File: test_dvhcalc.py

package info (click to toggle)
python-dicompylercore 0.5.6-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,108 kB
  • sloc: python: 2,697; makefile: 214
file content (577 lines) | stat: -rw-r--r-- 25,620 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""unittest cases for dvhcalc."""
# test_dvhcalc.py
# Copyright (c) 2016-2018 Aditya Panchal


from __future__ import division
import unittest
import os
from dicompylercore import dicomparser, dvhcalc
from dicompylercore.config import skimage_available
from dicompylercore.dvh import DVH
from dicompylercore.dvhcalc import get_dvh
try:
    from pydicom.dataset import Dataset
    from pydicom.sequence import Sequence
except ImportError:
    from dicom.dataset import Dataset
    from dicom.sequence import Sequence
from numpy import arange
from numpy.testing import assert_allclose
from .util import fake_rtdose, fake_ss


basedata_dir = "tests/testdata"
example_data = os.path.join(basedata_dir, "example_data")


class TestDVHCalc(unittest.TestCase):
    """Unit tests for DVH calculation."""

    def setUp(self):
        """Set up files for common case testing."""
        rtss_dcm = os.path.join(example_data, "rtss.dcm")
        rtdose_dcm = os.path.join(example_data, "rtdose.dcm")
        self.rtss = dicomparser.DicomParser(rtss_dcm)
        self.rtdose = dicomparser.DicomParser(rtdose_dcm)

        self.dvhs = self.rtdose.GetDVHs()

    def calc_dvh(self, key, limit=None,
                 calculate_full_volume=True,
                 use_structure_extents=False,
                 interpolation_resolution=None,
                 interpolation_segments=0):
        """Calculate a DVH for testing."""
        # Generate the calculated DVHs
        dvh = dvhcalc.get_dvh(
            self.rtss.ds, self.rtdose.ds, key, limit,
            calculate_full_volume=calculate_full_volume,
            use_structure_extents=use_structure_extents,
            interpolation_resolution=interpolation_resolution,
            interpolation_segments_between_planes=interpolation_segments)
        dvh.dose_units = 'Gy'
        return dvh

    def create_new_contour(self, roi_id, extents, z):
        """Create a new contour sequence for the given ROI id."""
        roic = self.rtss.ds.ROIContourSequence[roi_id - 1]
        new_contour = Dataset()
        # Create a ContourImageSequence for the referenced Image
        new_contour.ContourImageSequence = Sequence([])
        contour_image = Dataset()
        last_contour = roic.ContourSequence[-1].ContourImageSequence[-1]
        contour_image.ReferencedSOPClassUID = \
            last_contour.ReferencedSOPClassUID
        contour_image.ReferencedSOPInstanceUID = \
            last_contour.ReferencedSOPInstanceUID
        new_contour.ContourImageSequence.append(contour_image)
        new_contour.ContourGeometricType = 'CLOSED_PLANAR'
        new_contour.NumberOfContourPoints = 4
        xmin, ymin, xmax, ymax = extents
        new_contour.ContourData = [
            xmin, ymin, z,
            xmax, ymin, z,
            xmax, ymax, z,
            xmin, ymax, z
        ]
        roic.ContourSequence.append(new_contour)

    def test_dvh_calculation_empty_structure_no_dose(self):
        """Test if a DVH returns an empty histogram for invalid data."""
        dvh = self.calc_dvh(2)
        self.assertEqual(dvh, DVH([0], arange(0, 2)))

    def test_dvh_calculation(self):
        """Test if cumulative DVHs can be calculated from the DICOM data."""
        dvh = self.calc_dvh(5)

        # Volume
        self.assertAlmostEqual(dvh.volume, 440.23124999)
        # Min dose bin
        self.assertAlmostEqual(dvh.bins[0], 0)
        # Max dose bin
        self.assertEqual(dvh.bins[-1], 3.1)
        # Max dose to structure
        self.assertAlmostEqual(dvh.max, 3.1)
        # Min dose to structure
        self.assertAlmostEqual(dvh.min, 0.03)
        # Mean dose to structure
        self.assertAlmostEqual(dvh.mean, 0.6475329)

    def test_dvh_calculation_memmap(self):
        """Test if DVHs can be calculated with memmapped RT Dose."""
        dvh = dvhcalc.get_dvh(os.path.join(
            example_data, "rtss.dcm"), os.path.join(
            example_data, "rtdose.dcm"), 5, memmap_rtdose=True)
        # Volume
        self.assertAlmostEqual(dvh.volume, 440.23124999)
        # Min dose bin
        self.assertAlmostEqual(dvh.bins[0], 0)
        # Max dose bin
        self.assertEqual(dvh.bins[-1], 3.1)
        # Max dose to structure
        self.assertAlmostEqual(dvh.max, 3.1)
        # Min dose to structure
        self.assertAlmostEqual(dvh.min, 0.03)
        # Mean dose to structure
        self.assertAlmostEqual(dvh.mean, 0.6475329)

    def test_dvh_calculation_with_dose_limit(self):
        """Test if a DVH can be calculated with a max dose limit."""
        # Set the dose limit to 500 cGy (lower than max dose)
        limitdvh = self.calc_dvh(5, limit=500)

        # Volume
        self.assertAlmostEqual(limitdvh.volume, 440.23124999)
        # Min dose bin
        self.assertAlmostEqual(limitdvh.bins[0], 0)
        # Max dose bin
        self.assertEqual(limitdvh.bins[-1], 3.1)
        # Max dose to structure
        self.assertAlmostEqual(limitdvh.max, 3.1)
        # Min dose to structure
        self.assertAlmostEqual(limitdvh.min, 0.03)
        # Mean dose to structure
        self.assertAlmostEqual(limitdvh.mean, 0.6475329)

        # Set the dose limit to 2000 cGy (higher than max dose)
        highlimitdvh = self.calc_dvh(5, limit=2000)
        # Max dose bin
        self.assertEqual(highlimitdvh.bins[-1], 3.1)

        # Set the dose limit to 1 cGy (should produce an empty histogram)
        lowlimitdvh = self.calc_dvh(5, limit=1)
        # Max dose bin
        self.assertEqual(lowlimitdvh.bins[-1], 1)

    def test_dvh_contour_outside_dose_grid(self):
        """Test if a DVH can be calculated with contours outside a dosegrid."""
        # Add a set of contours outside of the dose grid
        self.create_new_contour(8, [0.0, -250.0, 5.0, -245.0], 180.0)

        # Full structure volume (calculated inside/outside dose grid)
        include_vol_dvh = self.calc_dvh(8, calculate_full_volume=True)
        self.assertAlmostEqual(include_vol_dvh.volume, 0.56249999)
        # Partial volume (calculated only within dose grid)
        partial_vol_dvh = self.calc_dvh(8, calculate_full_volume=False)
        self.assertAlmostEqual(partial_vol_dvh.volume, 0.48749999)

    @unittest.skipUnless(skimage_available, "scikit-image not installed")
    def test_dvh_with_in_plane_interpolation(self):
        """Test if DVH can be calculated using in plane interpolation."""
        interp_dvh = self.calc_dvh(
            8, use_structure_extents=True,
            interpolation_resolution=(2.5 / 8))

        # Volume
        self.assertAlmostEqual(interp_dvh.volume, 0.51590551)
        # Min dose bin
        self.assertAlmostEqual(interp_dvh.bins[0], 0)
        # Max dose bin
        self.assertEqual(interp_dvh.bins[-1], 12.98)
        # Max dose to structure
        self.assertAlmostEqual(interp_dvh.max, 12.98)
        # Min dose to structure
        self.assertAlmostEqual(interp_dvh.min, 1.32)
        # Mean dose to structure
        self.assertAlmostEqual(interp_dvh.mean, 7.695116550116536)

    @unittest.skipUnless(skimage_available, "scikit-image not installed")
    def test_dvh_with_in_plane_interpolation_non_square_pixel_spacing(self):
        """Test non-square pixel spacing DVH calculation with interpolation."""
        interp_dvh = self.calc_dvh(
            8, use_structure_extents=True,
            interpolation_resolution=((2.5 / 8), (2.5 / 16)))

        # Volume
        self.assertAlmostEqual(interp_dvh.volume, 0.51215152)
        # Min dose bin
        self.assertAlmostEqual(interp_dvh.bins[0], 0)
        # Max dose bin
        self.assertEqual(interp_dvh.bins[-1], 13.01)
        # Max dose to structure
        self.assertAlmostEqual(interp_dvh.max, 13.01)
        # Min dose to structure
        self.assertAlmostEqual(interp_dvh.min, 1.37)
        # Mean dose to structure
        self.assertAlmostEqual(interp_dvh.mean, 7.660532286212908)

        # Fake irregular pixel spacing to test resampled LUT errors
        # for non square pixel spacing
        print(self.rtdose.ds.PixelSpacing)
        self.rtdose.ds.PixelSpacing = [2.0, 3.0]

        # Test that a non-sequence resolution is invalid
        # for non-square pixel spacing
        with self.assertRaises(AttributeError):
            self.calc_dvh(
                8, use_structure_extents=True,
                interpolation_resolution=(2.5 / 8))

        # Test row incorrect new pixel spacing
        with self.assertRaises(AttributeError):
            self.calc_dvh(
                8, use_structure_extents=True,
                interpolation_resolution=((2.1 / 8), (3.0 / 16)))

        # Test column incorrect pixel spacing
        with self.assertRaises(AttributeError):
            self.calc_dvh(
                8, use_structure_extents=True,
                interpolation_resolution=((2.0 / 8), (3.1 / 8)))

    def test_dvh_with_structure_extents(self):
        """Test if DVH calculation is same as normal with structure extents."""
        orig_dvh = self.calc_dvh(8)
        structure_extents_dvh = self.calc_dvh(8, use_structure_extents=True)
        self.assertEqual(orig_dvh, structure_extents_dvh)

    def test_dvh_with_structure_extents_larger_than_dose_grid(self):
        """Test DVH calculation using large structure structure extents."""
        # Add a set of contours larger than the dose grid plane
        self.create_new_contour(3, [-230.0, -520.0, 260.0, 0.0], 24.56)

        structure_extents_dvh = self.calc_dvh(3, use_structure_extents=True)
        self.assertAlmostEqual(structure_extents_dvh.volume, 464.40000)

    def test_dvh_with_in_plane_interpolation_sampling_fail(self):
        """Test if DVH calculation fails when the sampling rate is invalid."""
        with self.assertRaises(AttributeError):
            self.calc_dvh(
                8, use_structure_extents=False,
                interpolation_resolution=(3 / 8))

    def test_dvh_calculation_with_interpolation_between_planes(self):
        """Test if DVH can be calculated using interpolation between planes."""
        dvh = self.calc_dvh(8, interpolation_segments=2)

        # Volume
        self.assertAlmostEqual(dvh.volume, 0.47499999)
        # Min dose bin
        self.assertAlmostEqual(dvh.bins[0], 0)
        # Max dose bin
        self.assertEqual(dvh.bins[-1], 10.0)
        # Max dose to structure
        self.assertAlmostEqual(dvh.max, 10.0)
        # Min dose to structure
        self.assertAlmostEqual(dvh.min, 2.03)
        # Mean dose to structure
        self.assertAlmostEqual(dvh.mean, 6.4767105)


class TestDVHCalcDecubitus(unittest.TestCase):
    """Unit tests for DVH calculation in decubitus orientations."""

    def setUp(self):
        """Set up fake DICOM datasets used in various tests."""
        self.ss = fake_ss()
        self.dose = fake_rtdose()

    def test_nondecub(self):
        """Test that DVH is calculated correctly for standard orientation."""
        self.dose.ImageOrientationPatient = [1, 0, 0, 0, 1, 0]
        dvh = get_dvh(self.ss, self.dose, 1)
        diffl = dvh.differential
        # Counts are normalized to total, and to volume,
        # So undo that here for test dose grid.
        # 18=num dose voxels inside struct; 0.36=volume
        got_counts = diffl.counts * 18 / 0.36
        expected_counts = [0]*13 + [2, 2, 2, 0, 0, 0, 0, 0, 0, 0,
                                    2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2]
        assert_allclose(got_counts, expected_counts)

    def test_HF_decubitus_left(self):
        """Test DVH for head-first decubitus left orientation."""
        # Keep same dose grid as std orientation but pixel-spacing in X, Y same
        # For this case, use iop=[0, -1, 0, 1, 0, 0] Head first decubitus left
        # Then X = r * dr + ipp[0]
        #  and Y = -c * dc + ipp[1]
        # (https://nipy.org/nibabel/dicom/dicom_orientation.html
        # #dicom-affine-formula)
        # Change ipp y of y to new max of 19 for similar y range
        # Below show contours box of (3, 14.5) - (7, 17.5) on dose grid
        #       Y=19 18  17                  12
        # X=2   [10, 10, 10, 13, 14, 15, 16, 17],
        #               |-----------|
        #   4   [10, 10, 10, 13, 14, 15, 16, 17]
        #   6   [10, 10, 10, 13, 14, 15, 16, 17]
        #               |-----------|
        #   8   [13, 13, 13, 16, 17, 18, 19, 20]
        #  10   [14, 14, 14, 17, 18, 19, 20, 21]
        #  12   [15, 15, 15, 18, 19, 20, 21, 22]
        #  14   [16, 16, 16, 19, 20, 21, 22, 23]]

        #       Y=19 18  17                  12
        # X=2   [20, 20, 20, 23, 24, 25, 26, 27]
        #               |-----------|
        #   4   [20, 20, 20, 23, 24, 25, 26, 27]
        #   6   [20, 20, 20, 23, 24, 25, 26, 27]
        #               |-----------|
        #   8   [23, 23, 23, 26, 27, 28, 29, 30]
        #  10   [24, 24, 24, 27, 28, 29, 30, 31]
        #  12   [25, 25, 25, 28, 29, 30, 31, 32]
        #  14   [...]

        #       Y=19 18  17                  12
        # X=2   [30, 30, 30, 33, 34, 35, 36, 37]
        #               |-----------|
        #   4   [30, 30, 30, 33, 34, 35, 36, 37]
        #   6   [30, 30, 30, 33, 34, 35, 36, 37]
        #               |-----------|
        #   8   [33, 33, 33, 36, 37, 38, 39, 40]
        #   10  [34, 34, 34, 37, 38, 39, 40, 41]
        #   12  [35, 35, 35, 38, 39, 40, 41, 42]
        # X=14  [36, 36, 36, 39, 40, 41, 42, 43]

        #                          10       13 14                20
        expected_counts = [0]*10 + [2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0,
                                    2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2]
        #                          23 24                30       33 34
        self.dose.ImagePositionPatient = [2, 19, -20]  # X Y Z top left
        self.dose.PixelSpacing = [2.0, 1.0]  # between Rows, Columns
        dvh = get_dvh(self.ss, self.dose, 1)
        diffl = dvh.differential
        # Counts are normalized to total, and to volume,
        # So undo that here for test dose grid.
        # 18=num dose voxels inside struct; 0.36=volume
        got_counts = diffl.counts * 18 / 0.36
        assert_allclose(got_counts, expected_counts)

    def test_HF_decubitus_left_structure_extents(self):
        """Test DVH for HF decubitus Lt orientation structure_extents used."""
        # Repeat test_HF_decubitus_left but with use_structure_extents
        #                          10       13 14                20
        expected_counts = [0]*10 + [2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 2, 0, 0,
                                    2, 2, 0, 0, 0, 0, 0, 2, 0, 0, 2, 2]
        #                          23 24                30       33 34
        self.dose.ImagePositionPatient = [2, 19, -20]  # X Y Z top left
        self.dose.PixelSpacing = [2.0, 1.0]  # between Rows, Columns
        dvh = get_dvh(self.ss, self.dose, 1, use_structure_extents=True)
        diffl = dvh.differential
        # Counts are normalized to total, and to volume,
        # So undo that here for test dose grid.
        # 18=num dose voxels inside struct; 0.36=volume
        got_counts = diffl.counts * 18 / 0.36
        assert_allclose(got_counts, expected_counts)

    def test_HF_decubitus_right(self):
        """Test DVH for head-first decubitus right orientation."""
        # Keep same dose grid as std orientation

        self.dose.ImageOrientationPatient = [0, 1, 0, -1, 0, 0]
        self.dose.PixelSpacing = [2.0, 1.0]  # between Rows, Columns
        # original ipp = [2, 12, -20]
        # Then X = -r * dr + ipp[0], X decreases down the rows
        #  and Y = c * dc + ipp[1], Y increases across cols
        # (https://nipy.org/nibabel/dicom/dicom_orientation.html
        # #dicom-affine-formula)
        # Change ipp y of X to new max of 14 for similar y range
        self.dose.ImagePositionPatient = [14, 12, -20]  # X Y Z top left
        # Below show contours box of (3, 14.5) - (7, 17.5) on dose grid
        #       Y=12 13  14  15  16  17  18  19
        # X=14  [10, 10, 10, 13, 14, 15, 16, 17],
        #   12  [10, 10, 10, 13, 14, 15, 16, 17]
        #   10  [10, 10, 10, 13, 14, 15, 16, 17]
        #    8  [13, 13, 13, 16, 17, 18, 19, 20]
        #                   | ----------|
        #    6  [14, 14, 14, 17, 18, 19, 20, 21]
        #    4  [15, 15, 15, 18, 19, 20, 21, 22]
        #                   | ----------|
        #    2  [16, 16, 16, 19, 20, 21, 22, 23]]

        #       Y=12 13  14                  19
        # X=14  [20, 20, 20, 23, 24, 25, 26, 27]
        #   12  [20, 20, 20, 23, 24, 25, 26, 27]
        #   10  [20, 20, 20, 23, 24, 25, 26, 27]
        #    8  [23, 23, 23, 26, 27, 28, 29, 30]
        #                   | ----------|
        #    6  [24, 24, 24, 27, 28, 29, 30, 31]
        #    4  [25, 25, 25, 28, 29, 30, 31, 32]
        #                   | ----------|
        #    2  [...]

        #       Y=12 13  14                  19
        # X=14  [30, 30, 30, 33, 34, 35, 36, 37]
        #   12  [30, 30, 30, 33, 34, 35, 36, 37]
        #   10  [30, 30, 30, 33, 34, 35, 36, 37]
        #    8  [33, 33, 33, 36, 37, 38, 39, 40]
        #                   | ----------|
        #    6  [34, 34, 34, 37, 38, 39, 40, 41]
        #    4  [35, 35, 35, 38, 39, 40, 41, 42]
        #                   | ----------|
        # X= 2  [36, 36, 36, 39, 40, 41, 42, 43]

        #                           17       20
        expected_counts = [0]*17 + [1, 2, 2, 1, 0, 0, 0, 0, 0, 0,
                                    1, 2, 2, 1, 0, 0, 0, 0, 0, 0, 1, 2, 2, 1]
        #                          27 28 29 30                   37
        dvh = get_dvh(self.ss, self.dose, 1)
        diffl = dvh.differential
        # Counts are normalized to total, and to volume,
        # So undo that here for test dose grid.
        # 18=num dose voxels inside struct; 0.36=volume
        got_counts = diffl.counts * 18 / 0.36
        assert_allclose(got_counts, expected_counts)

    def test_FF_decubitus_right(self):
        """Test DVH for feet-first decubitus right orientation."""
        self.dose.ImageOrientationPatient = [0, -1, 0, -1, 0, 0]
        self.dose.PixelSpacing = [2.0, 1.0]  # between Rows, Columns
        # original ipp = [2, 12, -20]
        # Then X = -r * dr + ipp[0], X decreases down the rows
        #  and Y = -c * dc + ipp[1], Y decreases across cols
        # (https://nipy.org/nibabel/dicom/dicom_orientation.html
        # #dicom-affine-formula)
        self.dose.ImagePositionPatient = [14, 19, 20]  # X Y Z top left
        # Below show contours box of (3, 14.5) - (7, 17.5) on dose grid
        #       Y=19 18  17  16  15  14  13  12
        # X=14  [10, 10, 10, 13, 14, 15, 16, 17],
        #   12  [10, 10, 10, 13, 14, 15, 16, 17]
        #   10  [10, 10, 10, 13, 14, 15, 16, 17]
        #    8  [13, 13, 13, 16, 17, 18, 19, 20]
        #               | ----------|
        #    6  [14, 14, 14, 17, 18, 19, 20, 21]
        #    4  [15, 15, 15, 18, 19, 20, 21, 22]
        #               | ----------|
        #    2  [16, 16, 16, 19, 20, 21, 22, 23]]

        #       Y=19 18  17  16  15  14  13  12
        # X=14  [20, 20, 20, 23, 24, 25, 26, 27]
        #   12  [20, 20, 20, 23, 24, 25, 26, 27]
        #   10  [20, 20, 20, 23, 24, 25, 26, 27]
        #    8  [23, 23, 23, 26, 27, 28, 29, 30]
        #               | ----------|
        #    6  [24, 24, 24, 27, 28, 29, 30, 31]
        #    4  [25, 25, 25, 28, 29, 30, 31, 32]
        #               | ----------|
        #    2  [...]

        #       Y=19 18  17  16  15  14  13  12
        # X=14  [30, 30, 30, 33, 34, 35, 36, 37]
        #   12  [30, 30, 30, 33, 34, 35, 36, 37]
        #   10  [30, 30, 30, 33, 34, 35, 36, 37]
        #    8  [33, 33, 33, 36, 37, 38, 39, 40]
        #               | ----------|
        #    6  [34, 34, 34, 37, 38, 39, 40, 41]
        #    4  [35, 35, 35, 38, 39, 40, 41, 42]
        #               | ----------|
        # X= 2  [36, 36, 36, 39, 40, 41, 42, 43]

        #                          14 15 16       19             24
        expected_counts = [0]*14 + [1, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 0, 1,
                                    2, 1, 0, 0, 0, 0, 1, 1, 0, 1, 2, 1]
        #                                            34
        dvh = get_dvh(self.ss, self.dose, 1)
        diffl = dvh.differential
        # Counts are normalized to total, and to volume,
        # So undo that here for test dose grid.
        # 18=num dose voxels inside struct; 0.36=volume
        got_counts = diffl.counts * 18 / 0.36
        assert_allclose(got_counts, expected_counts)

    def test_FF_decubitus_right_structure_extents(self):
        """Test DVH for FF decubitus Rt orientation using structure extents."""
        self.dose.ImageOrientationPatient = [0, -1, 0, -1, 0, 0]
        self.dose.PixelSpacing = [2.0, 1.0]  # between Rows, Columns
        self.dose.ImagePositionPatient = [14, 19, 20]  # X Y Z top left
        # see grid from test_FF_decubitus_right
        #                          14 15 16       19             24
        expected_counts = [0]*14 + [1, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 1, 0,
                                    1, 2, 1, 0, 0, 0, 0, 1, 1, 0, 1, 2, 1]
        #                                               34
        dvh = get_dvh(self.ss, self.dose, 1, use_structure_extents=True)
        diffl = dvh.differential
        # Counts are normalized to total, and to volume,
        # So undo that here for test dose grid.
        # 18=num dose voxels inside struct; 0.36=volume
        got_counts = diffl.counts * 18 / 0.36
        assert_allclose(got_counts, expected_counts)

    def test_FF_decubitus_left(self):
        """Test DVH for feet-first decubitus left orientation."""
        self.dose.ImageOrientationPatient = [0, 1, 0, 1, 0, 0]
        self.dose.PixelSpacing = [2.0, 1.0]  # between Rows, Columns
        # original ipp = [2, 12, -20]
        # Then X = r * dr + ipp[0], X increases down the rows
        #  and Y = c * dc + ipp[1], Y increases across cols
        # (https://nipy.org/nibabel/dicom/dicom_orientation.html
        # #dicom-affine-formula)

        # In this test, we also shift Z so three structure planes use the
        #    first three dose planes rather than the middle three,
        #    just to ensure asymmetry in z direction is checked.
        #    Note, planes should really be reversed in pixel array, but doesn't
        #    matter since contour is identical on each slice.
        self.dose.ImagePositionPatient = [2, 12, 10]  # X Y Z top left
        # Below show contours box of (3, 14.5) - (7, 17.5) on dose grid
        #      Y=12  13  14  15  16  17      19
        # X=2   [ 0,  0,  0,  3,  4,  5,  6,  7],
        #                   |-----------|
        #   4   [ 0,  0,  0,  3,  4,  5,  6,  7]
        #   6   [ 0,  0,  0,  3,  4,  5,  6,  7]
        #                   |-----------|
        #   8   [ 3,  3,  3,  6,  7,  8,  9, 10]
        #  10   [ 4,  4,  4,  7,  8,  9, 10, 11]
        #  12   [ 5,  5,  5,  8,  9, 10, 11, 12]
        #  14   [ 6,  6,  6,  9, 10, 11, 12, 13]]

        #      Y=12  13  14                  19
        # X=2   [10, 10, 10, 13, 14, 15, 16, 17],
        #                   |-----------|
        #   4   [10, 10, 10, 13, 14, 15, 16, 17]
        #   6   [10, 10, 10, 13, 14, 15, 16, 17]
        #                   |-----------|
        #   8   [13, 13, 13, 16, 17, 18, 19, 20]
        #  10   [14, 14, 14, 17, 18, 19, 20, 21]
        #  12   [15, 15, 15, 18, 19, 20, 21, 22]
        #  14   [16, 16, 16, 19, 20, 21, 22, 23]]

        #      Y=12  13  14                  19
        # X=2   [20, 20, 20, 23, 24, 25, 26, 27]
        #                   |-----------|
        #   4   [20, 20, 20, 23, 24, 25, 26, 27]
        #   6   [20, 20, 20, 23, 24, 25, 26, 27]
        #                   |-----------|
        #   8   [23, 23, 23, 26, 27, 28, 29, 30]
        #  10   [24, 24, 24, 27, 28, 29, 30, 31]
        #  12   [25, 25, 25, 28, 29, 30, 31, 32]
        #  14   [...]

        #                          3
        expected_counts = [0]*3 + [2, 2, 2, 0, 0, 0, 0, 0, 0, 0,
                                   2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 2]
        #                         13                            23
        dvh = get_dvh(self.ss, self.dose, 1)
        diffl = dvh.differential
        # Counts are normalized to total, and to volume,
        # So undo that here for test dose grid.
        # 18=num dose voxels inside struct; 0.36=volume
        got_counts = diffl.counts * 18 / 0.36
        assert_allclose(got_counts, expected_counts)

    def test_empty_dose_grid(self):
        """Test empty dose grid handled correctly."""
        # See #274, prior to fixes this raised IndexError from
        #  get_interpolated_dose() getting empty array from GetDoseGrid()
        # Use z value to force no dose grid at that value
        #  Otherwise make like decub example
        self.dose.ImagePositionPatient = [2, 19, -1020]  # X Y Z top left
        self.dose.PixelSpacing = [2.0, 1.0]  # between Rows, Columns

        # 1 = roi number
        dvh = get_dvh(self.ss, self.dose, 1, use_structure_extents=True)
        self.assertTrue('Empty DVH' in dvh.notes)

    def test_not_implemented_orientations(self):
        """Test unhandled orientations raise NotImplementedError."""
        self.dose.ImageOrientationPatient = [0.7071, 0.7071, 0, 1, 0, 0]
        with self.assertRaises(NotImplementedError):
            _ = get_dvh(self.ss, self.dose, 1)


if __name__ == '__main__':
    import sys
    sys.exit(unittest.main())