File: reconcile.py

package info (click to toggle)
python-dendropy 4.2.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 68,392 kB
  • ctags: 3,947
  • sloc: python: 41,840; xml: 1,400; makefile: 15
file content (599 lines) | stat: -rw-r--r-- 26,108 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
#! /usr/bin/env python

##############################################################################
##  DendroPy Phylogenetic Computing Library.
##
##  Copyright 2010-2015 Jeet Sukumaran and Mark T. Holder.
##  All rights reserved.
##
##  See "LICENSE.rst" for terms and conditions of usage.
##
##  If you use this work or any portion thereof in published work,
##  please cite it as:
##
##     Sukumaran, J. and M. T. Holder. 2010. DendroPy: a Python library
##     for phylogenetic computing. Bioinformatics 26: 1569-1571.
##
##############################################################################

"""
Classes and Methods for working with tree reconciliation, fitting, embedding,
contained/containing etc.
"""

import dendropy
from dendropy.model import coalescent

class ContainingTree(dendropy.Tree):
    """
    A "containing tree" is a (usually rooted) tree data structure within which
    other trees are "contained". For example, species trees and their contained
    gene trees; host trees and their contained parasite trees; biogeographical
    "area" trees and their contained species or taxon trees.
    """

    def __init__(self,
            containing_tree,
            contained_taxon_namespace,
            contained_to_containing_taxon_map,
            contained_trees=None,
            fit_containing_edge_lengths=True,
            collapse_empty_edges=True,
            ultrametricity_precision=False,
            ignore_root_deep_coalescences=True,
            **kwargs):
        """
        __init__ converts ``self`` to ContainingTree class, embedding the trees
        given in the list, ``contained_trees.``


        Mandatory Arguments:

            ``containing_tree``
                A |Tree| or |Tree|-like object that describes the topological
                constraints or conditions of the containing tree (e.g., species,
                host, or biogeographical area trees).

            ``contained_taxon_namespace``
                A |TaxonNamespace| object that will be used to manage the taxa of
                the contained trees.

            ``contained_to_containing_taxon_map``
                A |TaxonNamespaceMapping| object mapping |Taxon| objects in the
                contained |TaxonNamespace| to corresponding |Taxon| objects in the
                containing tree.

        Optional Arguments:

            ``contained_trees``
                An iterable container of |Tree| or |Tree|-like objects that
                will be contained into ``containing_tree``; e.g. gene or
                parasite trees.

            ``fit_containing_edge_lengths``
                If |True| [default], then the branch lengths of
                ``containing_tree`` will be adjusted to fit the contained tree
                as they are added. Otherwise, the containing tree edge lengths
                will not be changed.

            ``collapse_empty_edges``
                If |True| [default], after edge lengths are adjusted,
                zero-length branches will be collapsed.

            ``ultrametricity_precision``
                If |False| [default], then trees will not be checked for
                ultrametricity. Otherwise this is the threshold within which
                all node to tip distances for sister nodes must be equal.

            ``ignore_root_deep_coalescences``
                If |True| [default], then deep coalescences in the root will
                not be counted.

        Other Keyword Arguments: Will be passed to Tree().

    """
        if "taxon_namespace" not in kwargs:
            kwargs["taxon_namespace"] = containing_tree.taxon_namespace
        dendropy.Tree.__init__(self,
                containing_tree,
                taxon_namespace=containing_tree.taxon_namespace)
        self.original_tree = containing_tree
        for edge in self.postorder_edge_iter():
            edge.head_contained_edges = {}
            edge.tail_contained_edges = {}
            edge.containing_taxa = set()
            edge.contained_taxa = set()
        self._contained_taxon_namespace = contained_taxon_namespace
        self._contained_to_containing_taxon_map = None
        self._contained_trees = None
        self._set_contained_to_containing_taxon_map(contained_to_containing_taxon_map)
        self.fit_containing_edge_lengths = fit_containing_edge_lengths
        self.collapse_empty_edges = collapse_empty_edges
        self.ultrametricity_precision = ultrametricity_precision
        self.ignore_root_deep_coalescences = ignore_root_deep_coalescences
        if contained_trees:
            self._set_contained_trees(contained_trees)
        if self.contained_trees:
            self.rebuild(rebuild_taxa=False)

    def _set_contained_taxon_namespace(self, taxon_namespace):
        self._contained_taxon_namespace = taxon_namespace

    def _get_contained_taxon_namespace(self):
        if self._contained_taxon_namespace is None:
            self._contained_taxon_namespace = dendropy.TaxonNamespace()
        return self._contained_taxon_namespace

    contained_taxon_namespace = property(_get_contained_taxon_namespace)

    def _set_contained_to_containing_taxon_map(self, contained_to_containing_taxon_map):
        """
        Sets mapping of |Taxon| objects of the genes/parasite/etc. to that of
        the population/species/host/etc.
        Creates mapping (e.g., species to genes) and decorates edges of self
        with sets of both containing |Taxon| objects and the contained
        |Taxon| objects that map to them.
        """
        if isinstance(contained_to_containing_taxon_map, dendropy.TaxonNamespaceMapping):
            if self._contained_taxon_namespace is not contained_to_containing_taxon_map.domain_taxon_namespace:
                raise ValueError("Domain TaxonNamespace of TaxonNamespaceMapping ('domain_taxon_namespace') not the same as 'contained_taxon_namespace' TaxonNamespace")
            self._contained_to_containing_taxon_map = contained_to_containing_taxon_map
        else:
            self._contained_to_containing_taxon_map = dendropy.TaxonNamespaceMapping(
                    mapping_dict=contained_to_containing_taxon_map,
                    domain_taxon_namespace=self.contained_taxon_namespace,
                    range_taxon_namespace=self.taxon_namespace)
        self.build_edge_taxa_sets()

    def _get_contained_to_containing_taxon_map(self):
        return self._contained_to_containing_taxon_map

    contained_to_containing_taxon_map = property(_get_contained_to_containing_taxon_map)

    def _set_contained_trees(self, trees):
        if hasattr(trees, 'taxon_namespace'):
            if self._contained_taxon_namespace is None:
                self._contained_taxon_namespace = trees.taxon_namespace
            elif self._contained_taxon_namespace is not trees.taxon_namespace:
                raise ValueError("'contained_taxon_namespace' of ContainingTree is not the same TaxonNamespace object of 'contained_trees'")
        self._contained_trees = dendropy.TreeList(trees, taxon_namespace=self._contained_taxon_namespace)
        if self._contained_taxon_namespace is None:
            self._contained_taxon_namespace = self._contained_trees.taxon_namespace

    def _get_contained_trees(self):
        if self._contained_trees is None:
            self._contained_trees = dendropy.TreeList(taxon_namespace=self._contained_taxon_namespace)
        return self._contained_trees

    contained_trees = property(_get_contained_trees)

    def _get_containing_to_contained_taxa_map(self):
        return self._contained_to_containing_taxon_map.reverse

    containing_to_contained_taxa_map = property(_get_containing_to_contained_taxa_map)

    def clear(self):
        """
        Clears all contained trees and mapped edges.
        """
        self.contained_trees = dendropy.TreeList(taxon_namespace=self._contained_to_containing_taxon_map.domain_taxa)
        self.clear_contained_edges()

    def clear_contained_edges(self):
        """
        Clears all contained mapped edges.
        """
        for edge in self.postorder_edge_iter():
            edge.head_contained_edges = {}
            edge.tail_contained_edges = {}

    def fit_edge_lengths(self, contained_trees):
        """
        Recalculate node ages / edge lengths of containing tree to accomodate
        contained trees.
        """

        # set the ages
        for node in self.postorder_node_iter():
            if node.is_internal():
                disjunct_leaf_set_list_split_bitmasks = []
                for i in node.child_nodes():
                    disjunct_leaf_set_list_split_bitmasks.append(self.taxon_namespace.taxa_bitmask(taxa=i.edge.containing_taxa))
                min_age = float('inf')
                for et in contained_trees:
                    min_age = self._find_youngest_intergroup_age(et, disjunct_leaf_set_list_split_bitmasks, min_age)
                node.age = max( [min_age] + [cn.age for cn in node.child_nodes()] )
            else:
                node.age = 0

        # set the corresponding edge lengths
        self.set_edge_lengths_from_node_ages()

        # collapse 0-length branches
        if self.collapse_empty_edges:
           self.collapse_unweighted_edges()

    def rebuild(self, rebuild_taxa=True):
        """
        Recalculate edge taxa sets, node ages / edge lengths of containing
        tree, and embed edges of contained trees.
        """
        if rebuild_taxa:
            self.build_edge_taxa_sets()
        if self.fit_containing_edge_lengths:
            self.fit_edge_lengths(self.contained_trees)
        self.clear_contained_edges()
        for et in self.contained_trees:
            self.embed_tree(et)

    def embed_tree(self, contained_tree):
        """
        Map edges of contained tree into containing tree (i.e., self).
        """
        if self.seed_node.age is None:
            self.calc_node_ages(ultrametricity_precision=self.ultrametricity_precision)
        if contained_tree not in self.contained_trees:
            self.contained_trees.append(contained_tree)
        if self.fit_containing_edge_lengths:
            self.fit_edge_lengths(self.contained_trees)
        if contained_tree.seed_node.age is None:
            contained_tree.calc_node_ages(ultrametricity_precision=self.ultrametricity_precision)
        contained_leaves = contained_tree.leaf_nodes()
        taxon_to_contained = {}
        for nd in contained_leaves:
            containing_taxon = self.contained_to_containing_taxon_map[nd.taxon]
            x = taxon_to_contained.setdefault(containing_taxon, set())
            x.add(nd.edge)
        for containing_edge in self.postorder_edge_iter():
            if containing_edge.is_terminal():
                containing_edge.head_contained_edges[contained_tree] = taxon_to_contained[containing_edge.head_node.taxon]
            else:
                containing_edge.head_contained_edges[contained_tree] = set()
                for nd in containing_edge.head_node.child_nodes():
                    containing_edge.head_contained_edges[contained_tree].update(nd.edge.tail_contained_edges[contained_tree])

            if containing_edge.tail_node is None:
                if containing_edge.length is not None:
                    target_age =  containing_edge.head_node.age + containing_edge.length
                else:
                    # assume all coalesce?
                    containing_edge.tail_contained_edges[contained_tree] = set([contained_tree.seed_node.edge])
                    continue
            else:
                target_age = containing_edge.tail_node.age

            containing_edge.tail_contained_edges[contained_tree] = set()
            for contained_edge in containing_edge.head_contained_edges[contained_tree]:
                if contained_edge.tail_node is not None:
                    remaining = target_age - contained_edge.tail_node.age
                elif contained_edge.length is not None:
                    remaining = target_age - (contained_edge.head_node.age + contained_edge.length)
                else:
                    continue
                while remaining > 0:
                    if contained_edge.tail_node is not None:
                        contained_edge = contained_edge.tail_node.edge
                    else:
                        if contained_edge.length is not None and (remaining - contained_edge.length) <= 0:
                            contained_edge = None
                            remaining = 0
                            break
                        else:
                            remaining = 0
                            break
                    if contained_edge and remaining > 0:
                        remaining -= contained_edge.length
                if contained_edge is not None:
                    containing_edge.tail_contained_edges[contained_tree].add(contained_edge)

    def build_edge_taxa_sets(self):
        """
        Rebuilds sets of containing and corresponding contained taxa at each
        edge.
        """
        for edge in self.postorder_edge_iter():
            if edge.is_terminal():
                edge.containing_taxa = set([edge.head_node.taxon])
            else:
                edge.containing_taxa = set()
                for i in edge.head_node.child_nodes():
                    edge.containing_taxa.update(i.edge.containing_taxa)
            edge.contained_taxa = set()
            for t in edge.containing_taxa:
                edge.contained_taxa.update(self.containing_to_contained_taxa_map[t])

    def num_deep_coalescences(self):
        """
        Returns total number of deep coalescences of the contained trees.
        """
        return sum(self.deep_coalescences().values())

    def deep_coalescences(self):
        """
        Returns dictionary where the contained trees are keys, and the number of
        deep coalescences corresponding to the tree are values.
        """
        dc = {}
        for tree in self.contained_trees:
            for edge in self.postorder_edge_iter():
                if edge.tail_node is None and self.ignore_root_deep_coalescences:
                    continue
                try:
                    dc[tree] += len(edge.tail_contained_edges[tree]) - 1
                except KeyError:
                    dc[tree] = len(edge.tail_contained_edges[tree]) - 1
        return dc

    def embed_contained_kingman(self,
            edge_pop_size_attr='pop_size',
            default_pop_size=1,
            label=None,
            rng=None,
            use_expected_tmrca=False):
        """
        Simulates, *embeds*, and returns a "censored" (Kingman) neutral coalescence tree
        conditional on self.

            ``rng``
                Random number generator to use. If |None|, the default will
                be used.

            ``edge_pop_size_attr``
                Name of attribute of self's edges that specify the population
                size. If this attribute does not exist, then the population
                size is taken to be 1.

        Note that all edge-associated taxon sets must be up-to-date (otherwise,
        ``build_edge_taxa_sets()`` should be called).
        """
        et = self.simulate_contained_kingman(
                edge_pop_size_attr=edge_pop_size_attr,
                default_pop_size=default_pop_size,
                label=label,
                rng=rng,
                use_expected_tmrca=use_expected_tmrca)
        self.embed_tree(et)
        return et

    def simulate_contained_kingman(self,
            edge_pop_size_attr='pop_size',
            default_pop_size=1,
            label=None,
            rng=None,
            use_expected_tmrca=False):
        """
        Simulates and returns a "censored" (Kingman) neutral coalescence tree
        conditional on self.

            ``rng``
                Random number generator to use. If |None|, the default will
                be used.

            ``edge_pop_size_attr``
                Name of attribute of self's edges that specify the population
                size. If this attribute does not exist, then the population
                size is taken to be 1.

        Note that all edge-associated taxon sets must be up-to-date (otherwise,
        ``build_edge_taxa_sets()`` should be called), and that the tree
        is *not* added to the set of contained trees. For the latter, call
        ``embed_contained_kingman``.
        """

        # Dictionary that maps nodes of containing tree to list of
        # corresponding nodes on gene tree, initially populated with leaf
        # nodes.
        contained_nodes = {}
        for nd in self.leaf_node_iter():
            contained_nodes[nd] = []
            for gt in nd.edge.contained_taxa:
                gn = dendropy.Node(taxon=gt)
                contained_nodes[nd].append(gn)

        # Generate the tree structure
        for edge in self.postorder_edge_iter():
            if edge.head_node.parent_node is None:
                # root: run unconstrained coalescence until just one gene node
                # remaining
                if hasattr(edge, edge_pop_size_attr):
                    pop_size = getattr(edge, edge_pop_size_attr)
                else:
                    pop_size = default_pop_size
                if len(contained_nodes[edge.head_node]) > 1:
                    final = coalescent.coalesce_nodes(nodes=contained_nodes[edge.head_node],
                            pop_size=pop_size,
                            period=None,
                            rng=rng,
                            use_expected_tmrca=use_expected_tmrca)
                else:
                    final = contained_nodes[edge.head_node]
            else:
                # run until next coalescence event, as determined by this edge
                # size.
                if hasattr(edge, edge_pop_size_attr):
                    pop_size = getattr(edge, edge_pop_size_attr)
                else:
                    pop_size = default_pop_size
                remaining = coalescent.coalesce_nodes(nodes=contained_nodes[edge.head_node],
                        pop_size=pop_size,
                        period=edge.length,
                        rng=rng,
                        use_expected_tmrca=use_expected_tmrca)
                try:
                    contained_nodes[edge.tail_node].extend(remaining)
                except KeyError:
                    contained_nodes[edge.tail_node] = remaining

        # Create and return the full tree
        contained_tree = dendropy.Tree(taxon_namespace=self.contained_taxon_namespace, label=label)
        contained_tree.seed_node = final[0]
        contained_tree.is_rooted = True
        return contained_tree

    def _find_youngest_intergroup_age(self, contained_tree, disjunct_leaf_set_list_split_bitmasks, starting_min_age=None):
        """
        Find the age of the youngest MRCA of disjunct leaf sets.
        """
        if starting_min_age is None:
            starting_min_age = float('inf')
        if contained_tree.seed_node.age is None:
            contained_tree.calc_node_ages(ultrametricity_precision=self.ultrametricity_precision)
        for nd in contained_tree.ageorder_node_iter(include_leaves=False):
            if nd.age > starting_min_age:
                break
            prev_intersections = False
            for bm in disjunct_leaf_set_list_split_bitmasks:
                if bm & nd.edge.split_bitmask:
                    if prev_intersections:
                        return nd.age
                    prev_intersections = True
        return starting_min_age

    def write_as_mesquite(self, out, **kwargs):
        """
        For debugging purposes, write out a Mesquite-format file.
        """
        from dendropy.dataio import nexuswriter
        nw = nexuswriter.NexusWriter(**kwargs)
        nw.is_write_block_titles = True
        out.write("#NEXUS\n\n")
        nw._write_taxa_block(out, self.taxon_namespace)
        out.write('\n')
        nw._write_taxa_block(out, self.contained_trees.taxon_namespace)
        if self.contained_trees.taxon_namespace.label:
            domain_title = self.contained_trees.taxon_namespace.label
        else:
            domain_title = self.contained_trees.taxon_namespace.oid
        contained_taxon_namespace = self.contained_trees.taxon_namespace
        contained_label = self.contained_trees.label
        out.write('\n')
        self._contained_to_containing_taxon_map.write_mesquite_association_block(out)
        out.write('\n')
        nw._write_trees_block(out, dendropy.TreeList([self], taxon_namespace=self.taxon_namespace))
        out.write('\n')
        nw._write_trees_block(out, dendropy.TreeList(self.contained_trees, taxon_namespace=contained_taxon_namespace, label=contained_label))
        out.write('\n')

def reconciliation_discordance(gene_tree, species_tree):
    """
    Given two trees (with splits encoded), this returns the number of gene
    duplications implied by the gene tree reconciled on the species tree, based
    on the algorithm described here:

        Goodman, M. J. Czelnusiniak, G. W. Moore, A. E. Romero-Herrera, and
        G. Matsuda. 1979. Fitting the gene lineage into its species lineage,
        a parsimony strategy illustrated by cladograms constructed from globin
        sequences. Syst. Zool. 19: 99-113.

        Maddison, W. P. 1997. Gene trees in species trees. Syst. Biol. 46:
        523-536.

    This function requires that the gene tree and species tree *have the same
    leaf set*. Note that for correct results,

        (a) trees must be rooted (i.e., is_rooted = True)
        (b) split masks must have been added as rooted (i.e., when
            encode_splits was called, is_rooted must have been set to True)

    """
    taxa_mask = species_tree.taxon_namespace.all_taxa_bitmask()
    species_node_gene_nodes = {}
    gene_node_species_nodes = {}
    for gnd in gene_tree.postorder_node_iter():
        gn_children = gnd.child_nodes()
        if len(gn_children) > 0:
            ssplit = 0
            for gn_child in gn_children:
                ssplit = ssplit | gene_node_species_nodes[gn_child].edge.leafset_bitmask
            sanc = species_tree.mrca(start_node=species_tree.seed_node, leafset_bitmask=ssplit)
            gene_node_species_nodes[gnd] = sanc
            if sanc not in species_node_gene_nodes:
                species_node_gene_nodes[sanc] = []
            species_node_gene_nodes[sanc].append(gnd)
        else:
            gene_node_species_nodes[gnd] = species_tree.find_node(lambda x : x.taxon == gnd.taxon)
    contained_gene_lineages = {}
    for snd in species_tree.postorder_node_iter():
        if snd in species_node_gene_nodes:
            for gnd in species_node_gene_nodes[snd]:
                for gnd_child in gnd.child_nodes():
                    sanc = gene_node_species_nodes[gnd_child]
                    p = sanc
                    while p is not None and p != snd:
                        if p.edge not in contained_gene_lineages:
                            contained_gene_lineages[p.edge] = 0
                        contained_gene_lineages[p.edge] += 1
                        p = p.parent_node

    dc = 0
    for v in contained_gene_lineages.values():
        dc += v - 1
    return dc

def monophyletic_partition_discordance(tree, taxon_namespace_partition):
    """
    Returns the number of deep coalescences on tree ``tree`` that would result
    if the taxa in ``tax_sets`` formed K mutually-exclusive monophyletic groups,
    where K = len(tax_sets)
    ``taxon_namespace_partition`` == TaxonNamespacePartition
    """

    tax_sets = taxon_namespace_partition.subsets()

    # from dendropy.model import parsimony
    # taxon_state_sets_map = {}
    # assert tree.taxon_namespace is taxon_namespace_partition.taxon_namespace
    # for taxon in tree.taxon_namespace:
    #     taxon_state_sets_map[taxon] = [0 for i in range(len(tax_sets))]
    # for idx, ts in enumerate(tax_sets):
    #     for taxon in ts:
    #         taxon_state_sets_map[taxon][idx] = 1
    # for taxon in tree.taxon_namespace:
    #     taxon_state_sets_map[taxon] = [set([i]) for i in taxon_state_sets_map[taxon]]
    # return parsimony.fitch_down_pass(
    #         postorder_nodes=tree.postorder_node_iter(),
    #         taxon_state_sets_map=taxon_state_sets_map
    #         )

    dc_tree = dendropy.Tree()
    dc_tree.taxon_namespace = dendropy.TaxonNamespace()
    for t in range(len(tax_sets)):
        dc_tree.taxon_namespace.add_taxon(dendropy.Taxon(label=str(t)))
    def _get_dc_taxon(nd):
        for idx, tax_set in enumerate(tax_sets):
            if nd.taxon in tax_set:
                return dc_tree.taxon_namespace[idx]
        assert "taxon not found in partition: '%s'" % nd.taxon.label
    src_dc_map = {}
    for snd in tree.postorder_node_iter():
        nnd = dendropy.Node()
        src_dc_map[snd] = nnd
        children = snd.child_nodes()
        if len(children) == 0:
            nnd.taxon = _get_dc_taxon(snd)
        else:
            taxa_set = []
            for cnd in children:
                dc_node = src_dc_map[cnd]
                if len(dc_node.child_nodes()) > 1:
                    nnd.add_child(dc_node)
                else:
                    ctax = dc_node.taxon
                    if ctax is not None and ctax not in taxa_set:
                        taxa_set.append(ctax)
                    del src_dc_map[cnd]
            if len(taxa_set) > 1:
                for t in taxa_set:
                    cnd = dendropy.Node()
                    cnd.taxon = t
                    nnd.add_child(cnd)
            else:
                if len(nnd.child_nodes()) == 0:
                    nnd.taxon = taxa_set[0]
                elif len(taxa_set) == 1:
                    cnd = dendropy.Node()
                    cnd.taxon = taxa_set[0]
                    nnd.add_child(cnd)
    dc_tree.seed_node = nnd
    return len(dc_tree.leaf_nodes()) - len(tax_sets)