribute
used to hold the value that is evolving along the nodes. The root
of the subtree is assumed to have this field on calling of the
function. On success all nodes in the subtree will have the
attribute. The default is "mutation_rate"
``mean_val_attr``
if specified this is string that gives the name of
attribute in each node that is mean value for the branch (default is
None). This is filled in after time_attr and val_attr are read,
so it is permissible to have this attribute match one of thos
strings (although it will make the model odd if the mean_val_attr
is the same as the val_attr)
``constrain_rate_mode``
controls the behavior when the minimum or maximum rate is
simulated. The choices are "crop", and "linear_bounce" "crop" means
that the rate is set to the most extreme value allowed.
"linear_bounce" considers the path of evolution of rate to be a
simple line from the ancestor's rate to the proposed rate. The
point at which the path crosses the extreme value is determined and
the rate is "reflected off" the limiting rate at that point. This
causes the rate to avoid the extreme values more than a simulation
of small time slices that simply rejects illegal rates.
Currently the only model supported is the one of Kishino, Thorne, and Bruno.
"Performance of a Divergence Time Estimation Method under a Probabilistic
Model of Rate Evolution." Molecular Biology and Evolution (2001) vol. 18
(3) pp. 352-361. This model is specified by the code "KTB". A node's rate
is a log-normal variate with variance determined by the product of the
duration of the branch and the roeotroe parameter. The mean of the
distribution is chosen such that mean of the log-normal is identical to the
rate at the parent. The mean_rate for the branch is the average of the rates
at the endpoints.
"""
if rng is None:
rng = GLOBAL_RNG
nd_iter = node.preorder_iter()
# skip the first node -- it should already have a rate
next(nd_iter)
if kwargs.get("model", "KTB").upper() != "KTB":
raise ValueError("Only the Kishino-Thorne-Bruno model is supported at this time")
val_attr = kwargs.get("val_attr", "mutation_rate")
if not val_attr:
raise ValueError("val_attr cannot be an empty string")
time_attr = kwargs.get("time_attr", "edge_length")
mean_val_attr = kwargs.get("mean_val_attr")
constrain_rate_mode = kwargs.get("constrain_rate_mode", "crop").lower()
if constrain_rate_mode not in ["crop", "linear_bounce"]:
raise ValueError('Only "crop" and "linear_bounce" are supported at this time')
roeotroe = kwargs.get("roeotroe", 1.0)
min_rate = kwargs.get("min_rate", 0.0)
if min_rate < 0.0:
raise ValueError("min_rate cannot be less than 0")
max_rate = kwargs.get("max_rate")
anc_rate = getattr(node, val_attr)
if max_rate is not None:
if min_rate is not None:
if min_rate > max_rate:
raise ValueError("max_rate must be greater than the min_rate")
if min_rate == max_rate:
for nd in nd_iter:
setattr(nd, val_attr, min_rate)
if mean_val_attr:
# here we assume that the rate changed from the
# ancestral rate to the only allowed rate
# instantaneously, so the mean rat is min_rate
setattr(nd, mean_val_attr, min_rate)
return
if max_rate <= 0.0:
raise ValueError("max_rate must be positive")
if anc_rate > max_rate:
raise ValueError("rate for the incoming node is > max_rate")
if (min_rate is not None) and anc_rate < min_rate:
raise ValueError("rate for the incoming node is > max_rate")
if constrain_rate_mode == "crop":
rate_fn = _calc_KTB_rates_crop
else:
rate_fn = _calc_KTB_rates_linear_bounce
for nd in nd_iter:
starting_rate = getattr(nd.parent_node, val_attr)
duration = getattr(nd, time_attr)
r, mr = rate_fn(starting_rate, duration, roeotroe, rng, min_rate, max_rate)
setattr(nd, val_attr, r)
if mean_val_attr:
setattr(nd, mean_val_attr, mr)
def _bounce_constrain(start_x, x, min_x=None, max_x=None):
"""Returns the value of variable and its mean value over a path.
We assume that some variable started at ``start_x`` and moved toward ``x``, but
has to bounce of barriers specified by ``min_x`` and ``max_x``.
``x`` determines the direction and magnitude of the change.
``start_x`` must fall in the legal range (between the min and max). If
``x`` is also legal, then (x, (x + start_x)/2.0) will be returned reflecting
the fact that the arithmetic mean of the endpoints represents the mean value
of the variable if it took a direct path (at constant rate).
"""
if max_x is not None and min_x is not None:
assert(max_x > min_x)
gt_max = (max_x is not None and x > max_x)
lt_min = (min_x is not None and x < min_x)
prev_x = start_x
prop_dur_remaining = 1.0
mx = 0.0
while gt_max or lt_min:
if gt_max:
p_changing = (max_x - prev_x)/(x - prev_x)
mean_changing = (prev_x + max_x)/2.0
mx += p_changing*prop_dur_remaining*mean_changing
prop_dur_remaining *= 1.0 - p_changing
x = 2*max_x - x
lt_min = (min_x is not None and x < min_x)
prev_x = max_x
gt_max = False
if lt_min:
p_changing = (prev_x - min_x)/(prev_x - x)
mean_changing = (prev_x + min_x)/2.0
mx += prop_dur_remaining*p_changing*mean_changing
prop_dur_remaining *= 1.0 - p_changing
x = 2*min_x - x
lt_min = False
gt_max = (max_x is not None and x > max_x)
prev_x = min_x
mean_changing = (prev_x + x)/2.0
mx += mean_changing*prop_dur_remaining
return x, mx
def _calc_TKP_rate(starting_rate, duration, roeotroe, rng):
"""
Returns a simulated rate for the head node of a tree when:
* the tail node has rate ``starting_rate``
* the time duration of the edge is ``duration``
* the rate of evolution of the rate of evolution is ``roeotroe`` (this is
the parameter nu in Kishino, Thorne, and Bruno 2001)
``rng`` is a random number generator.
The model used to generate the rate is the one described by Thorne, Kishino,
and Painter 1998. The descendant rates or lognormally distributed.
The mean rate returned will have an expectation of ``starting_rate``
The variance of the normal distribution for the logarithm of the ending rate
is the product of ``duration`` and ``roeotroe``
"""
rate_var = duration*roeotroe
if rate_var > 0.0:
mu = math.log(starting_rate)
return rng.lognormvariate(mu, math.sqrt(rate_var))
return starting_rate
def _calc_KTB_rate(starting_rate, duration, roeotroe, rng):
"""
Returns a simulated rate for the head node of a tree when:
* the tail node has rate ``starting_rate``
* the time duration of the edge is ``duration``
* the rate of evolution of the rate of evolution is ``roeotroe`` (this is
the parameter nu in Kishino, Thorne, and Bruno 2001)
``rng`` is a random number generator.
The model used to generate the rate is the one described by Kishino, Thorne,
and Bruno 2001. The descendant rates or lognormally distributed.
The mean rate returned will have an expectation of ``starting_rate``
The variance of the normal distribution for the logarithm of the ending rate
is the product of ``duration`` and ``roeotroe``
"""
if starting_rate <= 0.0:
raise ValueError("starting_rate must be positive in the KTB model")
rate_var = duration*roeotroe
if rate_var > 0.0:
# Kishino, Thorne and Bruno corrected the tendency for the rate to
# increase seen in teh TKP, 1998 model
mu = math.log(starting_rate) - (rate_var/2.0)
return rng.lognormvariate(mu, math.sqrt(rate_var))
return starting_rate
def _calc_KTB_rates_crop(starting_rate, duration, roeotroe, rng, min_rate=None, max_rate=None):
"""Returns a descendant rate and mean rate according to the Kishino, Thorne,
Bruno model. Assumes that the min_rate <= starting_rate <= max_rate if a max
and min are provided.
rate is kept within in the [min_rate, max_rate] range by cropping at these
values and acting is if the cropping occurred at an appropriate point
in the duration of the branch (based on a linear change in rate from the
beginning of the random_variate drawn for the end of the branch).
"""
if roeotroe*duration <= 0.0:
if (min_rate and starting_rate < min_rate) or (max_rate and starting_rate > max_rate):
raise ValueError("Parent rate is out of bounds, but no rate change is possible")
r = _calc_KTB_rate(starting_rate, duration, roeotroe, rng)
if max_rate and r > max_rate:
assert(starting_rate <= max_rate)
p_changing = (max_rate - starting_rate)/(r - starting_rate)
mean_changing = (starting_rate + max_rate)/2.0
mr = p_changing*mean_changing + (1.0 - p_changing)*max_rate
return max_rate, mr
elif min_rate and r < min_rate:
assert(starting_rate >= min_rate)
p_changing = (starting_rate - min_rate)/(starting_rate - r)
mean_changing = (starting_rate + min_rate)/2.0
mr = p_changing*mean_changing + (1.0 - p_changing)*min_rate
return min_rate, mr
return r, (starting_rate + r)/2.0
def _calc_KTB_rates_linear_bounce(starting_rate, duration, roeotroe, rng, min_rate=0.0, max_rate=None):
"""Returns a descendant rate and mean rate according to the Kishino, Thorne,
Bruno model. Assumes that the min_rate <= starting_rate <= max_rate if a max
and min are provided.
The rate is kept within in the [min_rate, max_rate] range by "bouncing" off
of the barriers, where the "collision" is estimated by assuming a linear
change in rate from the beginning of the random_variate drawn for the end
of the branch).
"""
if roeotroe*duration <= 0.0:
if (min_rate and starting_rate < min_rate) or (max_rate and starting_rate > max_rate):
raise ValueError("Parent rate is out of bounds, but no rate change is possible")
r = _calc_KTB_rate(starting_rate, duration, roeotroe, rng)
if min_rate is None:
min_rate = 0.0
return _bounce_constrain(starting_rate, r, min_rate, max_rate)
|