1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# dicomparser.py
"""Class that parses and returns formatted DICOM RT data."""
# Copyright (c) 2009-2016 Aditya Panchal
# Copyright (c) 2009-2010 Roy Keyes
# This file is part of dicompyler-core, released under a BSD license.
# See the file license.txt included with this distribution, also
# available at https://github.com/dicompyler/dicompyler-core/
import logging
import numpy as np
try:
from pydicom.dicomio import read_file
from pydicom.dataset import Dataset, validate_file_meta
from pydicom.pixel_data_handlers.util import pixel_dtype
except ImportError:
from dicom import read_file
from dicom.dataset import Dataset
import random
from numbers import Number
from io import BytesIO
from pathlib import Path
from dicompylercore import dvh, util
from dicompylercore.config import pil_available, shapely_available
if pil_available:
from PIL import Image
if shapely_available:
from shapely.geometry import Polygon
logger = logging.getLogger('dicompylercore.dicomparser')
class DicomParser:
"""Class to parse DICOM / DICOM RT files."""
def __init__(self, dataset, memmap_pixel_array=False):
"""Initialize DicomParser from a pydicom Dataset or DICOM file.
Parameters
----------
dataset : pydicom Dataset or filename
pydicom dataset object or DICOM file location
memmap_pixel_array : bool, optional
Enable pixel array access via memory mapping, by default False
Raises
------
AttributeError
Raised if SOPClassUID is not present in the pydicom Dataset
AttributeError
Raised if the DICOM file or pydicom Dataset cannot be read
"""
self.memmap_pixel_array = memmap_pixel_array
if isinstance(dataset, Dataset):
self.ds = dataset
elif isinstance(dataset, (str, BytesIO, Path)):
try:
with open(dataset, "rb") as fp:
self.ds = read_file(fp, defer_size=100, force=True,
stop_before_pixels=memmap_pixel_array)
if memmap_pixel_array:
self.offset = fp.tell() + 8
except Exception:
# Raise the error for the calling method to handle
raise
else:
# Sometimes DICOM files may not have headers,
# but they should always have a SOPClassUID
# to declare what type of file it is.
# If the file doesn't have a SOPClassUID,
# then it probably isn't DICOM.
if "SOPClassUID" not in self.ds:
raise AttributeError
else:
raise AttributeError
# Fix dataset file_meta if incorrect
try:
validate_file_meta(self.ds.file_meta)
except ValueError:
logger.debug('Fixing invalid File Meta for ' +
str(self.ds.SOPInstanceUID))
self.ds.fix_meta_info()
# Remove the PixelData attribute if it is not set.
# i.e. RTStruct does not contain PixelData and its presence can confuse
# the parser
if "PixelData" in self.ds and self.ds.PixelData is None:
delattr(self.ds, 'PixelData')
if memmap_pixel_array:
self.filename = dataset
self.pixel_array = self.get_pixel_array
else:
if "PixelData" in self.ds:
self.pixel_array = self.ds.pixel_array
# ====================== SOP Class and Instance Methods ======================
def GetSOPClassUID(self):
"""Determine the SOP Class UID of the current file."""
uid = getattr(self.ds, 'SOPClassUID', None)
if (uid == '1.2.840.10008.5.1.4.1.1.481.2'):
return 'rtdose'
elif (uid == '1.2.840.10008.5.1.4.1.1.481.3'):
return 'rtss'
elif (uid == '1.2.840.10008.5.1.4.1.1.481.5'):
return 'rtplan'
elif (uid == '1.2.840.10008.5.1.4.1.1.2'):
return 'ct'
else:
return None
def GetSOPInstanceUID(self):
"""Determine the SOP Class UID of the current file."""
return getattr(self.ds, 'SOPInstanceUID', None)
def GetStudyInfo(self):
"""Return the study information of the current file."""
return {'description': getattr(self.ds, 'StudyDescription',
'No description'),
'date': getattr(self.ds, 'StudyDate', None),
'time': getattr(self.ds, 'StudyTime', None),
'id': getattr(self.ds, 'StudyInstanceUID',
str(random.randint(0, 65535)))}
def GetSeriesDateTime(self):
"""Return the series date/time information."""
dt = {'date': getattr(self.ds, 'SeriesDate', None),
'time': getattr(self.ds, 'SeriesTime', None)}
if dt['date'] is None:
dt['date'] = getattr(self.ds, 'InstanceCreationDate', None)
if dt['time'] is None:
dt['time'] = getattr(self.ds, 'InstanceCreationTime', None)
return dt
def GetSeriesInfo(self):
"""Return the series information of the current file."""
series = {'description': getattr(self.ds, 'SeriesDescription',
'No description'),
'id': getattr(self.ds, 'SeriesInstanceUID', None),
'study': getattr(self.ds, 'SeriesInstanceUID', None),
'referenceframe': getattr(self.ds, 'FrameOfReferenceUID',
str(random.randint(0, 65535))),
'modality': getattr(self.ds, 'Modality', 'OT')}
series.update(self.GetSeriesDateTime())
series['study'] = getattr(self.ds, 'StudyInstanceUID', series['study'])
return series
def GetReferencedSeries(self):
"""Return the SOP Class UID of the referenced series."""
if "ReferencedFrameOfReferenceSequence" in self.ds:
frame = self.ds.ReferencedFrameOfReferenceSequence
if "RTReferencedStudySequence" in frame[0]:
study = frame[0].RTReferencedStudySequence[0]
if "RTReferencedSeriesSequence" in study:
if "SeriesInstanceUID" in \
study.RTReferencedSeriesSequence[0]:
series = study.RTReferencedSeriesSequence[0]
return series.SeriesInstanceUID
else:
return ''
def GetFrameOfReferenceUID(self):
"""Determine the Frame of Reference UID of the current file."""
if 'FrameOfReferenceUID' in self.ds:
# Some Files contain a Ref FoR but do not contain an FoR themselves
if not self.ds.FrameOfReferenceUID == '':
return self.ds.FrameOfReferenceUID
if 'ReferencedFrameOfReferenceSequence' in self.ds:
return self.ds.ReferencedFrameOfReferenceSequence[
0].FrameOfReferenceUID
else:
return ''
def GetReferencedStructureSet(self):
"""Return the SOP Class UID of the referenced structure set."""
if "ReferencedStructureSetSequence" in self.ds:
return self.ds.ReferencedStructureSetSequence[
0].ReferencedSOPInstanceUID
else:
return ''
def GetReferencedRTPlan(self):
"""Return the SOP Class UID of the referenced RT plan."""
if "ReferencedRTPlanSequence" in self.ds:
return self.ds.ReferencedRTPlanSequence[0].ReferencedSOPInstanceUID
else:
return ''
def GetDemographics(self):
"""Return the patient demographics from a DICOM file."""
# Set up some sensible defaults for demographics
patient = {'name': 'None',
'id': 'None',
'birth_date': None,
'gender': 'Other'}
if 'PatientName' in self.ds:
name = self.ds.PatientName
patient['name'] = str(name)
patient['given_name'] = name.given_name
patient['middle_name'] = name.middle_name
patient['family_name'] = name.family_name
if 'PatientID' in self.ds:
patient['id'] = self.ds.PatientID
if 'PatientSex' in self.ds:
if (self.ds.PatientSex == 'M'):
patient['gender'] = 'M'
elif (self.ds.PatientSex == 'F'):
patient['gender'] = 'F'
else:
patient['gender'] = 'O'
if 'PatientBirthDate' in self.ds:
if len(self.ds.PatientBirthDate):
patient['birth_date'] = str(self.ds.PatientBirthDate)
return patient
# =============================== Image Methods ===============================
def GetImageData(self):
"""Return the image data from a DICOM file."""
data = {}
if 'ImagePositionPatient' in self.ds:
data['position'] = self.ds.ImagePositionPatient
if 'ImageOrientationPatient' in self.ds:
data['orientation'] = self.ds.ImageOrientationPatient
if 'PixelSpacing' in self.ds:
data['pixelspacing'] = self.ds.PixelSpacing
else:
data['pixelspacing'] = [1, 1]
data['rows'] = self.ds.Rows
data['columns'] = self.ds.Columns
data['samplesperpixel'] = self.ds.SamplesPerPixel
data['photometricinterpretation'] = self.ds.PhotometricInterpretation
data['littlendian'] = \
self.ds.file_meta.TransferSyntaxUID.is_little_endian
if 'PatientPosition' in self.ds:
data['patientposition'] = self.ds.PatientPosition
data['frames'] = self.GetNumberOfFrames()
return data
def GetPixelArray(self):
"""Generate a memory mapped numpy accessor to the pixel array."""
if self.memmap_pixel_array is False:
return self.pixel_array
data = self.GetImageData()
filename = self.filename
dtype = pixel_dtype(self.ds)
offset = self.offset
frames = int(data['frames'])
shape = (int(self.GetNumberOfFrames()),
data['rows'], data['columns']) if frames > 1 \
else (data['rows'], data['columns'])
def get_pixel_array(filename, dtype, offset, shape):
array = np.memmap(
filename,
dtype=dtype,
mode="r",
offset=offset,
shape=shape
)
yield array
del array
return list(get_pixel_array(filename, dtype, offset, shape))[0]
get_pixel_array = property(GetPixelArray)
def GetImageLocation(self):
"""Calculate the location of the current image slice."""
ipp = self.ds.ImagePositionPatient
iop = self.ds.ImageOrientationPatient
normal = []
normal.append(iop[1] * iop[5] - iop[2] * iop[4])
normal.append(iop[2] * iop[3] - iop[0] * iop[5])
normal.append(iop[0] * iop[4] - iop[1] * iop[3])
loc = 0
for i in range(0, len(normal)):
loc += normal[i] * ipp[i]
# The image location is inverted for Feet First images
if 'PatientPosition' in self.ds:
if ('ff' in self.ds.PatientPosition.lower()):
loc = loc * -1
return loc
def GetImageOrientationType(self):
"""Get the orientation of the current image slice."""
if 'ImageOrientationPatient' in self.ds:
iop = np.array(self.ds.ImageOrientationPatient)
orientations = [
["SA", np.array([1, 0, 0, 0, 1, 0])], # supine axial
["PA", np.array([-1, 0, 0, 0, -1, 0])], # prone axial
["SS", np.array([0, 1, 0, 0, 0, -1])], # supine sagittal
["PS", np.array([0, -1, 0, 0, 0, -1])], # prone sagittal
["SC", np.array([1, 0, 0, 0, 0, -1])], # supine coronal
["PC", np.array([-1, 0, 0, 0, 0, -1])] # prone coronal
]
for o in orientations:
if (not np.any(np.array(np.round(iop - o[1]),
dtype=np.int32))):
return o[0]
# Return N/A if orientation was not found or could not be determined
return "NA"
def GetNumberOfFrames(self):
"""Return the number of frames in a DICOM image file."""
frames = 1
if 'NumberOfFrames' in self.ds:
frames = self.ds.NumberOfFrames.real
else:
if "PixelData" not in self.ds:
return 0
else:
if (self.pixel_array.ndim > 2):
if (self.ds.SamplesPerPixel == 1) and not \
(self.ds.PhotometricInterpretation == 'RGB'):
frames = self.pixel_array.shape[0]
return frames
def GetRescaleInterceptSlope(self):
"""Return the rescale intercept and slope if present."""
intercept, slope = 0, 1
if ('RescaleIntercept' in self.ds and 'RescaleSlope' in self.ds):
intercept = self.ds.RescaleIntercept if \
isinstance(self.ds.RescaleIntercept, Number) else 0
slope = self.ds.RescaleSlope if \
isinstance(self.ds.RescaleSlope, Number) else 1
return intercept, slope
def GetImage(self, window=0, level=0, size=None, background=False,
frames=0):
"""Return the image from a DICOM image storage file.
Parameters
----------
window : int, optional
Image window, by default 0
level : int, optional
Image level or width, by default 0
size : tuple, optional
Image size tuple in pixels, by default None
background : bool, optional
Enable a black image background, by default False
frames : int, optional
If multi-frame, use requested frame to generate image, by default 0
Returns
-------
Pillow Image
A Pillow Image object
"""
if not pil_available:
print("Python imaging library not available." +
" Cannot generate images.")
return
# Return a black image if the Numpy pixel array cannot be accessed
try:
self.pixel_array
except BaseException:
return Image.new('L', size)
# Samples per pixel are > 1 & RGB format
if (self.ds.SamplesPerPixel > 1) and \
(self.ds.PhotometricInterpretation == 'RGB'):
# Little Endian
if self.ds.file_meta.TransferSyntaxUID.is_little_endian:
im = Image.frombuffer('RGB', (self.ds.Columns, self.ds.Rows),
self.ds.PixelData, 'raw', 'RGB', 0, 1)
# Big Endian
else:
im = Image.fromarray(np.rollaxis(
self.pixel_array.transpose(), 0, 2))
# Otherwise the image is monochrome
else:
if ((window == 0) and (level == 0)):
window, level = self.GetDefaultImageWindowLevel()
# Rescale the slope and intercept of the image if present
intercept, slope = self.GetRescaleInterceptSlope()
# Get the requested frame if multi-frame
if (frames > 0):
pixel_array = self.pixel_array[frames]
else:
pixel_array = self.pixel_array
rescaled_image = pixel_array * slope + intercept
image = self.GetLUTValue(rescaled_image, window, level)
im = Image.fromarray(image).convert('L')
# Resize the image if a size is provided
if size:
im.thumbnail(size, Image.ANTIALIAS)
# Add a black background if requested
if background:
bg = Image.new('RGBA', size, (0, 0, 0, 255))
bg.paste(im, ((size[0] - im.size[0]) // 2,
(size[1] - im.size[1]) // 2))
return bg
return im
def GetDefaultImageWindowLevel(self):
"""Determine the default window/level for the DICOM image."""
window, level = 0, 0
if ('WindowWidth' in self.ds) and ('WindowCenter' in self.ds):
if isinstance(self.ds.WindowWidth, float):
window = self.ds.WindowWidth
elif isinstance(self.ds.WindowWidth, list):
if (len(self.ds.WindowWidth) > 1):
window = self.ds.WindowWidth[1]
if isinstance(self.ds.WindowCenter, float):
level = self.ds.WindowCenter
elif isinstance(self.ds.WindowCenter, list):
if (len(self.ds.WindowCenter) > 1):
level = self.ds.WindowCenter[1]
if ((window, level) == (0, 0)):
wmax = 0
wmin = 0
# Rescale the slope and intercept of the image if present
intercept, slope = self.GetRescaleInterceptSlope()
pixel_array = self.pixel_array * slope + intercept
if (pixel_array.max() > wmax):
wmax = pixel_array.max()
if (pixel_array.min() < wmin):
wmin = pixel_array.min()
# Default window is the range of the data array
window = int(wmax - wmin)
# Default level is the range midpoint minus the window minimum
level = int(window / 2 - abs(wmin))
return window, level
def GetLUTValue(self, data, window, level):
"""Apply the RGB Look-Up Table for the data and window/level value.
Parameters
----------
data : numpy array
Pixel data array from pydicom dataset
window : float
Image window value
level : float
Image window level or width
Returns
-------
numpy array
Modified numpy array with RGB LUT applied
"""
lutvalue = util.piecewise(
data,
[data <= (level - 0.5 - (window - 1) / 2),
data > (level - 0.5 + (window - 1) / 2)],
[0, 255, lambda data:
((data - (level - 0.5)) / (window-1) + 0.5) *
(255 - 0)])
# Convert the resultant array to an unsigned 8-bit array to create
# an 8-bit grayscale LUT since the range is only from 0 to 255
return np.array(lutvalue, dtype=np.uint8)
def GetPatientToPixelLUT(self):
"""Get image transformation matrix from the DICOM standard.
Referenced matrix can be found in Part 3 Section C.7.6.2.1.1
"""
drow, dcol = self.ds.PixelSpacing
orientation = self.ds.ImageOrientationPatient
first_x, first_y, first_z = self.ds.ImagePositionPatient
num_cols = self.ds.Columns
num_rows = self.ds.Rows
# Determine which way X and Y real-world coords run
# X runs across columns if x_lut_index is 0
# limits to head-first/feet-first and prone/supine/decubitus
x_index = self.x_lut_index()
m = np.array(
[[orientation[0]*dcol, orientation[3]*drow, 0, first_x],
[orientation[1]*dcol, orientation[4]*drow, 0, first_y],
[orientation[2]*dcol, orientation[5]*drow, 0, first_z],
[0, 0, 0, 1]])
last_xy = np.matmul(
m, np.array([[num_cols-1], [num_rows-1], [0], [1]])
)
last_x, last_y = last_xy[0][0], last_xy[1][0]
if x_index == 0:
col_lut = np.linspace(first_x, last_x, num_cols)
row_lut = np.linspace(first_y, last_y, num_rows)
else:
col_lut = np.linspace(first_y, last_y, num_cols)
row_lut = np.linspace(first_x, last_x, num_rows)
return col_lut, row_lut
# ========================= RT Structure Set Methods =========================
def GetStructureInfo(self):
"""Return the patient demographics from a DICOM file."""
structure = {}
structure['label'] = getattr(self.ds, 'StructureSetLabel', '')
structure['date'] = getattr(self.ds, 'StructureSetDate', '')
structure['time'] = getattr(self.ds, 'StructureSetTime', '')
structure['numcontours'] = len(self.ds.ROIContourSequence)
return structure
def GetStructures(self):
"""Return a dictionary of structures (ROIs)."""
structures = {}
# Determine whether this is RT Structure Set file
if not (self.GetSOPClassUID() == 'rtss'):
return structures
# Locate the name and number of each ROI
if 'StructureSetROISequence' in self.ds:
for item in self.ds.StructureSetROISequence:
data = {}
number = int(item.ROINumber)
data['id'] = number
data['name'] = item.ROIName
logger.debug("Found ROI #%s: %s", str(number), data['name'])
structures[number] = data
# Determine the type of each structure (PTV, organ, external, etc)
if 'RTROIObservationsSequence' in self.ds:
for item in self.ds.RTROIObservationsSequence:
number = item.ReferencedROINumber
if number in structures:
structures[number]['type'] = item.RTROIInterpretedType
# The coordinate data of each ROI is stored within ROIContourSequence
if 'ROIContourSequence' in self.ds:
for roi in self.ds.ROIContourSequence:
number = roi.ReferencedROINumber
# Generate a random color for the current ROI
structures[number]['color'] = np.array((
random.randint(0, 255),
random.randint(0, 255),
random.randint(0, 255)), dtype=int)
# Get the RGB color triplet for the current ROI if it exists
if 'ROIDisplayColor' in roi:
# Make sure the color is not none
if not (roi.ROIDisplayColor is None):
color = roi.ROIDisplayColor
# Otherwise decode values separated by forward slashes
else:
value = roi[0x3006, 0x002a].repval
color = value.strip("'").split("/")
# Try to convert the detected value to a color triplet
try:
structures[number]['color'] = \
np.array(color, dtype=int)
# Otherwise fail and fallback on the random color
except Exception:
logger.debug(
"Unable to decode display color for ROI #%s",
str(number))
# Determine whether the ROI has any contours present
if 'ContourSequence' in roi:
structures[number]['empty'] = False
else:
structures[number]['empty'] = True
return structures
def GetStructureCoordinates(self, roi_number):
"""Get the list of coordinates for each plane of the structure.
Parameters
----------
roi_number : integer
ROI number used to index structure from RT Struct
Returns
-------
dict
Dict of structure coordinates sorted by slice position (z)
"""
planes = {}
# The coordinate data of each ROI is stored within ROIContourSequence
if 'ROIContourSequence' in self.ds:
for roi in self.ds.ROIContourSequence:
if (roi.ReferencedROINumber == int(roi_number)):
if 'ContourSequence' in roi:
# Locate the contour sequence for each referenced ROI
for c in roi.ContourSequence:
# For each plane, initialize a new plane dict
plane = dict()
# Determine all the plane properties
plane['type'] = c.ContourGeometricType
plane['num_points'] = int(c.NumberOfContourPoints)
# Since DICOM RT Structure Set (C.8.8.6) specifies
# that a ContourData is stored as an flattened list
# of xyz triples, convert it to a unflattened list
# for easier parsing
plane['data'] = \
self.GetContourPoints(c.ContourData)
# Add each plane to the planes dict
# of the current ROI
z = str(round(plane['data'][0][2], 2)) + '0'
if z not in planes:
planes[z] = []
planes[z].append(plane)
return planes
def GetContourPoints(self, array):
"""Unflatten a flattened list of xyz point triples.
Parameters
----------
array : list
Flattened list of xyz point triples
Returns
-------
list
Unflattened list of xyz point triples
"""
n = 3
return [array[i:i+n] for i in range(0, len(array), n)]
def CalculatePlaneThickness(self, planesDict):
"""Calculate the plane thickness for each structure.
Parameters
----------
planesDict : dict
Output from GetStructureCoordinates
Returns
-------
float
Thickness of the structure in mm
"""
planes = []
# Iterate over each plane in the structure
for z in planesDict.keys():
planes.append(float(z))
planes.sort()
# Determine the thickness
thickness = 10000
for n in range(0, len(planes)):
if (n > 0):
newThickness = planes[n] - planes[n-1]
if (newThickness < thickness):
thickness = newThickness
# If the thickness was not detected, set it to 0
if (thickness == 10000):
thickness = 0
return thickness
def CalculateStructureVolume(self, coords, thickness):
"""Calculate the volume of the given structure.
Parameters
----------
coords : dict
Coordinates of each plane of the structure
thickness : float
Thickness of the structure in mm
Returns
-------
float
Volume of structure in cm3
"""
if not shapely_available:
print("Shapely library not available." +
" Please install to calculate.")
return 0
class Within:
def __init__(self, o):
self.o = o
def __lt__(self, other):
return self.o.within(other.o)
s = 0
for i, z in enumerate(sorted(coords.items())):
# Skip contour data if it is not CLOSED_PLANAR
if z[1][0]['type'] != 'CLOSED_PLANAR':
continue
polygons = []
contours = [[x[0:2] for x in c['data']] for c in z[1]]
for contour in contours:
p = Polygon(contour)
polygons.append(p)
# Sort polygons according whether they are contained
# by the previous polygon
if len(polygons) > 1:
ordered_polygons = sorted(polygons, key=Within, reverse=True)
else:
ordered_polygons = polygons
for ip, p in enumerate(ordered_polygons):
pa = 0
if ((i == 0) or (i == len(coords.items()) - 1)) and \
not (len(coords.items()) == 1):
pa += (p.area // 2)
else:
pa += p.area
# Subtract the volume if polygon is contained within the parent
# and is not the parent itself
if p.within(ordered_polygons[0]) and \
(p != ordered_polygons[0]):
s -= pa
else:
s += pa
vol = s * thickness / 1000
return vol
# ============================== RT Dose Methods ==============================
def HasDVHs(self):
"""Return whether dose-volume histograms (DVHs) exist."""
if "DVHSequence" not in self.ds:
return False
else:
return True
def GetDVHs(self):
"""Return cumulative dose-volume histograms (DVHs)."""
self.dvhs = {}
if self.HasDVHs():
for item in self.ds.DVHSequence:
# Make sure that the DVH has a referenced structure / ROI
if 'DVHReferencedROISequence' not in item:
continue
number = item.DVHReferencedROISequence[0].ReferencedROINumber
logger.debug("Found DVH for ROI #%s", str(number))
self.dvhs[number] = dvh.DVH.from_dicom_dvh(self.ds, number)
return self.dvhs
def GetDoseGrid(self, z=0, threshold=0.5):
"""Return the 2d dose grid for the given slice position (mm).
Parameters
----------
z : int, optional
Slice position in mm, by default 0
threshold : float, optional
Threshold in mm to determine the max difference from z
to the closest dose slice without using interpolation,
by default 0.5
Returns
-------
np.array
An numpy 2d array of dose points
"""
# If this is a multi-frame dose pixel array,
# determine the offset for each frame
if 'GridFrameOffsetVector' in self.ds:
pixel_array = self.GetPixelArray()
z = float(z)
# Get the initial dose grid position (z) in patient coordinates
ipp = self.ds.ImagePositionPatient
gfov = self.ds.GridFrameOffsetVector
# Add the position to the offset vector to determine the
# z coordinate of each dose plane
z_sign = 1 if self.is_head_first_orientation() else -1
planes = (z_sign * np.array(gfov)) + ipp[2]
frame = -1
# Check to see if the requested plane exists in the array
if (np.amin(np.fabs(planes - z)) < threshold):
frame = np.argmin(np.fabs(planes - z))
# Return the requested dose plane, since it was found
if not (frame == -1):
return pixel_array[frame]
# Check if the requested plane is within the dose grid boundaries
elif ((z < np.amin(planes)) or (z > np.amax(planes))):
return np.array([])
# The requested plane was not found, so interpolate between planes
else:
# Determine the upper and lower bounds
umin = np.fabs(planes - z)
ub = np.argmin(umin)
lmin = umin.copy()
# Change the min value to the max so we can find the 2nd min
lmin[ub] = np.amax(umin)
lb = np.argmin(lmin)
# Fractional distance of dose plane between upper & lower bound
fz = (z - planes[lb]) / (planes[ub] - planes[lb])
plane = self.InterpolateDosePlanes(
pixel_array[ub], pixel_array[lb], fz)
return plane
else:
return np.array([])
def InterpolateDosePlanes(self, uplane, lplane, fz):
"""Interpolate a dose plane between two bounding planes.
Parameters
----------
uplane : float
Upper dose plane boundary in mm
lplane : float
Lower dose plane boundary in mm
fz : float
Fractional distance from the bottom to the top,
where the new plane is located.
E.g. if fz = 1, the plane is at the upper plane,
fz = 0, it is at the lower plane.
Returns
-------
numpy array
An numpy 2d array of the interpolated dose plane
"""
# A simple linear interpolation
doseplane = fz*uplane + (1.0 - fz)*lplane
return doseplane
def is_head_first_orientation(self):
"""Return True if self.orientation is head-first.
Raises
------
NotImplementedError
Raised if orientation is not one of head/feet-first
and supine/prone/decubitus
Returns
-------
bool
True if orientation is head-first, else False
"""
orientation = self.ds.ImageOrientationPatient
if any(
all(np.isclose(orientation, hf_orientation))
for hf_orientation in ( # noqa
[1, 0, 0, 0, 1, 0], # Head First Supine
[-1, 0, 0, 0, -1, 0], # Head First Prone
[0, -1, 0, 1, 0, 0], # Head First Decubitus Left
[0, 1, 0, -1, 0, 0] # Head First Decubitus Right
)
):
return True
elif any(
all(np.isclose(orientation, ff_orientation))
for ff_orientation in (
[0, 1, 0, 1, 0, 0], # Feet First Decubitus Left
[0, -1, 0, -1, 0, 0], # Feet First Decubitus Right
[1, 0, 0, 0, -1, 0], # Feet First Prone
[-1, 0, 0, 0, 1, 0] # Feet First Supine
)
):
return False
else:
raise NotImplementedError(
"Cannot calculate dose plane sign for non-standard orientation"
)
def x_lut_index(self):
"""Return LUT index for real-world X direction.
Raises
------
NotImplementedError
Raised if orientation is not one of head/feet-first
and supine/prone/decubitus
Returns
-------
X direction LUT index, matching 'lut' from GetDoseData
0 if real-world X across columns
1 if real-world X along rows
"""
orientation = self.ds.ImageOrientationPatient
if any(
all(np.isclose(orientation, non_decub))
for non_decub in (
[1, 0, 0, 0, 1, 0], # Head First Supine
[-1, 0, 0, 0, -1, 0], # Head First Prone
[-1, 0, 0, 0, 1, 0], # Feet First Supine
[1, 0, 0, 0, -1, 0] # Feet First Prone
)
):
return 0
elif any(
all(np.isclose(orientation, decub))
for decub in (
[0, -1, 0, 1, 0, 0], # Head First Decubitus Left
[0, 1, 0, -1, 0, 0], # Head First Decubitus Right
[0, 1, 0, 1, 0, 0], # Feet First Decubitus Left
[0, -1, 0, -1, 0, 0] # Feet First Decubitus Right
)
):
return 1
else:
raise NotImplementedError(
"Cannot calculate X direction for non-standard orientation"
)
def GetIsodosePoints(self, z=0, level=100, threshold=0.5):
"""Return dose grid points from an isodose level & slice position.
Parameters
----------
z : int, optional
Slice position in mm., by default 0
level : int, optional
Isodose level in scaled form
(multiplied by self.ds.DoseGridScaling), by default 100
threshold : float, optional
Threshold in mm to determine the max difference
from z to the closest dose slice without
using interpolation, by default 0.5
Returns
-------
list
An list of tuples representing isodose points
"""
plane = self.GetDoseGrid(z, threshold)
isodose = (plane >= level).nonzero()
return list(zip(isodose[1].tolist(), isodose[0].tolist()))
def GetDoseData(self):
"""Return the dose data from a DICOM RT Dose file."""
data = self.GetImageData()
data['doseunits'] = getattr(self.ds, 'DoseUnits', '')
data['dosetype'] = getattr(self.ds, 'DoseType', '')
data['dosecomment'] = getattr(self.ds, 'DoseComment', '')
data['dosesummationtype'] = getattr(self.ds, 'DoseSummationType', '')
data['dosegridscaling'] = getattr(self.ds, 'DoseGridScaling', '')
dosemax = 0
for x in range(data["frames"]):
pixel_array = self.GetPixelArray()
newmax = pixel_array[x].max()
dosemax = newmax if newmax > dosemax else dosemax
if self.memmap_pixel_array:
del pixel_array
data['dosemax'] = float(dosemax)
data['lut'] = self.GetPatientToPixelLUT()
data['x_lut_index'] = self.x_lut_index()
data['fraction'] = ''
if "ReferencedRTPlanSequence" in self.ds:
plan = self.ds.ReferencedRTPlanSequence[0]
if "ReferencedFractionGroupSequence" in plan:
data['fraction'] = \
plan.ReferencedFractionGroupSequence[
0].ReferencedFractionGroupNumber
return data
def GetReferencedBeamNumber(self):
"""Return the referenced beam number (if it exists) from RT Dose."""
beam = None
if "ReferencedRTPlanSequence" in self.ds:
rp = self.ds.ReferencedRTPlanSequence[0]
if "ReferencedFractionGroupSequence" in rp:
rf = rp.ReferencedFractionGroupSequence[0]
if "ReferencedBeamSequence" in rf:
if "ReferencedBeamNumber" in rf.ReferencedBeamSequence[0]:
beam = \
rf.ReferencedBeamSequence[0].ReferencedBeamNumber
return beam
# ============================== RT Plan Methods ==============================
def GetPlan(self):
"""Return the plan information."""
self.plan = {}
self.plan['label'] = getattr(self.ds, 'RTPlanLabel', '')
self.plan['date'] = getattr(self.ds, 'RTPlanDate', '')
self.plan['time'] = getattr(self.ds, 'RTPlanTime', '')
self.plan['name'] = ''
self.plan['rxdose'] = 0
if "DoseReferenceSequence" in self.ds:
for item in self.ds.DoseReferenceSequence:
if item.DoseReferenceStructureType == 'SITE':
self.plan['name'] = "N/A"
if "DoseReferenceDescription" in item:
self.plan['name'] = item.DoseReferenceDescription
if 'TargetPrescriptionDose' in item:
rxdose = item.TargetPrescriptionDose * 100
if (rxdose > self.plan['rxdose']):
self.plan['rxdose'] = rxdose
elif item.DoseReferenceStructureType == 'VOLUME':
if 'TargetPrescriptionDose' in item:
self.plan['rxdose'] = item.TargetPrescriptionDose * 100
if (("FractionGroupSequence" in self.ds) and
(self.plan['rxdose'] == 0)):
fg = self.ds.FractionGroupSequence[0]
if ("ReferencedBeamSequence" in fg) and \
("NumberOfFractionsPlanned" in fg):
beams = fg.ReferencedBeamSequence
fx = fg.NumberOfFractionsPlanned
for beam in beams:
if "BeamDose" in beam:
self.plan['rxdose'] += beam.BeamDose * fx * 100
self.plan['rxdose'] = round(self.plan['rxdose'])
self.plan['brachy'] = False
if ("BrachyTreatmentTechnique" in self.ds) or \
("BrachyTreatmentType" in self.ds):
self.plan['brachy'] = True
return self.plan
def GetReferencedBeamsInFraction(self, fx=0):
"""Return the referenced beams from the specified fraction.
Parameters
----------
fx : int, optional
FractionGroupSequence number, by default 0
Returns
-------
dict
Dictionary of referenced beam data
"""
beams = {}
if ("BeamSequence" in self.ds):
bdict = self.ds.BeamSequence
elif ("IonBeamSequence" in self.ds):
bdict = self.ds.IonBeamSequence
else:
return beams
# Obtain the beam information
for b in bdict:
beam = {}
beam['name'] = b.BeamName if "BeamName" in b else ""
beam['description'] = b.BeamDescription \
if "BeamDescription" in b else ""
beams[b.BeamNumber.real] = beam
# Obtain the referenced beam info from the fraction info
if ("FractionGroupSequence" in self.ds):
fg = self.ds.FractionGroupSequence[fx]
if ("ReferencedBeamSequence" in fg):
rb = fg.ReferencedBeamSequence
nfx = fg.NumberOfFractionsPlanned
for b in rb:
if "BeamDose" in b:
beams[b.ReferencedBeamNumber]['dose'] = \
b.BeamDose * nfx * 100
return beams
|