1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
#! /usr/bin/env python
##############################################################################
## DendroPy Phylogenetic Computing Library.
##
## Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
## All rights reserved.
##
## See "LICENSE.rst" for terms and conditions of usage.
##
## If you use this work or any portion thereof in published work,
## please cite it as:
##
## Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
## for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################
"""
Models, modeling and model-fitting of parsimony.
"""
from functools import reduce
import operator
import dendropy
from dendropy.utility.error import TaxonNamespaceIdentityError
class _NodeStateSetMap(dict):
def __init__(self, taxon_state_sets_map=None):
self.taxon_state_sets_map = taxon_state_sets_map
def __getitem__(self, key):
try:
return dict.__getitem__(self, key)
except KeyError:
v = self.taxon_state_sets_map[key.taxon]
self[key] = v
return v
def _store_sets_as_attr(n, state_sets_attr_name, v):
setattr(n, state_sets_attr_name, v)
def _retrieve_state_sets_from_attr(n, state_sets_attr_name, taxon_state_sets_map):
try:
return getattr(n, state_sets_attr_name)
except AttributeError:
v = taxon_state_sets_map[n.taxon]
setattr(n, state_sets_attr_name, v)
return v
def fitch_down_pass(
postorder_nodes,
state_sets_attr_name="state_sets",
taxon_state_sets_map=None,
weights=None,
score_by_character_list=None,
):
"""
Returns the parsimony score given a list of nodes in postorder and
associated states, using Fitch's (1971) unordered parsimony algorithm.
Parameters
----------
postorder_nodes : iterable of/over |Node| objects
An iterable of |Node| objects in in order of post-order
traversal of the tree.
state_sets_attr_name : str
Name of attribute on |Node| objects in which state set lists
will stored/accessed. If |None|, then state sets will not be stored on
the tree.
taxon_state_sets_map : dict[taxon] = state sets
A dictionary that takes a taxon object as a key and returns a state set
list as a value. This will be used to populate the state set of a node
that has not yet had its state sets scored and recorded (typically,
leaves of a tree that has not yet been processed).
weights : iterable
A list of weights for each pattern.
score_by_character_list : None or list
If not |None|, should be a reference to a list object.
This list will be populated by the scores on a character-by-character
basis.
Returns
-------
s : int
Parismony score of tree.
Notes
-----
Currently this requires a bifurcating tree (even at the root).
Examples
--------
Assume that we have a tree, ``tree``, and an associated data set, ``data``::
import dendropy
from dendropy.model.parsimony import fitch_down_pass
taxa = dendropy.TaxonNamespace()
data = dendropy.StandardCharacterMatrix.get_from_path(
"apternodus.chars.nexus",
"nexus",
taxon_namespace=taxa)
tree = dendropy.Tree.get_from_path(
"apternodus.tre",
"nexus",
taxon_namespace=taxa)
taxon_state_sets_map = data.taxon_state_sets_map(gaps_as_missing=True)
The following will return the parsimony score of the ``tree`` with
respect to the data in ``data``::
score = fitch_down_pass(
nodes=tree.postorder_node_iter(),
taxon_state_sets_map=taxon_set_map)
print(score)
In the above, every |Node| object of ``tree`` will have an attribute
added, "state_sets", that stores the list of state sets from the analysis::
for nd in tree:
print(nd.state_sets)
If you want to store the list of state sets in a different attribute, e.g.,
"analysis1_states"::
score = fitch_down_pass(
nodes=tree.postorder_node_iter(),
state_sets_attr_name="analysis1_states",
taxon_state_sets_map=taxon_set_map)
print(score)
for nd in tree:
print(nd.analysis1_states)
Or not to store these at all::
score = fitch_down_pass(
nodes=tree.postorder_node_iter(),
state_sets_attr_name=None,
taxon_state_sets_map=taxon_set_map)
print(score)
Scoring custom data can be done by something like the following::
taxa = dendropy.TaxonNamespace()
taxon_state_sets_map = {}
t1 = taxa.require_taxon("A")
t2 = taxa.require_taxon("B")
t3 = taxa.require_taxon("C")
t4 = taxa.require_taxon("D")
t5 = taxa.require_taxon("E")
taxon_state_sets_map[t1] = [ set([0,1]), set([0,1]), set([0]), set([0]) ]
taxon_state_sets_map[t2] = [ set([1]), set([1]), set([1]), set([0]) ]
taxon_state_sets_map[t3] = [ set([0]), set([1]), set([1]), set([0]) ]
taxon_state_sets_map[t4] = [ set([0]), set([1]), set([0,1]), set([1]) ]
taxon_state_sets_map[t5] = [ set([1]), set([0]), set([1]), set([1]) ]
tree = dendropy.Tree.get_from_string(
"(A,(B,(C,(D,E))));", "newick",
taxon_namespace=taxa)
score = fitch_down_pass(tree.postorder_node_iter(),
taxon_state_sets_map=taxon_state_sets_map)
print(score)
"""
if score_by_character_list is not None:
assert len(score_by_character_list) == 0
for idx in range(len(list(taxon_state_sets_map.values())[0])): # this is unacceptable!
score_by_character_list.append(0)
score = 0
if state_sets_attr_name is None:
node_state_set_map = _NodeStateSetMap(taxon_state_sets_map)
get_node_state_sets = lambda node : node_state_set_map[node]
set_node_state_sets = lambda node, v : node_state_set_map.__setitem__(node, v)
else:
get_node_state_sets = lambda node : _retrieve_state_sets_from_attr(node, state_sets_attr_name, taxon_state_sets_map)
set_node_state_sets = lambda node, v : _store_sets_as_attr(node, state_sets_attr_name, v)
for nd in postorder_nodes:
c = nd.child_nodes()
if not c:
ss = get_node_state_sets(nd)
continue
left_c, right_c = c[:2]
remaining = c[2:]
left_ssl = get_node_state_sets(left_c)
while True:
right_ssl = get_node_state_sets(right_c)
result = []
for n, ssp in enumerate(zip(left_ssl, right_ssl)):
left_ss, right_ss = ssp
inter = left_ss.intersection(right_ss)
if inter:
result.append(inter)
else:
if weights is None:
wt = 1
else:
wt = weights[n]
score += wt
result.append(left_ss.union(left_ss, right_ss))
if score_by_character_list is not None:
# try:
# score_by_character_list[n] += wt
# except IndexError:
# score_by_character_list.append(wt)
score_by_character_list[n] += wt
if remaining:
right_c = remaining.pop(0)
left_ssl = result
else:
break
# setattr(nd, state_sets_attr_name, result)
set_node_state_sets(nd, result)
return score
def fitch_up_pass(
preorder_node_list,
state_sets_attr_name="state_sets",
taxon_state_sets_map=None):
"""
Finalizes the state set lists associated with each node using the "final
phase" of Fitch's (1971) unordered parsimony algorithm.
Parameters
----------
postorder_nodes : iterable of/over |Node| objects
An iterable of |Node| objects in in order of post-order
traversal of the tree.
state_sets_attr_name : str
Name of attribute on |Node| objects in which state set lists
will stored/accessed. If |None|, then state sets will not be stored on
the tree.
taxon_state_sets_map : dict[taxon] = state sets
A dictionary that takes a taxon object as a key and returns a state set
list as a value. This will be used to populate the state set of a node
that has not yet had its state sets scored and recorded (typically,
leaves of a tree that has not yet been processed).
Notes
-----
Currently this requires a bifurcating tree (even at the root).
Examples
--------
::
taxa = dendropy.TaxonNamespace()
data = dendropy.StandardCharacterMatrix.get_from_path(
"apternodus.chars.nexus",
"nexus",
taxon_namespace=taxa)
tree = dendropy.Tree.get_from_path(
"apternodus.tre",
"nexus",
taxon_namespace=taxa)
taxon_state_sets_map = data.taxon_state_sets_map(gaps_as_missing=True)
score = fitch_down_pass(tree.postorder_node_iter(),
taxon_state_sets_map=taxon_state_sets_map)
print(score)
fitch_up_pass(tree.preorder_node_iter())
for nd in tree:
print(nd.state_sets)
"""
node_state_sets_map = {}
for nd in preorder_node_list:
c = nd.child_nodes()
p = nd.parent_node
if (not c) or (not p):
continue
assert(len(c) == 2)
left_c, right_c = c
try:
left_ssl = getattr(left_c, state_sets_attr_name)
except AttributeError:
if not taxon_state_sets_map:
raise
left_ssl = taxon_state_sets_map[left_c.taxon]
try:
right_ssl = getattr(right_c, state_sets_attr_name)
except AttributeError:
if not taxon_state_sets_map:
raise
right_ssl = taxon_state_sets_map[right_c.taxon]
par_ssl = getattr(p, state_sets_attr_name)
curr_ssl = getattr(nd, state_sets_attr_name)
result = []
for n, ssp in enumerate(zip(par_ssl, curr_ssl, left_ssl, right_ssl)):
par_ss, curr_ss, left_ss, right_ss = ssp
down_parup_inter = par_ss.intersection(curr_ss)
if down_parup_inter == par_ss:
final_ss = down_parup_inter
else:
rl_inter = left_ss.intersection(right_ss)
if not rl_inter:
final_ss = par_ss.union(curr_ss)
else:
in_par_and_left = par_ss.intersection(left_ss)
in_par_and_right = par_ss.intersection(right_ss)
final_ss = in_par_and_left.union(in_par_and_right, curr_ss)
#_LOG.debug("downpass = %s, par = %s, left = %s, right = %s, final_ss= %s" %
# (str(curr_ss), str(par_ss), str(left_ss), str(right_ss), str(final_ss)))
result.append(final_ss)
setattr(nd, state_sets_attr_name, result)
def parsimony_score(
tree,
chars,
gaps_as_missing=True,
weights=None,
score_by_character_list=None,
):
"""
Calculates the score of a tree, ``tree``, given some character data,
``chars``, under the parsimony model using the Fitch algorithm.
Parameters
----------
tree : a |Tree| instance
A |Tree| to be scored. Must reference the same |TaxonNamespace| as
``chars``.
chars : a |CharacterMatrix| instance
A |CharacterMatrix|-derived object with data to be scored. Must have
the same |TaxonNamespace| as ``tree``.
gap_as_missing : bool
If |True| [default], then gaps will be treated as missing data.
If |False|, then gaps will be treated as a new/additional state.
weights : iterable
A list of weights for each pattern/column in the matrix.
score_by_character_list : None or list
If not |None|, should be a reference to a list object.
This list will be populated by the scores on a character-by-character
basis.
Returns
-------
pscore : int
The parsimony score of the tree given the data.
Examples
--------
::
import dendropy
from dendropy.calculate import treescore
# establish common taxon namespace
taxon_namespace = dendropy.TaxonNamespace()
# Read data; if data is, e.g., "standard", use StandardCharacterMatrix.
# If unsure of data type, can do:
# dataset = dendropy.DataSet.get(
# path="path/to/file.nex",
# schema="nexus",
# taxon_namespace=tns,)
# chars = dataset.char_matrices[0]
chars = dendropy.DnaCharacterMatrix.get(
path="pythonidae.chars.nexus",
schema="nexus",
taxon_namespace=taxon_namespace)
tree = dendropy.Tree.get(
path="pythonidae.mle.newick",
schema="newick",
taxon_namespace=taxon_namespace)
# We store the site-specific scores here
# This is optional; if we do not want to
# use the per-site scores, just pass in |None|
# for the ``score_by_character_list`` argument
# or do not specify this argument at all.
score_by_character_list = []
score = treescore.parsimony_score(
tree,
chars,
gaps_as_missing=False,
score_by_character_list=score_by_character_list)
# Print the results: the score
print("Score: {}".format(score))
# Print the results: the per-site scores
for idx, x in enumerate(score_by_character_list):
print("{}: {}".format(idx+1, x))
Notes
-----
If the same data is going to be used to score multiple trees or multiple times,
it is probably better to generate the 'taxon_state_sets_map' once and call
"fitch_down_pass" directly yourself, as this function generates a new map
each time.
"""
if tree.taxon_namespace is not chars.taxon_namespace:
raise TaxonNamespaceIdentityError(tree, data)
taxon_state_sets_map = chars.taxon_state_sets_map(gaps_as_missing=gaps_as_missing)
nodes = tree.postorder_node_iter()
pscore = fitch_down_pass(nodes,
taxon_state_sets_map=taxon_state_sets_map,
weights=weights,
score_by_character_list=score_by_character_list)
return pscore
|