1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# dvh.py
"""Class that stores dose volume histogram (DVH) data."""
# Copyright (c) 2016 Aditya Panchal
# This file is part of dicompyler-core, released under a BSD license.
# See the file license.txt included with this distribution, also
# available at https://github.com/dicompyler/dicompyler-core/
import numpy as np
import re
import logging
logger = logging.getLogger('dicompylercore.dvh')
# Set default absolute dose and volume units
abs_dose_units = 'Gy'
abs_volume_units = 'cm3'
relative_units = '%'
class DVH(object):
"""Class that stores dose volume histogram (DVH) data."""
def __init__(self, counts, bins,
dvh_type='cumulative',
dose_units=abs_dose_units,
volume_units=abs_volume_units,
rx_dose=None, name=None, color=None, notes=None):
"""Initialization for a DVH from existing histogram counts and bins.
Parameters
----------
counts : iterable or numpy array
An iterable of volume or percent count data
bins : iterable or numpy array
An iterable of dose bins
dvh_type : str, optional
Choice of 'cumulative' or 'differential' type of DVH
dose_units : str, optional
Absolute dose units, i.e. 'gy' or relative units '%'
volume_units : str, optional
Absolute volume units, i.e. 'cm3' or relative units '%'
rx_dose : number, optional
Prescription dose value used to normalize dose bins (in Gy)
name : String, optional
Name of the structure of the DVH
color : numpy array, optional
RGB color triplet used for plotting the DVH
notes : String, optional
Additional notes about the DVH instance
"""
self.counts = np.array(counts)
self.bins = np.array(bins) if bins[0] == 0 else np.append([0], bins)
self.dvh_type = dvh_type
self.dose_units = dose_units
self.volume_units = volume_units
self.rx_dose = rx_dose
self.name = name
self.color = color
self.notes = notes
@classmethod
def from_dicom_dvh(cls, dataset, roi_num, rx_dose=None, name=None,
color=None):
"""Initialization for a DVH from a pydicom RT Dose DVH sequence."""
sequence_num = -1
for i, d in enumerate(dataset.DVHSequence):
if 'DVHReferencedROISequence' in d:
if 'ReferencedROINumber' in d.DVHReferencedROISequence[0]:
if roi_num == \
d.DVHReferencedROISequence[0].ReferencedROINumber:
sequence_num = i
break
if sequence_num == -1:
raise AttributeError(
"'DVHSequence' has no DVH with ROI Number '%d'." % roi_num)
dvh = dataset.DVHSequence[sequence_num]
data = np.array(dvh.DVHData)
return cls(counts=data[1::2],
bins=data[0::2].cumsum() * dvh.DVHDoseScaling,
dvh_type=dvh.DVHType.lower(),
dose_units=dvh.DoseUnits.capitalize(),
volume_units=dvh.DVHVolumeUnits.lower(),
rx_dose=rx_dose,
name=name,
color=color)
@classmethod
def from_data(cls, data, binsize=1):
"""Initialization for a DVH from raw data.
Parameters
----------
data : iterable or numpy array
An iterable of dose data that is used to create the histogram
binsize : int, optional
Bin width size (in cGy used to create the histogram)
"""
data = np.array(data)
bins = np.arange(0, data.max() + 1, binsize)
if bins.size == 1:
bins = np.array([0, data.max()])
if data.max() not in bins:
bins = np.append(bins, data.max())
counts, bins = np.histogram(data, bins)
return cls(counts, bins)
def __repr__(self):
"""String representation of the class."""
return 'DVH(%s, %r bins: [%r:%r] %s, volume: %r %s, name: %r, ' \
'rx_dose: %d %s%s)' % \
(self.dvh_type, self.counts.size, self.bins.min(),
self.bins.max(), self.dose_units,
self.volume, self.volume_units,
self.name,
0 if not self.rx_dose else self.rx_dose,
self.dose_units,
', *Notes: ' + self.notes if self.notes else '')
def __eq__(self, other):
"""Comparison method between two DVH objects.
Parameters
----------
other : DVH
Other DVH object to compare with
Returns
-------
Bool
True or False if the DVHs have equal attribs and via numpy.allclose
"""
attribs = ('dvh_type', 'dose_units', 'volume_units')
attribs_eq = {k: self.__dict__[k] for k in attribs} == \
{k: other.__dict__[k] for k in attribs}
return attribs_eq and \
np.allclose(self.counts, other.counts) and \
np.allclose(self.bins, other.bins)
# ============================= DVH properties ============================= #
@property
def bincenters(self):
"""Return a numpy array containing the bin centers."""
return 0.5 * (self.bins[1:] + self.bins[:-1])
@property
def differential(self):
"""Return a differential DVH from a cumulative DVH."""
dvh_type = 'differential'
if self.dvh_type == dvh_type:
return self
else:
return DVH(**dict(
self.__dict__,
counts=abs(np.diff(np.append(self.counts, 0))),
dvh_type=dvh_type))
@property
def cumulative(self):
"""Return a cumulative DVH from a differential DVH."""
dvh_type = 'cumulative'
if self.dvh_type == dvh_type:
return self
else:
return DVH(**dict(
self.__dict__,
counts=self.counts[::-1].cumsum()[::-1],
dvh_type=dvh_type))
def absolute_dose(self, rx_dose=None, dose_units=abs_dose_units):
"""Return an absolute dose DVH.
Parameters
----------
rx_dose : number, optional
Prescription dose value used to normalize dose bins
dose_units : str, optional
Units for the absolute dose
Raises
------
AttributeError
Description
"""
if not (self.dose_units == relative_units):
return self
else:
# Raise an error if no rx_dose defined
if not self.rx_dose and not rx_dose:
raise AttributeError("'DVH' has no defined prescription dose.")
else:
rxdose = rx_dose if self.rx_dose is None else self.rx_dose
return DVH(**dict(
self.__dict__,
bins=self.bins * rxdose / 100,
dose_units=dose_units))
def relative_dose(self, rx_dose=None):
"""Return a relative dose DVH based on a prescription dose.
Parameters
----------
rx_dose : number, optional
Prescription dose value used to normalize dose bins
Raises
------
AttributeError
Raised if prescription dose was not present either during
class initialization or passed via argument.
"""
dose_units = relative_units
if self.dose_units == dose_units:
return self
else:
# Raise an error if no rx_dose defined
if not self.rx_dose and not rx_dose:
raise AttributeError("'DVH' has no defined prescription dose.")
else:
rxdose = rx_dose if self.rx_dose is None else self.rx_dose
return DVH(**dict(
self.__dict__,
bins=100 * self.bins / rxdose,
dose_units=dose_units))
def absolute_volume(self, volume, volume_units=abs_volume_units):
"""Return an absolute volume DVH.
Parameters
----------
volume : number
Absolute volume of the structure
volume_units : str, optional
Units for the absolute volume
"""
if not (self.volume_units == relative_units):
return self
else:
return DVH(**dict(
self.__dict__,
counts=volume * self.counts / 100,
volume_units=volume_units))
@property
def relative_volume(self):
"""Return a relative volume DVH."""
volume_units = relative_units
if self.volume_units == relative_units:
return self
# Convert back to cumulative before returning a relative volume
elif self.dvh_type == 'differential':
return self.cumulative.relative_volume.differential
else:
return DVH(**dict(
self.__dict__,
counts=100 * self.counts /
(1 if (self.max == 0) else self.counts.max()),
volume_units=volume_units))
@property
def max(self):
"""Return the maximum dose."""
if self.counts.size <= 1 or max(self.counts) == 0:
return 0
diff = self.differential
# Find the the maximum non-zero dose bin
return diff.bins[1:][diff.counts > 0][-1]
@property
def min(self):
"""Return the minimum dose."""
if self.counts.size <= 1 or max(self.counts) == 0:
return 0
diff = self.differential
# Find the the minimum non-zero dose bin
return diff.bins[1:][diff.counts > 0][0]
@property
def mean(self):
"""Return the mean dose."""
if self.counts.size <= 1 or max(self.counts) == 0:
return 0
diff = self.differential
# Find the area under the differential histogram
return (diff.bincenters * diff.counts).sum() / diff.counts.sum()
@property
def volume(self):
"""Return the volume of the structure."""
return self.differential.counts.sum()
def describe(self):
"""Describe a summary of DVH statistics in a text based format."""
print("Structure: {}".format(self.name))
print("-----")
dose = "rel dose" if self.dose_units == relative_units else \
"abs dose: {}".format(self.dose_units)
vol = "rel volume" if self.volume_units == relative_units else \
"abs volume: {}".format(self.volume_units)
print("DVH Type: {}, {}, {}".format(
self.dvh_type, dose, vol))
print("Volume: {:0.2f} {}".format(
self.volume, self.volume_units))
print("Max Dose: {:0.2f} {}".format(
self.max, self.dose_units))
print("Min Dose: {:0.2f} {}".format(
self.min, self.dose_units))
print("Mean Dose: {:0.2f} {}".format(
self.mean, self.dose_units))
print("D100: {}".format(self.D100))
print("D98: {}".format(self.D98))
print("D95: {}".format(self.D95))
# Only show volume statistics if a Rx Dose has been defined
# i.e. dose is in relative units
if self.dose_units == relative_units:
print("V100: {}".format(self.V100))
print("V95: {}".format(self.V95))
print("V5: {}".format(self.V5))
print("D2cc: {}".format(self.D2cc))
if self.notes:
print("Notes: *{}".format(self.notes))
def compare(self, dvh):
"""Compare the DVH properties with another DVH.
Parameters
----------
dvh : DVH
DVH instance to compare against
Raises
------
AttributeError
If DVHs do not have equivalent dose & volume units
"""
if not (self.dose_units == dvh.dose_units) or \
not (self.volume_units == dvh.volume_units):
raise AttributeError("DVH units are not equivalent")
def fmtcmp(attr, units, ref=self, comp=dvh):
"""Generate arguments for string formatting.
Parameters
----------
attr : string
Attribute used for comparison
units : string
Units used for the value
Returns
-------
tuple
tuple used in a string formatter
"""
if attr in ['volume', 'max', 'min', 'mean']:
val = ref.__getattribute__(attr)
cmpval = comp.__getattribute__(attr)
else:
val = ref.statistic(attr).value
cmpval = comp.statistic(attr).value
return attr.capitalize() + ":", val, units, cmpval, units, \
0 if not val else ((cmpval - val) / val) * 100, cmpval - val
print("{:11} {:>14} {:>17} {:>17} {:>14}".format(
'Structure:', self.name, dvh.name, 'Rel Diff', 'Abs diff'))
print("-----")
dose = "rel dose" if self.dose_units == relative_units else \
"abs dose: {}".format(self.dose_units)
vol = "rel volume" if self.volume_units == relative_units else \
"abs volume: {}".format(self.volume_units)
print("DVH Type: {}, {}, {}".format(self.dvh_type, dose, vol))
fmtstr = "{:11} {:12.2f} {:3}{:14.2f} {:3}{:+14.2f} % {:+14.2f}"
print(fmtstr.format(*fmtcmp('volume', self.volume_units)))
print(fmtstr.format(*fmtcmp('max', self.dose_units)))
print(fmtstr.format(*fmtcmp('min', self.dose_units)))
print(fmtstr.format(*fmtcmp('mean', self.dose_units)))
print(fmtstr.format(*fmtcmp('D100', self.dose_units)))
print(fmtstr.format(*fmtcmp('D98', self.dose_units)))
print(fmtstr.format(*fmtcmp('D95', self.dose_units)))
# Only show volume statistics if a Rx Dose has been defined
# i.e. dose is in relative units
if self.dose_units == relative_units:
print(fmtstr.format(
*fmtcmp('V100', self.dose_units,
self.relative_dose(), dvh.relative_dose())))
print(fmtstr.format(
*fmtcmp('V95', self.dose_units,
self.relative_dose(), dvh.relative_dose())))
print(fmtstr.format(
*fmtcmp('V5', self.dose_units,
self.relative_dose(), dvh.relative_dose())))
print(fmtstr.format(*fmtcmp('D2cc', self.dose_units)))
self.plot()
dvh.plot()
def plot(self):
"""Plot the DVH using Matplotlib if present."""
try:
import matplotlib.pyplot as plt
except (ImportError, RuntimeError):
print('Matplotlib could not be loaded. Install and try again.')
else:
plt.plot(self.bincenters, self.counts, label=self.name,
color=None if not isinstance(self.color, np.ndarray) else
(self.color / 255))
# plt.axis([0, self.bins[-1], 0, self.counts[0]])
plt.xlabel('Dose [%s]' % self.dose_units)
plt.ylabel('Volume [%s]' % self.volume_units)
if self.name:
plt.legend(loc='best')
return self
def volume_constraint(self, dose, dose_units=None):
"""Calculate the volume that receives at least a specific dose.
i.e. V100, V150 or V20Gy
Parameters
----------
dose : number
Dose value used to determine minimum volume that receives
this dose. Can either be in relative or absolute dose units.
Returns
-------
number
Volume in self.volume_units units.
"""
# Determine whether to lookup relative dose or absolute dose
if not dose_units:
dose_bins = self.relative_dose().bins
else:
dose_bins = self.absolute_dose().bins
index = np.argmin(np.fabs(dose_bins - dose))
# TODO Add interpolation
if index >= self.counts.size:
return DVHValue(0.0, self.volume_units)
else:
return DVHValue(self.counts[index], self.volume_units)
def dose_constraint(self, volume, volume_units=None):
"""Calculate the maximum dose that a specific volume receives.
i.e. D90, D100 or D2cc
Parameters
----------
volume : number
Volume used to determine the maximum dose that the volume receives.
Can either be in relative or absolute volume units.
Returns
-------
number
Dose in self.dose_units units.
"""
# Determine whether to lookup relative volume or absolute volume
if not volume_units:
volume_counts = self.relative_volume.counts
else:
volume_counts = self.absolute_volume(self.volume).counts
if volume_counts.size == 0 or volume > volume_counts.max():
return DVHValue(0.0, self.dose_units)
# D100 case
if volume == 100 and not volume_units:
# Flipping the difference volume array
reversed_difference_of_volume = np.flip(
np.fabs(volume_counts - volume), 0)
# Index of the first minimum value in reversed array
index_min_value = np.argmin(reversed_difference_of_volume)
index_range = len(reversed_difference_of_volume) - 1
return DVHValue(
self.bins[index_range - index_min_value], self.dose_units)
# TODO Add interpolation
return DVHValue(
self.bins[np.argmin(
np.fabs(volume_counts - volume))],
self.dose_units)
def statistic(self, name):
"""Return a DVH dose or volume statistic.
Parameters
----------
name : str
DVH statistic in the form of D90, D100, D2cc, V100 or V20Gy, etc.
Returns
-------
number
Value from the dose or volume statistic calculation.
"""
# Compile a regex to determine dose & volume statistics
p = re.compile(r'(\S+)?(D|V){1}(\d+[.]?\d*)(gy|cc)?(?!\S+)',
re.IGNORECASE)
match = re.match(p, name)
# Return the default attribute if not a dose or volume statistic
# print(match.groups())
if not match or match.groups()[0] is not None:
raise AttributeError("'DVH' has no attribute '%s'" % name)
# Process the regex match
c = [x.lower() for x in match.groups() if x]
if c[0] == ('v'):
# Volume Constraints (i.e. V100) & return a volume
if len(c) == 2:
return self.cumulative.volume_constraint(float(c[1]))
# Volume Constraints in abs dose (i.e. V20Gy) & return a volume
return self.cumulative.volume_constraint(float(c[1]), c[2])
elif c[0] == ('d'):
# Dose Constraints (i.e. D90) & return a dose
if len(c) == 2:
return self.cumulative.dose_constraint(float(c[1]))
# Dose Constraints in abs volume (i.e. D2cc) & return a dose
return self.cumulative.dose_constraint(float(c[1]), c[2])
def __getattr__(self, name):
"""Method used to dynamically determine dose or volume stats.
Parameters
----------
name : string
Property name called to determine dose & volume statistics
Returns
-------
number
Value from the dose or volume statistic calculation.
"""
return self.statistic(name)
class DVHValue(object):
"""Class that stores DVH values with the appropriate units."""
def __init__(self, value, units=''):
"""Initialization for a DVH value that will also store units."""
self.value = value
self.units = units
def __repr__(self):
"""Representation of the DVH value."""
return "dvh.DVHValue(" + self.value.__repr__() + \
", '" + self.units + "')"
def __str__(self):
"""String representation of the DVH value."""
if not self.units:
# return str(self.value)
return format(self.value, '0.2f')
else:
# return str(self.value) + ' ' + self.units
return format(self.value, '0.2f') + ' ' + self.units
def __eq__(self, other):
"""Comparison method between two DVHValue objects.
Parameters
----------
other : DVHValue
Other DVHValue object to compare with
Returns
-------
Bool
True or False if the DVHValues have equal attribs
"""
attribs_eq = self.units == other.units
return attribs_eq and \
np.allclose(self.value, other.value)
|