File: dvhcalc.py

package info (click to toggle)
python-dicompylercore 0.5.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,108 kB
  • sloc: python: 2,697; makefile: 214
file content (580 lines) | stat: -rw-r--r-- 22,652 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# dvhcalc.py
"""Calculate dose volume histogram (DVH) from DICOM RT Structure/Dose data."""
# Copyright (c) 2011-2018 Aditya Panchal
# Copyright (c) 2010 Roy Keyes
# This file is part of dicompyler-core, released under a BSD license.
#    See the file license.txt included with this distribution, also
#    available at https://github.com/dicompyler/dicompyler-core/

from __future__ import division
import numpy as np
import numpy.ma as ma
import matplotlib.path
from dicompylercore import dvh
from dicompylercore.config import skimage_available
import collections
try:
    from collections.abc import Sequence
except ImportError:
    from collections import Sequence
import logging
logger = logging.getLogger('dicompylercore.dvhcalc')

if skimage_available:
    from skimage.transform import rescale


def get_dvh(structure,
            dose,
            roi,
            limit=None,
            calculate_full_volume=True,
            use_structure_extents=False,
            interpolation_resolution=None,
            interpolation_segments_between_planes=0,
            thickness=None,
            memmap_rtdose=False,
            callback=None):
    """Calculate a cumulative DVH in Gy from a DICOM RT Structure Set & Dose.

    Parameters
    ----------
    structure : pydicom Dataset or filename
        DICOM RT Structure Set used to determine the structure data.
    dose : pydicom Dataset or filename
        DICOM RT Dose used to determine the dose grid.
    roi : int
        The ROI number used to uniquely identify the structure in the structure
        set.
    limit : int, optional
        Dose limit in cGy as a maximum bin for the histogram.
    calculate_full_volume : bool, optional
        Calculate the full structure volume including contours outside of the
        dose grid.
    use_structure_extents : bool, optional
        Limit the DVH calculation to the in-plane structure boundaries.
    interpolation_resolution : tuple or float, optional
        Resolution in mm (row, col) to interpolate structure and dose data to.
        If float is provided, original dose grid pixel spacing must be square.
    interpolation_segments_between_planes : integer, optional
        Number of segments to interpolate between structure slices.
    thickness : float, optional
        Structure thickness used to calculate volume of a voxel.
    memmap_rtdose : bool, optional
        Use memory mapping to access the pixel array of the DICOM RT Dose.
        This reduces memory usage at the expense of increased calculation time.
    callback : function, optional
        A function that will be called at every iteration of the calculation.

    Returns
    -------
    dvh.DVH
        An instance of dvh.DVH in cumulative dose. This can be converted to
        different formats using the attributes and properties of the DVH class.
    """
    from dicompylercore import dicomparser

    rtss = dicomparser.DicomParser(structure)
    rtdose = dicomparser.DicomParser(dose, memmap_pixel_array=memmap_rtdose)
    structures = rtss.GetStructures()
    s = structures[roi]
    s['planes'] = rtss.GetStructureCoordinates(roi)
    s['thickness'] = thickness if thickness else rtss.CalculatePlaneThickness(
        s['planes'])

    calcdvh = _calculate_dvh(s, rtdose, limit, calculate_full_volume,
                             use_structure_extents, interpolation_resolution,
                             interpolation_segments_between_planes,
                             callback)
    return dvh.DVH(counts=calcdvh.histogram,
                   bins=(np.arange(0, 2) if (calcdvh.histogram.size == 1) else
                         np.arange(0, calcdvh.histogram.size + 1) / 100),
                   dvh_type='differential',
                   dose_units='Gy',
                   notes=calcdvh.notes,
                   name=s['name']).cumulative


def _calculate_dvh(structure,
                   dose,
                   limit=None,
                   calculate_full_volume=True,
                   use_structure_extents=False,
                   interpolation_resolution=None,
                   interpolation_segments_between_planes=0,
                   callback=None):
    """Calculate a differential DVH for the given structure and dose grid.

    Parameters
    ----------
    structure : dict
        A structure (ROI) from an RT Structure Set parsed using DicomParser.
        The dictionary must include a `thickness` key with a thickness `float`.
    dose : DicomParser
        A DicomParser instance of an RT Dose
    limit : int, optional
        Dose limit in cGy as a maximum bin for the histogram.
    calculate_full_volume : bool, optional
        Calculate the full structure volume including contours outside of the
        dose grid.
    use_structure_extents : bool, optional
        Limit the DVH calculation to the in-plane structure boundaries.
    interpolation_resolution : tuple or float, optional
        Resolution in mm (row, col) to interpolate structure and dose data to.
        If float is provided, original dose grid pixel spacing must be square.
    interpolation_segments_between_planes : integer, optional
        Number of segments to interpolate between structure slices.
    callback : function, optional
        A function that will be called at every iteration of the calculation.

    Returns
    -------
    calcdvh: collections.namedtuple
        A named tuple of notes and and histogram data.

    Notes
    -----
    This is an internal function called by `get_dvh` and
    should not be called directly.
    """
    calcdvh = collections.namedtuple('DVH', ['notes', 'histogram'])
    logger.debug("Calculating DVH of %s %s", structure['id'],
                 structure['name'])
    planes = collections.OrderedDict(sorted(structure["planes"].items()))

    # Create an empty array of bins to store the histogram in cGy
    # only if the structure has contour data or the dose grid exists
    if ((len(planes)) and (hasattr(dose, 'pixel_array'))):

        # Get the dose and image data information
        dd = dose.GetDoseData()
        id = dose.GetImageData()

        # Determine structure and respectively dose grid extents
        if interpolation_resolution or use_structure_extents:
            extents = []
            if use_structure_extents:
                extents = structure_extents(structure['planes'])
            dgindexextents = dosegrid_extents_indices(extents, dd)
            dgextents = dosegrid_extents_positions(dgindexextents, dd)
            # Determine LUT from extents
            if use_structure_extents:
                dd['lut'] = \
                    (dd['lut'][0][dgindexextents[0]:dgindexextents[2]],
                     dd['lut'][1][dgindexextents[1]:dgindexextents[3]])
            # If interpolation is enabled, generate new LUT from extents
            if interpolation_resolution:
                dd['lut'] = get_resampled_lut(
                    dgindexextents,
                    dgextents,
                    new_pixel_spacing=interpolation_resolution,
                    min_pixel_spacing=id['pixelspacing'])
            dd['rows'] = dd['lut'][1].shape[0]
            dd['columns'] = dd['lut'][0].shape[0]

        # Generate a 2d mesh grid to create a polygon mask in dose coordinates
        # Code taken from Stack Overflow Answer from Joe Kington:
        # https://stackoverflow.com/q/3654289/74123
        # Create vertex coordinates for each grid cell
        x_index = dd['x_lut_index']
        x, y = np.meshgrid(
            np.array(dd['lut'][x_index]), np.array(dd['lut'][1-x_index])
        )
        x, y = x.flatten(), y.flatten()
        dosegridpoints = np.vstack((x, y)).T

        maxdose = int(dd['dosemax'] * dd['dosegridscaling'] * 100) + 1
        # Remove values above the limit (cGy) if specified
        if isinstance(limit, int):
            if (limit < maxdose):
                maxdose = limit
        hist = np.zeros(maxdose)
    else:
        return calcdvh('Empty DVH', np.array([0]))

    n = 0
    notes = None
    planedata = {}
    # Interpolate between planes in the direction of the structure
    if interpolation_segments_between_planes:
        planes = interpolate_between_planes(
            planes, interpolation_segments_between_planes)
        # Thickness derived from total number of segments relative to original
        structure['thickness'] = structure[
            'thickness'] / (interpolation_segments_between_planes + 1)

    # Iterate over each plane in the structure
    for z, plane in planes.items():
        # Get the dose plane for the current structure plane
        if interpolation_resolution or use_structure_extents:
            doseplane = get_interpolated_dose(
                dose, z, interpolation_resolution, dgindexextents)
        else:
            doseplane = dose.GetDoseGrid(z)
        if doseplane.size:
            planedata[z] = calculate_plane_histogram(plane, doseplane,
                                                     dosegridpoints, maxdose,
                                                     dd, id, structure, hist)
            # print(f'Slice: {z}, volume: {planedata[z][1]}')
        else:
            # If the dose plane is not found, still perform the calculation
            # but only use it to calculate the volume for the slice
            if not calculate_full_volume:
                logger.warning('Dose plane not found for %s. Contours' +
                               ' not used for volume calculation.', z)
                notes = 'Dose grid does not encompass every contour.' + \
                    ' Volume calculated within dose grid.'
            else:
                origin_z = id['position'][2]
                logger.warning('Dose plane not found for %s.' +
                               ' Using %s to calculate contour volume.',
                               z, origin_z)
                # Create a dummy dose grid with the correct size.
                # calculate_plane_histogram() and its methods provide the
                # volume calc needed, but do so as part of DVH calc,
                # which requires a dose grid
                dummy_dose = dose.GetDoseGrid(origin_z)
                if use_structure_extents:
                    extents = dgindexextents
                    dummy_dose = dummy_dose[
                        extents[1]:extents[3], extents[0]:extents[2]
                    ]
                _, vol = calculate_plane_histogram(
                    plane, dummy_dose, dosegridpoints, maxdose,
                    dd, id, structure, hist)
                planedata[z] = (np.array([0]), vol)
                notes = 'Dose grid does not encompass every contour.' + \
                    ' Volume calculated for all contours.'
        n += 1
        if callback:
            callback(n, len(planes))
    # Volume units are given in cm^3
    volume = sum([p[1] for p in planedata.values()]) / 1000
    # print(f'total volume: {volume}')
    # Rescale the histogram to reflect the total volume
    hist = sum([p[0] for p in planedata.values()])
    if hist.max() > 0:
        hist = hist * volume / sum(hist)
    else:
        return calcdvh('Empty DVH', np.array([0]))
    # Remove the bins above the max dose for the structure
    hist = np.trim_zeros(hist, trim='b')

    return calcdvh(notes, hist)


def calculate_plane_histogram(plane, doseplane, dosegridpoints, maxdose, dd,
                              id, structure, hist):
    """Calculate the DVH for the given plane in the structure."""
    contours = [[x[0:2] for x in c['data']] for c in plane]

    # Create a zero valued bool grid
    grid = np.zeros((dd['rows'], dd['columns']), dtype=np.uint8)

    # Calculate the dose plane mask for each contour in the plane
    # and boolean xor to remove holes
    for i, contour in enumerate(contours):
        m = get_contour_mask(dd, id, dosegridpoints, contour)
        grid = np.logical_xor(m.astype(np.uint8), grid).astype(np.bool_)

    hist, vol = calculate_contour_dvh(grid, doseplane, maxdose, dd, id,
                                      structure)
    return (hist, vol)


def get_contour_mask(dd, id, dosegridpoints, contour):
    """Get the mask for the contour with respect to the dose plane."""
    doselut = dd['lut']

    c = matplotlib.path.Path(list(contour))

    # def inpolygon(polygon, xp, yp):
    #     return np.array(
    #         [Point(x, y).intersects(polygon) for x, y in zip(xp, yp)],
    #         dtype=np.bool)

    # p = Polygon(contour)
    # x, y = np.meshgrid(np.array(dd['lut'][0]), np.array(dd['lut'][1]))
    # mask = inpolygon(p, x.ravel(), y.ravel())
    # return mask.reshape((len(doselut[1]), len(doselut[0])))

    grid = c.contains_points(dosegridpoints)
    if dd['x_lut_index'] == 0:  # X values across columns
        grid = grid.reshape((len(doselut[1]), len(doselut[0])))
    else:  # decubitus
        grid = grid.reshape((len(doselut[0]), len(doselut[1]))).T

    return grid


def calculate_contour_dvh(mask, doseplane, maxdose, dd, id, structure):
    """Calculate the differential DVH for the given contour and dose plane."""
    # Multiply the structure mask by the dose plane to get the dose mask
    mask = ma.array(doseplane * dd['dosegridscaling'] * 100, mask=~mask)
    # Calculate the differential dvh
    hist, edges = np.histogram(mask.compressed(),
                               bins=maxdose,
                               range=(0, maxdose))

    # Calculate the volume for the contour for the given dose plane
    vol = sum(hist) * (abs(np.mean(np.diff(dd['lut'][0]))) *
                       abs(np.mean(np.diff(dd['lut'][1]))) *
                       (structure['thickness']))
    return hist, vol


def structure_extents(coords):
    """Determine structure extents in patient coordinates.

    Parameters
    ----------
    coords : dict
        Structure coordinates from dicomparser.GetStructureCoordinates.

    Returns
    -------
    list
        Structure extents in patient coordintes: [xmin, ymin, xmax, ymax].
    """
    bounds = []
    for z in sorted(coords.items()):
        contours = [[x[0:2] for x in c['data']] for c in z[1]]
        for contour in contours:
            x, y = np.array([x[0:1] for x in contour]), np.array(
                [x[1:2] for x in contour])
            bounds.append([np.min(x), np.min(y), np.max(x), np.max(y)])
    extents = np.array(bounds)
    return np.array(
        [np.amin(extents, axis=0)[0:2],
         np.amax(extents, axis=0)[2:4]]).flatten().tolist()


def dosegrid_extents_indices(extents, dd, padding=1):
    """Determine dose grid extents from structure extents as array indices.

    Parameters
    ----------
    extents : list
        Structure extents in patient coordinates: [xmin, ymin, xmax, ymax].
        If an empty list, no structure extents will be used in the calculation.
    dd : dict
        Dose data from dicomparser.GetDoseData.
    padding : int, optional
        Pixel padding around the structure extents.

    Returns
    -------
    list
        Dose grid extents in pixel coordinates as array indices:
        [col_min, row_min, col_max, row_max].
    """
    col_lut, row_lut = dd['lut']
    num_cols = len(col_lut)
    num_rows = len(row_lut)
    if not len(extents):
        return [0, 0, num_cols - 1, num_rows - 1]

    if dd['x_lut_index'] == 0:  # X is across rows
        strx_col_min, strx_col_max = extents[0], extents[2]
        strx_row_min, strx_row_max = extents[1], extents[3]
    else:  # decubitus case, X down rows
        strx_col_min, strx_col_max = extents[1], extents[3]
        strx_row_min, strx_row_max = extents[0], extents[2]

    dg_col_min = np.argmin(np.fabs(col_lut - strx_col_min))
    dg_col_max = np.argmin(np.fabs(col_lut - strx_col_max))
    if dg_col_min > dg_col_max:
        dg_col_min, dg_col_max = dg_col_max, dg_col_min
    if col_lut[dg_col_min] > strx_col_min:
        dg_col_min -= 1

    dg_row_min = np.argmin(np.fabs(row_lut - strx_row_min))
    dg_row_max = np.argmin(np.fabs(row_lut - strx_row_max))
    if dg_row_min > dg_row_max:
        dg_row_min, dg_row_max = dg_row_max, dg_row_min

    # Ensure indices within array limits regardless of padding
    dg_col_min = max(0, dg_col_min-padding)
    dg_row_min = max(0, dg_row_min-padding)
    dg_col_max = min(num_cols - 1, dg_col_max+padding)
    dg_row_max = min(num_rows - 1, dg_row_max+padding)

    return [dg_col_min, dg_row_min, dg_col_max, dg_row_max]


def dosegrid_extents_positions(extents, dd):
    """Determine dose grid extents in patient coordinate indices.

    Parameters
    ----------
    extents : list
        Dose grid extents in pixel coordintes:
        [col_pos_min, row_pos_min, col_pos_max, row_pos_max].
    dd : dict
        Dose data from dicomparser.GetDoseData.

    Returns
    -------
    list
        Dose grid extents in patient coordintes: [xmin, ymin, xmax, ymax].
    """
    return [
        dd['lut'][0][extents[0]], dd['lut'][1][extents[1]],
        dd['lut'][0][extents[2]], dd['lut'][1][extents[3]]
    ]


def get_resampled_lut(index_extents,
                      extents,
                      new_pixel_spacing,
                      min_pixel_spacing):
    """Determine the patient to pixel LUT based on new pixel spacing.

    Parameters
    ----------
    index_extents : list
        Dose grid extents as array indices.
    extents : list
        Dose grid extents in patient coordinates:
        [col_pos_min, row_pos_min, col_pos_max, row_pos_max].
    new_pixel_spacing : tuple or float
        New pixel spacing in mm (row, column).
        If float is provided, original dose grid pixel spacing must be square.
    min_pixel_spacing : tuple
        Min pixel spacing used to determine new pixel spacing (row, column).

    Returns
    -------
    tuple
        A tuple of lut lists (col lut, row lut) with the coordinates of the
        dose grid in patient coordinates

    Raises
    ------
    AttributeError
        Raised if the new pixel_spacing is not a factor of the minimum pixel
        spacing.

    Notes
    -----
    The new pixel spacing must be a factor of the original (minimum) pixel
    spacing. For example if the original pixel spacing was ``3`` mm, the new
    pixel spacing should be: ``3 / (2^n)`` mm, where ``n`` is an integer.
    This applies independently to both the row and column pixel spacing.

    If a single float value is provided it will be applied to both row and
    column. Additionally, the original dose grid pixel spacing must be square.

    Examples
    --------
    Original pixel spacing: ``3`` mm, new pixel spacing: ``0.375`` mm
    Derived via: ``(3 / 2^16) == 0.375``

    """
    if not isinstance(new_pixel_spacing, Sequence):
        if not (min_pixel_spacing[0] == min_pixel_spacing[1]):
            raise AttributeError(
                "New pixel spacing must be provided as a (row, column) tuple.")
        else:
            new_pixel_spacing = (new_pixel_spacing, new_pixel_spacing)
    if (min_pixel_spacing[0] % new_pixel_spacing[0] != 0.0):
        raise AttributeError(
            "New row pixel spacing must be a factor of %s/(2^n),"
            % min_pixel_spacing[0] +
            " where n is an integer. Value provided was %s."
            % new_pixel_spacing[0])
    if (min_pixel_spacing[1] % new_pixel_spacing[1] != 0.0):
        raise AttributeError(
            "New column pixel spacing must be a factor of %s/(2^n),"
            % min_pixel_spacing[1] +
            " where n is an integer. Value provided was %s."
            % new_pixel_spacing[1])

    # Existing number of cols, rows
    num_cols = abs(index_extents[0] - index_extents[2])
    num_rows = abs(index_extents[1] - index_extents[3])

    col_samples = round(num_cols * min_pixel_spacing[1] / new_pixel_spacing[1])
    row_samples = round(num_rows * min_pixel_spacing[0] / new_pixel_spacing[0])

    col_lut = np.linspace(
        extents[0], extents[2], int(col_samples), dtype=np.float64
    )
    row_lut = np.linspace(
        extents[1], extents[3], int(row_samples), dtype=np.float64
    )
    return col_lut, row_lut


def get_interpolated_dose(dose, z, resolution, extents):
    """Get interpolated dose for the given z, resolution & array extents.

    Parameters
    ----------
    dose : DicomParser
        A DicomParser instance of an RT Dose.
    z : float
        Index in mm of z plane of dose grid.dose
    resolution : tuple
        Interpolation resolution less than or equal to dose grid pixel spacing.
        Provided in (row, col) format.
    extents : list
        Dose grid index extents.

    Returns
    -------
    ndarray
        Interpolated dose grid with a shape larger than the input dose grid.
    """
    # Return the dose bounded by extents if interpolation is not required
    d = dose.GetDoseGrid(z)
    if not d.size:
        return d  # cannot take 2d index below if empty
    extent_dose = d[extents[1]:extents[3],
                    extents[0]:extents[2]] if len(extents) else d
    if not resolution:
        return extent_dose
    if not skimage_available:
        raise ImportError(
            "scikit-image must be installed to perform DVH interpolation.")
    scale = (np.array(dose.ds.PixelSpacing) / resolution).tolist()
    interp_dose = rescale(
        extent_dose,
        scale=scale,
        order=1,
        mode='symmetric',
        preserve_range=True,
        channel_axis=None
    )
    return interp_dose


def interpolate_between_planes(planes, n=2):
    """Interpolate n additional structure planes (segments) in between planes.

    Parameters
    ----------
    planes : dict
        RT Structure plane data from dicomparser.GetStructureCoordinates.
    n : int, optional
        Number of planes to interpolate in between the existing planes.

    Returns
    -------
    dict
        Plane data with additional keys representing interpolated planes.
    """
    keymap = {np.array([k], dtype=np.float32)[0]: k for k in planes.keys()}
    sorted_keys = np.sort(np.array(list(planes.keys()), dtype=np.float32))
    num_new_samples = (len(planes.keys()) * (n + 1)) - n
    newgrid = np.linspace(sorted_keys[0], sorted_keys[-1], num_new_samples)
    new_planes = {}
    # If the plane already exists in the dictionary, use it
    # otherwise use the closest plane
    # TODO: Add actual interpolation of structure data between planes
    for plane in newgrid:
        new_plane = sorted_keys[np.argmin(np.fabs(sorted_keys - plane))]
        new_planes[plane] = planes[keymap[new_plane]]
    return new_planes