1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# dose.py
"""Routines to access and modify DICOM RT Dose."""
# Copyright (c) 2009-2016 Aditya Panchal
# Copyright (c) 2019-2020 Dan Cutright
# This file is part of dicompyler-core, released under a BSD license.
# See the file license.txt included with this distribution, also
# available at https://github.com/dicompyler/dicompyler-core/
#
# This code was adapted from dicom_dose_sum.py from DVH Analytics:
# https://github.com/cutright/DVH-Analytics/
from copy import deepcopy
import numpy as np
from dicompylercore import dicomparser
from pydicom.uid import generate_uid
from pydicom.datadict import dictionary_VR, keyword_dict
from dicompylercore.config import (
dicompyler_uid_prefix_rtdose,
mpl_available,
scipy_available,
)
from datetime import datetime
from pydicom.sequence import Sequence
from pydicom.dataset import Dataset
from warnings import warn
if scipy_available:
from scipy.ndimage import map_coordinates
class DoseGrid:
"""Class that stores DICOM-RT dose grids, performs addition/scaling."""
def __init__(
self,
rt_dose,
order=1,
mode="constant",
cval=0.0,
):
""" Initialization of a DoseGrid from a DICOM-RT Dose file or dataset.
Parameters
----------
rt_dose : pydicom Dataset or filename
DICOM RT Dose used to determine the structure dose grid data.
order : int, optional
The order of the spline interpolation (if needed), default is 1.
The order has to be in the range 0-5.
0: the nearest grid point, 1: trilinear, 2 to 5: spline
See scipy.ndimage.map_coordinates documentation for more details
mode : 'constant' or 'nearest', optional
The mode parameter determines how the other dose grid is extended
beyond its boundaries. Default is ``'constant'``. Behavior for
these values is as follows:
``'constant'`` (k k k k | a b c d | k k k k)
The other dose grid is extended by filling all values beyond
the edge with the same constant value, defined by the cval
parameter.
``'nearest'`` (a a a a | a b c d | d d d d)
The input is extended by replicating the last pixel.
Additional modes are available, see scipy.ndimage.map_coordinates
documentation for more details.
cval : scalar, optional
Value to fill past edges of input if mode is ‘constant’.
Default is 0.0.
"""
self.ds = dicomparser.DicomParser(rt_dose).ds
self.interp_param = {"order": order, "mode": mode, "cval": cval}
self.summation_type = None
self.sop_class_uid = getattr(self.ds, 'SOPClassUID', '')
self.sop_instance_uid = getattr(self.ds, 'SOPInstanceUID', '')
self.other_sop_class_uid = None
self.other_sop_instance_uid = None
if self.ds.Modality == "RTDOSE":
self.x_axis = (
np.arange(self.ds.Columns) * self.ds.PixelSpacing[0]
+ self.ds.ImagePositionPatient[0]
)
self.y_axis = (
np.arange(self.ds.Rows) * self.ds.PixelSpacing[1]
+ self.ds.ImagePositionPatient[1]
)
self.z_axis = (
np.array(self.ds.GridFrameOffsetVector)
+ self.ds.ImagePositionPatient[2]
)
# x and z are swapped in the pixel_array
pixel_array = self.ds.pixel_array * self.ds.DoseGridScaling
self.dose_grid = np.swapaxes(pixel_array, 0, 2)
else:
raise AttributeError(
"The DoseGrid class requires an RTDOSE file or dataset. "
"%s was detected" % self.ds.Modality
)
####################################################
# Basic properties
####################################################
@property
def shape(self):
"""Get the x, y, z dimensions of the dose grid"""
return (
self.ds.Columns,
self.ds.Rows,
len(self.ds.GridFrameOffsetVector),
)
@property
def axes(self):
"""Get the x, y, z axes of the dose grid (in mm)"""
return [self.x_axis, self.y_axis, self.z_axis]
@property
def scale(self):
"""Get the dose grid resolution (xyz)"""
diffs = np.diff(self.ds.GridFrameOffsetVector)
if not np.all(np.isclose(diffs, [diffs[0]]*len(diffs))):
raise NotImplementedError(
"Non-uniform GridFrameOffsetVector detected. Interpolated "
"summation of non-uniform dose-grid scales is not supported."
)
return np.array(
[
self.ds.PixelSpacing[0],
self.ds.PixelSpacing[1],
self.ds.GridFrameOffsetVector[1]
- self.ds.GridFrameOffsetVector[0],
]
)
@property
def offset(self):
"""Get the coordinates of the dose grid origin (mm)"""
return np.array(self.ds.ImagePositionPatient, dtype="float")
@property
def max_boundary_dose(self):
"""Get the max boundary dose"""
return max_boundary_value(self.dose_grid)
@property
def max_boundary_relative_dose(self):
return self.max_boundary_dose / np.max(self.dose_grid)
####################################################
# Tools
####################################################
def __add__(self, other):
"""Overload + operator to sum this dose grid with the other dose grid
Parameters
----------
other : DoseGrid
Another DoseGrid object.
"""
new = deepcopy(self)
new.add(other)
return new
def __mul__(self, factor):
"""Overload * operator to scale this dose grid by the provided factor
Parameters
----------
factor : int, float
Scale the dose grid by this value.
"""
new = deepcopy(self)
new.multiply(factor)
return new
def __rmul__(self, factor):
return self.__mul__(factor)
def multiply(self, factor):
"""
Scale the dose grid.
Parameters
----------
factor : int, float
Multiply the dose grid by this factor.
"""
if factor < 0:
raise NotImplementedError("Negative doses are not supported.")
self.dose_grid *= factor
self.dose_grid_post_processing()
def dose_grid_post_processing(self, other=None):
"""Set the pixel data and store UIDs from other DoseGrid"""
self.set_pixel_data()
if hasattr(self.ds, "DVHSequence"):
del self.ds.DVHSequence
if other is not None:
self.other_sop_class_uid = other.sop_class_uid
self.other_sop_instance_uid = other.sop_instance_uid
def is_coincident(self, other):
"""Check dose grid spatial coincidence.
Parameters
----------
other : DoseGrid
Another DoseGrid object.
"""
return (
self.ds.PixelSpacing == other.ds.PixelSpacing
and self.ds.ImagePositionPatient == other.ds.ImagePositionPatient
and self.ds.pixel_array.shape == other.ds.pixel_array.shape
and self.ds.GridFrameOffsetVector == other.ds.GridFrameOffsetVector
)
def set_pixel_data(self):
"""Update the PixelData with the current dose_grid"""
self.ds.BitsAllocated = 32
self.ds.BitsStored = 32
self.ds.HighBit = 31
self.ds.DoseGridScaling = (
np.max(self.dose_grid) / np.iinfo(np.uint32).max
)
pixel_data = (
np.swapaxes(self.dose_grid, 0, 2) / self.ds.DoseGridScaling
)
self.ds.PixelData = np.uint32(pixel_data).tobytes()
def save_dcm(self, file_path):
"""Save the pydicom.FileDataset to file"""
self.update_dicom_tags()
self.ds.save_as(file_path)
def get_ijk_points(self, other_axes):
"""Convert axes from another DoseGrid into ijk of this DoseGrid.
Parameters
----------
other_axes : list
The x, y, and z axis arrays.
Returns
-------
np.vstack
Array of other_axes in this ijk space.
"""
ijk_axes = [
(np.array(axis) - self.offset[a]) / self.scale[a]
for a, axis in enumerate(other_axes)
]
j, i, k = np.meshgrid(ijk_axes[1], ijk_axes[0], ijk_axes[2])
return np.vstack((i.ravel(), j.ravel(), k.ravel()))
####################################################
# Dose Summation
####################################################
def add(self, other, force=False):
"""
Add another dose grid to this dose grid, with interpolation if needed
Parameters
----------
other : DoseGrid
Another DoseGrid object.
force : bool
Set to True to ignore differences in DoseSummationType, DoseType,
DoseUnits, ImageOrientationPatient
"""
attrs = [
"DoseSummationType",
"DoseType",
"DoseUnits",
"ImageOrientationPatient",
]
attr_check = [
validate_attr_equality(self.ds, other.ds, attr) for attr in attrs
]
if not force and not all(attr_check):
mismatches = [
attr for i, attr in enumerate(attrs) if attr_check[i]
]
raise NotImplementedError(
"Dose summation of dose grids with these mismatched "
"attributes is not recommended: %s. Use "
"DoseGrid.add(other, force=True) to ignore"
% ",".join(mismatches)
)
if self.is_coincident(other):
self._direct_sum(other)
else:
if not scipy_available:
raise ImportError(
"scipy must be installed to perform interpolated dose sum."
)
self._interp_sum(other)
def _direct_sum(self, other):
"""Directly sum two coincident dose grids
Parameters
----------
other: DoseGrid
Another DoseGrid object.
"""
self.dose_grid += other.dose_grid
self.summation_type = "DIRECT"
self.dose_grid_post_processing(other)
def _interp_sum(self, other):
"""
Interpolate the other dose grid to this dose grid's axes,
then perform direct summation
Parameters
----------
other: DoseGrid
Another DoseGrid object.
"""
self.dose_grid += self.interp_entire_grid(other)
self.summation_type = "INTERPOLATED"
self.dose_grid_post_processing(other)
def interp_entire_grid(self, other):
"""
Interpolate the other dose grid to this dose grid's axes in one
operation
Parameters
----------
other: DoseGrid
Another DoseGrid object.
Returns
-------
np.array
The other dose grid interpolated to this dose grid's axes
"""
return map_coordinates(
input=other.dose_grid,
coordinates=other.get_ijk_points(self.axes),
**self.interp_param
).reshape(self.shape)
def update_dicom_tags(self):
"""Update DICOM UIDs, Content Date/Time, and Dose Comment"""
# Store the source SOPClassUID and SOPInstanceUID
seq_data = {
"ReferencedSOPClassUID": self.sop_class_uid,
"ReferencedSOPInstanceUID": self.sop_instance_uid,
}
add_dicom_sequence(self.ds, "ReferencedInstanceSequence", seq_data)
if self.other_sop_class_uid is not None:
seq_data = {
"ReferencedSOPClassUID": self.other_sop_class_uid,
"ReferencedSOPInstanceUID": self.other_sop_instance_uid,
}
add_dicom_sequence(self.ds, "ReferencedInstanceSequence", seq_data)
# Create a new SOPInstanceUID
set_dicom_tag_value(
self.ds,
"SOPInstanceUID",
generate_uid(prefix=dicompyler_uid_prefix_rtdose),
)
# Store the dose summation type in the DoseComment tag
if self.summation_type:
set_dicom_tag_value(
self.ds, "DoseComment", "%s SUMMATION" % self.summation_type
)
# Update the Date and Time tags
now = datetime.now()
set_dicom_tag_value(self.ds, "ContentDate", now.strftime("%Y%m%d"))
set_dicom_tag_value(self.ds, "ContentTime", now.strftime("%H%M%S"))
def show(self, z=None):
"""Show the dose grid using Matplotlib if present.
Parameters
----------
z : float, optional
slice position to display initially, by default None
"""
if not mpl_available:
raise ImportError(
"Matplotlib could not be loaded. Install and try again.")
return self
import matplotlib.pyplot as plt
from matplotlib.widgets import Slider
# Extract the list of planes (z) from the dose grid
planes = (
np.array(self.ds.GridFrameOffsetVector)
* self.ds.ImageOrientationPatient[0]
* self.ds.ImageOrientationPatient[4]
) + self.ds.ImagePositionPatient[2]
# Set up the plot
fig = plt.figure()
ax = fig.add_subplot(111)
rtdose = dicomparser.DicomParser(self.ds)
# Get the middle slice if the z is not provided
z = planes[planes.size // 2] if z is None else z
zplane = rtdose.GetDoseGrid(z) * self.ds.DoseGridScaling
# Flag to invert slider min/max if GFOV is decreasing (i.e. FFS)
reverse = planes[0] > planes[-1]
im = ax.imshow(zplane, cmap="jet",)
# Create a slider to change the (z)
axslice = fig.add_axes([0.34, 0.01, 0.50, 0.02])
slider = Slider(
ax=axslice,
label="Slice Position (mm):",
valmin=planes[-1] if reverse else planes[0],
valmax=planes[0] if reverse else planes[-1],
valinit=z,
valstep=np.diff(planes)[0],
)
def updateslice(z):
"""Update the data to show on the plot."""
im.set_data(rtdose.GetDoseGrid(z) * self.ds.DoseGridScaling)
plt.draw()
slider.on_changed(updateslice)
plt.show()
return self
def set_dicom_tag_value(ds, tag, value):
"""Set or update a DICOM tag value in the pydicom dataset.
Parameters
----------
ds : pydicom Dataset
The pydicom dataset for the tag to be added/updated to.
tag : str, int or tuple
DICOM tag or keyword to be added.
value : any
New value for the tag's element.
"""
try:
ds[tag].value = value
except KeyError:
if tag in keyword_dict: # Keyword provided rather than int or tuple
tag = keyword_dict[tag]
ds.add_new(tag, dictionary_VR(tag), value)
def add_dicom_sequence(ds, seq_keyword, data_set_dict):
"""Add a sequence to a data set.
Parameters
----------
ds : pydicom Dataset
The pydicom dataset for the sequence to be added to.
seq_keyword : str
The DICOM keyword for the sequence.
data_set_dict : dict
Dictionary of tags and values for the sequence element.
"""
seq_ds = Dataset()
for tag, value in data_set_dict.items():
set_dicom_tag_value(seq_ds, tag, value)
if hasattr(ds, seq_keyword):
getattr(ds, seq_keyword).append(seq_ds)
else:
setattr(ds, seq_keyword, Sequence([seq_ds]))
def validate_attr_equality(obj_1, obj_2, attr):
"""Assess the equality of the provided attr between two objects.
Send warning if unequal.
Parameters
----------
obj_1 : object
Any object with an `attr` attribute that is comparable by !=
obj_2 : object
Any object with an `attr` attribute that is comparable by !=
attr : str
The attribute to be compared between obj_1 and obj_2
"""
val_1 = getattr(obj_1, attr)
val_2 = getattr(obj_2, attr)
if val_1 != val_2:
warn("Different %s values detected:\n%s\n%s" % (attr, val_1, val_2))
return False
return True
def max_boundary_value(arr):
"""Get the greatest value on the boundary of a 3D numpy array
Parameters
----------
arr : numpy.array
Any 3-dimensional array-like object
Returns
-------
float
Maximum value along any side of the input array
"""
return np.max(
[
np.max([np.max(arr[i, :, :]) for i in [0, -1]]),
np.max([np.max(arr[:, j, :]) for j in [0, -1]]),
np.max([np.max(arr[:, :, k]) for k in [0, -1]]),
]
)
|