1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
"""Test the dispersion-compensated algorithm package."""
import numpy as np
import scipy.constants as sc
# SciKit-RF: https://scikit-rf.readthedocs.io/
from skrf.frequency import Frequency
from skrf.media import RectangularWaveguide
import disptrans
def test_lossless_waveguide(debug=False):
"""Test lossless WR-2.8 waveguide."""
# Waveguide dimensions
a, b, length = 28 * sc.mil, 14 * sc.mil, 2 * sc.inch
# Full frequency sweep for WR-2.8
freq = Frequency(260, 400, 1401, 'ghz')
# Create an ideal WR-2.8 waveguide
wr2p8 = RectangularWaveguide(freq.copy(), a=a, b=b)
beta = wr2p8.beta.copy() # phase constant
# Create 2 inch long waveguide
waveguide = wr2p8.line(length, unit='m')
# Unpack
f = freq.f.copy()
s21f = waveguide.s[:, 1, 0].copy()
# Calculate space-domain response: single point
x = np.array([length])
s21x = disptrans.freq2distance(f, s21f, beta, x)
# Check distance-domain response
if debug:
print(s21x)
else:
np.testing.assert_almost_equal(np.ones(1), s21x, decimal=3)
# Calculate space-domain response: sweep
x = np.linspace(-length * 10, length * 12, 1401)
s21x = disptrans.freq2distance(f, s21f, beta, x)
# Go back to frequency-domain
fresp = disptrans.distance2freq(x, s21x * np.hamming(len(x)), beta, f)
# Truncate
mask = (265e9 < f) & (f < 395e9)
# Debug
if debug:
import matplotlib.pyplot as plt
plt.figure()
plt.plot(f[mask] / 1e9, unwrap(s21f[mask]), 'k--', label="Original")
plt.plot(f[mask] / 1e9, unwrap(fresp[mask]), 'r', alpha=0.5, label="Recovered")
plt.xlabel("Frequency (GHz)")
plt.ylabel("S21 phase (deg)")
plt.title("S21 phase")
plt.legend()
plt.figure()
plt.plot(f[mask] / 1e9, db20(s21f[mask]), 'k--', label="Original")
plt.plot(f[mask] / 1e9, db20(fresp[mask]), 'r', alpha=0.5, label="Recovered")
plt.xlabel("Frequency (GHz)")
plt.ylabel("S21 magnitude (dB)")
plt.title("S21 magnitude")
plt.legend()
plt.show()
# Check
if not debug:
np.testing.assert_almost_equal(s21f[mask], fresp[mask], decimal=3)
def test_lossy_waveguide(debug=False):
"""Test lossy WR-2.8 waveguide."""
# Waveguide imensions
a, b, length = 28*sc.mil, 14*sc.mil, 2*sc.inch
# Full frequency sweep for WR-2.8 waveguide
freq = Frequency(260, 400, 1401, 'ghz')
# Create an ideal WR-2.8 waveguide
wr2p8 = RectangularWaveguide(freq.copy(), a=a, b=b, rho="au")
beta = wr2p8.beta.copy() # phase constant
# Create 2 inch long waveguide
waveguide = wr2p8.line(length, unit='m')
# Unpack
f = freq.f.copy()
s21f = waveguide.s[:, 1, 0].copy()
# Calculate space-domain response
x = np.linspace(-length*10, length*12, 1401)
s21x = disptrans.freq2distance(f, s21f, beta, x)
# Go back to frequency-domain
fresp = disptrans.distance2freq(x, s21x*np.hamming(len(x)), beta, f)
# Truncate
mask = (265e9 < f) & (f < 395e9)
# Debug
if debug:
import matplotlib.pyplot as plt
plt.figure()
plt.plot(f[mask] / 1e9, unwrap(s21f[mask]), 'k--', label="Original")
plt.plot(f[mask] / 1e9, unwrap(fresp[mask]), 'r', alpha=0.5, label="Recovered")
plt.xlabel("Frequency (GHz)")
plt.ylabel("S21 phase (deg)")
plt.title("S21 phase")
plt.legend()
plt.figure()
plt.plot(f[mask] / 1e9, db20(s21f[mask]), 'k--', label="Original")
plt.plot(f[mask] / 1e9, db20(fresp[mask]), 'r', alpha=0.5, label="Recovered")
plt.xlabel("Frequency (GHz)")
plt.ylabel("S21 magnitude (dB)")
plt.title("S21 magnitude")
plt.legend()
plt.show()
# Check
if not debug:
np.testing.assert_almost_equal(s21f[mask], fresp[mask], decimal=3)
def db10(value):
"""Return power-like value in dB."""
return 10 * np.log10(np.abs(value))
def db20(value):
"""Return voltage-like value in dB."""
return 20 * np.log10(np.abs(value))
def unwrap(value):
"""Unwrap phase."""
return 180 / np.pi * np.unwrap(np.angle(value))
if __name__ == "__main__":
test_lossless_waveguide(debug=True)
test_lossy_waveguide(debug=True)
|