File: README.rst

package info (click to toggle)
python-django-timescaledb 0.2.13-4
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 304 kB
  • sloc: python: 512; sh: 20; makefile: 6; sql: 4
file content (164 lines) | stat: -rw-r--r-- 4,897 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
Django timescaledb
==================

A database backend and tooling for Timescaledb.

Based on
`gist <https://gist.github.com/dedsm/fc74f04eb70d78459ff0847ef16f2e7a>`__
from WeRiot.

Quick start
-----------

1. Install via pip

.. code:: bash

    pip install django-timescaledb

2. Use as DATABASE engine in settings.py:

Standard PostgreSQL

.. code:: python

    DATABASES = {
        'default': {
            'ENGINE': 'timescale.db.backends.postgresql',
            ...
        },
    }

PostGIS

.. code:: python

    DATABASES = {
        'default': {
            'ENGINE': 'timescale.db.backends.postgis',
            ...
        },
    }

If you already make use of a custom PostgreSQL db backend you can set
the path in settings.py.

.. code:: python

    TIMESCALE_DB_BACKEND_BASE = "django.contrib.gis.db.backends.postgis"

3. Inherit from the TimescaleModel. A
   `hypertable <https://docs.timescale.com/latest/using-timescaledb/hypertables#react-docs>`__
   will automatically be created.

.. code:: python


      class TimescaleModel(models.Model):
        """
        A helper class for using Timescale within Django, has the TimescaleManager and 
        TimescaleDateTimeField already present. This is an abstract class it should 
        be inheritted by another class for use.
        """
        time = TimescaleDateTimeField(interval="1 day")

        objects = TimescaleManager()

        class Meta:
            abstract = True

Implementation would look like this

.. code:: python

    from timescale.db.models.models import TimescaleModel

    class Metric(TimescaleModel):
       temperature = models.FloatField()
       

If you already have a table, you can either add `time`
field of type `TimescaleDateTimeField` to your model or
rename (if not already named `time`) and change type of
existing `DateTimeField` (rename first then run
`makemigrations` and then change the type, so that
`makemigrations` considers it as change in same field
instead of removing and adding new field). This also
triggers the creation of a hypertable.

.. code:: python

    from timescale.db.models.fields import TimescaleDateTimeField
    from timescale.db.models.managers import TimescaleManager

    class Metric(models.Model):
      time = TimescaleDateTimeField(interval="1 day")

      objects = models.Manager()
      timescale = TimescaleManager()

The name of the field is important as Timescale specific feratures
require this as a property of their functions. ### Reading Data

"TimescaleDB hypertables are designed to behave in the same manner as
PostgreSQL database tables for reading data, using standard SQL
commands."

As such the use of the Django's ORM is perfectally suited to this type
of data. By leveraging a custom model manager and queryset we can extend
the queryset methods to include Timescale functions.

Time Bucket `More Info <https://docs.timescale.com/latest/using-timescaledb/reading-data#time-bucket>`__
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code:: python

      Metric.timescale.filter(time__range=date_range).time_bucket('time', '1 hour')

      # expected output

      <TimescaleQuerySet [{'bucket': datetime.datetime(2020, 12, 22, 11, 0, tzinfo=<UTC>)}, ... ]>

Time Bucket Gap Fill `More Info <https://docs.timescale.com/latest/using-timescaledb/reading-data#gap-filling>`__
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code:: python

      from metrics.models import *
      from django.db.models import Count, Avg
      from django.utils import timezone
      from datetime import timedelta

      ranges = (timezone.now() - timedelta(days=2), timezone.now())

      (Metric.timescale
        .filter(time__range=ranges)
        .time_bucket_gapfill('time', '1 day', ranges[0], ranges[1], datapoints=240)
        .annotate(Avg('temperature')))

      # expected output

      <TimescaleQuerySet [{'bucket': datetime.datetime(2020, 12, 21, 21, 24, tzinfo=<UTC>), 'temperature__avg': None}, ...]>

Histogram `More Info <https://docs.timescale.com/latest/using-timescaledb/reading-data#histogram>`__
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.. code:: python

      from metrics.models import *
      from django.db.models import Count
      from django.utils import timezone
      from datetime import timedelta

      ranges = (timezone.now() - timedelta(days=3), timezone.now())

      (Metric.timescale
        .filter(time__range=ranges)
        .values('device')
        .histogram(field='temperature', min_value=50.0, max_value=55.0, num_of_buckets=10)
        .annotate(Count('device')))
        
      # expected output

      <TimescaleQuerySet [{'histogram': [0, 0, 0, 87, 93, 125, 99, 59, 0, 0, 0, 0], 'device__count': 463}]>