1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
|
===========================
Writing custom model fields
===========================
.. currentmodule:: django.db.models
Introduction
============
The :doc:`model reference </topics/db/models>` documentation explains how to use
Django's standard field classes -- :class:`~django.db.models.CharField`,
:class:`~django.db.models.DateField`, etc. For many purposes, those classes are
all you'll need. Sometimes, though, the Django version won't meet your precise
requirements, or you'll want to use a field that is entirely different from
those shipped with Django.
Django's built-in field types don't cover every possible database column type --
only the common types, such as ``VARCHAR`` and ``INTEGER``. For more obscure
column types, such as geographic polygons or even user-created types such as
`PostgreSQL custom types`_, you can define your own Django ``Field`` subclasses.
.. _PostgreSQL custom types: http://www.postgresql.org/docs/current/interactive/sql-createtype.html
Alternatively, you may have a complex Python object that can somehow be
serialized to fit into a standard database column type. This is another case
where a ``Field`` subclass will help you use your object with your models.
Our example object
------------------
Creating custom fields requires a bit of attention to detail. To make things
easier to follow, we'll use a consistent example throughout this document:
wrapping a Python object representing the deal of cards in a hand of Bridge_.
Don't worry, you don't have to know how to play Bridge to follow this example.
You only need to know that 52 cards are dealt out equally to four players, who
are traditionally called *north*, *east*, *south* and *west*. Our class looks
something like this::
class Hand(object):
"""A hand of cards (bridge style)"""
def __init__(self, north, east, south, west):
# Input parameters are lists of cards ('Ah', '9s', etc)
self.north = north
self.east = east
self.south = south
self.west = west
# ... (other possibly useful methods omitted) ...
.. _Bridge: http://en.wikipedia.org/wiki/Contract_bridge
This is just an ordinary Python class, with nothing Django-specific about it.
We'd like to be able to do things like this in our models (we assume the
``hand`` attribute on the model is an instance of ``Hand``)::
example = MyModel.objects.get(pk=1)
print(example.hand.north)
new_hand = Hand(north, east, south, west)
example.hand = new_hand
example.save()
We assign to and retrieve from the ``hand`` attribute in our model just like
any other Python class. The trick is to tell Django how to handle saving and
loading such an object.
In order to use the ``Hand`` class in our models, we **do not** have to change
this class at all. This is ideal, because it means you can easily write
model support for existing classes where you cannot change the source code.
.. note::
You might only be wanting to take advantage of custom database column
types and deal with the data as standard Python types in your models;
strings, or floats, for example. This case is similar to our ``Hand``
example and we'll note any differences as we go along.
Background theory
=================
Database storage
----------------
The simplest way to think of a model field is that it provides a way to take a
normal Python object -- string, boolean, ``datetime``, or something more
complex like ``Hand`` -- and convert it to and from a format that is useful
when dealing with the database (and serialization, but, as we'll see later,
that falls out fairly naturally once you have the database side under control).
Fields in a model must somehow be converted to fit into an existing database
column type. Different databases provide different sets of valid column types,
but the rule is still the same: those are the only types you have to work
with. Anything you want to store in the database must fit into one of
those types.
Normally, you're either writing a Django field to match a particular database
column type, or there's a fairly straightforward way to convert your data to,
say, a string.
For our ``Hand`` example, we could convert the card data to a string of 104
characters by concatenating all the cards together in a pre-determined order --
say, all the *north* cards first, then the *east*, *south* and *west* cards. So
``Hand`` objects can be saved to text or character columns in the database.
What does a field class do?
---------------------------
All of Django's fields (and when we say *fields* in this document, we always
mean model fields and not :doc:`form fields </ref/forms/fields>`) are subclasses
of :class:`django.db.models.Field`. Most of the information that Django records
about a field is common to all fields -- name, help text, uniqueness and so
forth. Storing all that information is handled by ``Field``. We'll get into the
precise details of what ``Field`` can do later on; for now, suffice it to say
that everything descends from ``Field`` and then customizes key pieces of the
class behavior.
It's important to realize that a Django field class is not what is stored in
your model attributes. The model attributes contain normal Python objects. The
field classes you define in a model are actually stored in the ``Meta`` class
when the model class is created (the precise details of how this is done are
unimportant here). This is because the field classes aren't necessary when
you're just creating and modifying attributes. Instead, they provide the
machinery for converting between the attribute value and what is stored in the
database or sent to the :doc:`serializer </topics/serialization>`.
Keep this in mind when creating your own custom fields. The Django ``Field``
subclass you write provides the machinery for converting between your Python
instances and the database/serializer values in various ways (there are
differences between storing a value and using a value for lookups, for
example). If this sounds a bit tricky, don't worry -- it will become clearer in
the examples below. Just remember that you will often end up creating two
classes when you want a custom field:
* The first class is the Python object that your users will manipulate.
They will assign it to the model attribute, they will read from it for
displaying purposes, things like that. This is the ``Hand`` class in our
example.
* The second class is the ``Field`` subclass. This is the class that knows
how to convert your first class back and forth between its permanent
storage form and the Python form.
Writing a field subclass
========================
When planning your :class:`~django.db.models.Field` subclass, first give some
thought to which existing :class:`~django.db.models.Field` class your new field
is most similar to. Can you subclass an existing Django field and save yourself
some work? If not, you should subclass the :class:`~django.db.models.Field`
class, from which everything is descended.
Initializing your new field is a matter of separating out any arguments that are
specific to your case from the common arguments and passing the latter to the
``__init__()`` method of :class:`~django.db.models.Field` (or your parent
class).
In our example, we'll call our field ``HandField``. (It's a good idea to call
your :class:`~django.db.models.Field` subclass ``<Something>Field``, so it's
easily identifiable as a :class:`~django.db.models.Field` subclass.) It doesn't
behave like any existing field, so we'll subclass directly from
:class:`~django.db.models.Field`::
from django.db import models
class HandField(models.Field):
description = "A hand of cards (bridge style)"
def __init__(self, *args, **kwargs):
kwargs['max_length'] = 104
super(HandField, self).__init__(*args, **kwargs)
Our ``HandField`` accepts most of the standard field options (see the list
below), but we ensure it has a fixed length, since it only needs to hold 52
card values plus their suits; 104 characters in total.
.. note::
Many of Django's model fields accept options that they don't do anything
with. For example, you can pass both
:attr:`~django.db.models.Field.editable` and
:attr:`~django.db.models.DateField.auto_now` to a
:class:`django.db.models.DateField` and it will simply ignore the
:attr:`~django.db.models.Field.editable` parameter
(:attr:`~django.db.models.DateField.auto_now` being set implies
``editable=False``). No error is raised in this case.
This behavior simplifies the field classes, because they don't need to
check for options that aren't necessary. They just pass all the options to
the parent class and then don't use them later on. It's up to you whether
you want your fields to be more strict about the options they select, or to
use the simpler, more permissive behavior of the current fields.
The ``Field.__init__()`` method takes the following parameters:
* :attr:`~django.db.models.Field.verbose_name`
* ``name``
* :attr:`~django.db.models.Field.primary_key`
* :attr:`~django.db.models.CharField.max_length`
* :attr:`~django.db.models.Field.unique`
* :attr:`~django.db.models.Field.blank`
* :attr:`~django.db.models.Field.null`
* :attr:`~django.db.models.Field.db_index`
* ``rel``: Used for related fields (like :class:`ForeignKey`). For advanced
use only.
* :attr:`~django.db.models.Field.default`
* :attr:`~django.db.models.Field.editable`
* ``serialize``: If ``False``, the field will not be serialized when the model
is passed to Django's :doc:`serializers </topics/serialization>`. Defaults to
``True``.
* :attr:`~django.db.models.Field.unique_for_date`
* :attr:`~django.db.models.Field.unique_for_month`
* :attr:`~django.db.models.Field.unique_for_year`
* :attr:`~django.db.models.Field.choices`
* :attr:`~django.db.models.Field.help_text`
* :attr:`~django.db.models.Field.db_column`
* :attr:`~django.db.models.Field.db_tablespace`: Only for index creation, if the
backend supports :doc:`tablespaces </topics/db/tablespaces>`. You can usually
ignore this option.
* ``auto_created``: ``True`` if the field was automatically created, as for the
:class:`~django.db.models.OneToOneField` used by model inheritance. For
advanced use only.
All of the options without an explanation in the above list have the same
meaning they do for normal Django fields. See the :doc:`field documentation
</ref/models/fields>` for examples and details.
.. _custom-field-deconstruct-method:
Field deconstruction
--------------------
.. versionadded:: 1.7
``deconstruct()`` is part of the migrations framework in Django 1.7 and
above. If you have custom fields from previous versions they will
need this method added before you can use them with migrations.
The counterpoint to writing your ``__init__()`` method is writing the
``deconstruct()`` method. This method tells Django how to take an instance
of your new field and reduce it to a serialized form - in particular, what
arguments to pass to ``__init__()`` to re-create it.
If you haven't added any extra options on top of the field you inherited from,
then there's no need to write a new ``deconstruct()`` method. If, however,
you're, changing the arguments passed in ``__init__()`` (like we are in
``HandField``), you'll need to supplement the values being passed.
The contract of ``deconstruct()`` is simple; it returns a tuple of four items:
the field's attribute name, the full import path of the field class, the
positional arguments (as a list), and the keyword arguments (as a dict). Note
this is different from the ``deconstruct()`` method :ref:`for custom classes
<custom-deconstruct-method>` which returns a tuple of three things.
As a custom field author, you don't need to care about the first two values;
the base ``Field`` class has all the code to work out the field's attribute
name and import path. You do, however, have to care about the positional
and keyword arguments, as these are likely the things you are changing.
For example, in our ``HandField`` class we're always forcibly setting
max_length in ``__init__()``. The ``deconstruct()`` method on the base ``Field``
class will see this and try to return it in the keyword arguments; thus,
we can drop it from the keyword arguments for readability::
from django.db import models
class HandField(models.Field):
def __init__(self, *args, **kwargs):
kwargs['max_length'] = 104
super(HandField, self).__init__(*args, **kwargs)
def deconstruct(self):
name, path, args, kwargs = super(HandField, self).deconstruct()
del kwargs["max_length"]
return name, path, args, kwargs
If you add a new keyword argument, you need to write code to put its value
into ``kwargs`` yourself::
from django.db import models
class CommaSepField(models.Field):
"Implements comma-separated storage of lists"
def __init__(self, separator=",", *args, **kwargs):
self.separator = separator
super(CommaSepField, self).__init__(*args, **kwargs)
def deconstruct(self):
name, path, args, kwargs = super(CommaSepField, self).deconstruct()
# Only include kwarg if it's not the default
if self.separator != ",":
kwargs['separator'] = self.separator
return name, path, args, kwargs
More complex examples are beyond the scope of this document, but remember -
for any configuration of your Field instance, ``deconstruct()`` must return
arguments that you can pass to ``__init__`` to reconstruct that state.
Pay extra attention if you set new default values for arguments in the
``Field`` superclass; you want to make sure they're always included, rather
than disappearing if they take on the old default value.
In addition, try to avoid returning values as positional arguments; where
possible, return values as keyword arguments for maximum future compatibility.
Of course, if you change the names of things more often than their position
in the constructor's argument list, you might prefer positional, but bear in
mind that people will be reconstructing your field from the serialized version
for quite a while (possibly years), depending how long your migrations live for.
You can see the results of deconstruction by looking in migrations that include
the field, and you can test deconstruction in unit tests by just deconstructing
and reconstructing the field::
name, path, args, kwargs = my_field_instance.deconstruct()
new_instance = MyField(*args, **kwargs)
self.assertEqual(my_field_instance.some_attribute, new_instance.some_attribute)
The ``SubfieldBase`` metaclass
------------------------------
.. class:: django.db.models.SubfieldBase
As we indicated in the introduction_, field subclasses are often needed for
two reasons: either to take advantage of a custom database column type, or to
handle complex Python types. Obviously, a combination of the two is also
possible. If you're only working with custom database column types and your
model fields appear in Python as standard Python types direct from the
database backend, you don't need to worry about this section.
If you're handling custom Python types, such as our ``Hand`` class, we need to
make sure that when Django initializes an instance of our model and assigns a
database value to our custom field attribute, we convert that value into the
appropriate Python object. The details of how this happens internally are a
little complex, but the code you need to write in your ``Field`` class is
simple: make sure your field subclass uses a special metaclass:
For example, on Python 2::
class HandField(models.Field):
description = "A hand of cards (bridge style)"
__metaclass__ = models.SubfieldBase
def __init__(self, *args, **kwargs):
...
On Python 3, in lieu of setting the ``__metaclass__`` attribute, add
``metaclass`` to the class definition::
class HandField(models.Field, metaclass=models.SubfieldBase):
...
If you want your code to work on Python 2 & 3, you can use
:func:`six.with_metaclass`::
from django.utils.six import with_metaclass
class HandField(with_metaclass(models.SubfieldBase, models.Field)):
...
This ensures that the :meth:`.to_python` method will always be called when the
attribute is initialized.
``ModelForm``\s and custom fields
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you use :class:`~django.db.models.SubfieldBase`, :meth:`.to_python` will be
called every time an instance of the field is assigned a value (in addition to
its usual call when retrieving the value from the database). This means that
whenever a value may be assigned to the field, you need to ensure that it will
be of the correct datatype, or that you handle any exceptions.
This is especially important if you use :doc:`ModelForms
</topics/forms/modelforms>`. When saving a ModelForm, Django will use
form values to instantiate model instances. However, if the cleaned
form data can't be used as valid input to the field, the normal form
validation process will break.
Therefore, you must ensure that the form field used to represent your
custom field performs whatever input validation and data cleaning is
necessary to convert user-provided form input into a
``to_python()``-compatible model field value. This may require writing a
custom form field, and/or implementing the :meth:`.formfield` method on
your field to return a form field class whose ``to_python()`` returns the
correct datatype.
Documenting your custom field
-----------------------------
As always, you should document your field type, so users will know what it is.
In addition to providing a docstring for it, which is useful for developers,
you can also allow users of the admin app to see a short description of the
field type via the :doc:`django.contrib.admindocs
</ref/contrib/admin/admindocs>` application. To do this simply provide
descriptive text in a :attr:`~Field.description` class attribute of your custom
field. In the above example, the description displayed by the ``admindocs``
application for a ``HandField`` will be 'A hand of cards (bridge style)'.
In the :mod:`django.contrib.admindocs` display, the field description is
interpolated with ``field.__dict__`` which allows the description to
incorporate arguments of the field. For example, the description for
:class:`~django.db.models.CharField` is::
description = _("String (up to %(max_length)s)")
Useful methods
--------------
Once you've created your :class:`~django.db.models.Field` subclass and set up
the ``__metaclass__``, you might consider overriding a few standard methods,
depending on your field's behavior. The list of methods below is in
approximately decreasing order of importance, so start from the top.
.. _custom-database-types:
Custom database types
~~~~~~~~~~~~~~~~~~~~~
Say you've created a PostgreSQL custom type called ``mytype``. You can
subclass ``Field`` and implement the :meth:`~Field.db_type` method, like so::
from django.db import models
class MytypeField(models.Field):
def db_type(self, connection):
return 'mytype'
Once you have ``MytypeField``, you can use it in any model, just like any other
``Field`` type::
class Person(models.Model):
name = models.CharField(max_length=80)
something_else = MytypeField()
If you aim to build a database-agnostic application, you should account for
differences in database column types. For example, the date/time column type
in PostgreSQL is called ``timestamp``, while the same column in MySQL is called
``datetime``. The simplest way to handle this in a :meth:`~Field.db_type`
method is to check the ``connection.settings_dict['ENGINE']`` attribute.
For example::
class MyDateField(models.Field):
def db_type(self, connection):
if connection.settings_dict['ENGINE'] == 'django.db.backends.mysql':
return 'datetime'
else:
return 'timestamp'
The :meth:`~Field.db_type` method is called by Django when the framework
constructs the ``CREATE TABLE`` statements for your application -- that is,
when you first create your tables. It is also called when constructing a
``WHERE`` clause that includes the model field -- that is, when you retrieve data
using QuerySet methods like ``get()``, ``filter()``, and ``exclude()`` and have
the model field as an argument. It's not called at any other time, so it can afford to
execute slightly complex code, such as the ``connection.settings_dict`` check in
the above example.
Some database column types accept parameters, such as ``CHAR(25)``, where the
parameter ``25`` represents the maximum column length. In cases like these,
it's more flexible if the parameter is specified in the model rather than being
hard-coded in the ``db_type()`` method. For example, it wouldn't make much
sense to have a ``CharMaxlength25Field``, shown here::
# This is a silly example of hard-coded parameters.
class CharMaxlength25Field(models.Field):
def db_type(self, connection):
return 'char(25)'
# In the model:
class MyModel(models.Model):
# ...
my_field = CharMaxlength25Field()
The better way of doing this would be to make the parameter specifiable at run
time -- i.e., when the class is instantiated. To do that, just implement
``Field.__init__()``, like so::
# This is a much more flexible example.
class BetterCharField(models.Field):
def __init__(self, max_length, *args, **kwargs):
self.max_length = max_length
super(BetterCharField, self).__init__(*args, **kwargs)
def db_type(self, connection):
return 'char(%s)' % self.max_length
# In the model:
class MyModel(models.Model):
# ...
my_field = BetterCharField(25)
Finally, if your column requires truly complex SQL setup, return ``None`` from
:meth:`.db_type`. This will cause Django's SQL creation code to skip
over this field. You are then responsible for creating the column in the right
table in some other way, of course, but this gives you a way to tell Django to
get out of the way.
.. _converting-database-values-to-python-objects:
Converting database values to Python objects
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If your custom :class:`~Field` class deals with data structures that are more
complex than strings, dates, integers or floats, then you'll need to override
:meth:`~Field.to_python`. As a general rule, the method should deal gracefully
with any of the following arguments:
* An instance of the correct type (e.g., ``Hand`` in our ongoing example).
* A string (e.g., from a deserializer).
* Whatever the database returns for the column type you're using.
In our ``HandField`` class, we're storing the data as a VARCHAR field in the
database, so we need to be able to process strings and ``Hand`` instances in
:meth:`.to_python`::
import re
class HandField(models.Field):
# ...
def to_python(self, value):
if isinstance(value, Hand):
return value
# The string case.
p1 = re.compile('.{26}')
p2 = re.compile('..')
args = [p2.findall(x) for x in p1.findall(value)]
if len(args) != 4:
raise ValidationError("Invalid input for a Hand instance")
return Hand(*args)
Notice that we always return a ``Hand`` instance from this method. That's the
Python object type we want to store in the model's attribute. If anything is
going wrong during value conversion, you should raise a
:exc:`~django.core.exceptions.ValidationError` exception.
**Remember:** If your custom field needs the :meth:`~Field.to_python` method to be
called when it is created, you should be using `The SubfieldBase metaclass`_
mentioned earlier. Otherwise :meth:`~Field.to_python` won't be called
automatically.
.. warning::
If your custom field allows ``null=True``, any field method that takes
``value`` as an argument, like :meth:`~Field.to_python` and
:meth:`~Field.get_prep_value`, should handle the case when ``value`` is
``None``.
.. _converting-python-objects-to-query-values:
Converting Python objects to query values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since using a database requires conversion in both ways, if you override
:meth:`~Field.to_python` you also have to override :meth:`~Field.get_prep_value`
to convert Python objects back to query values.
For example::
class HandField(models.Field):
# ...
def get_prep_value(self, value):
return ''.join([''.join(l) for l in (value.north,
value.east, value.south, value.west)])
.. warning::
If your custom field uses the ``CHAR``, ``VARCHAR`` or ``TEXT``
types for MySQL, you must make sure that :meth:`.get_prep_value`
always returns a string type. MySQL performs flexible and unexpected
matching when a query is performed on these types and the provided
value is an integer, which can cause queries to include unexpected
objects in their results. This problem cannot occur if you always
return a string type from :meth:`.get_prep_value`.
.. _converting-query-values-to-database-values:
Converting query values to database values
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some data types (for example, dates) need to be in a specific format
before they can be used by a database backend.
:meth:`~Field.get_db_prep_value` is the method where those conversions should
be made. The specific connection that will be used for the query is
passed as the ``connection`` parameter. This allows you to use
backend-specific conversion logic if it is required.
For example, Django uses the following method for its
:class:`BinaryField`::
def get_db_prep_value(self, value, connection, prepared=False):
value = super(BinaryField, self).get_db_prep_value(value, connection, prepared)
if value is not None:
return connection.Database.Binary(value)
return value
In case your custom field needs a special conversion when being saved that is
not the same as the conversion used for normal query parameters, you can
override :meth:`~Field.get_db_prep_save`.
.. _preprocessing-values-before-saving:
Preprocessing values before saving
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you want to preprocess the value just before saving, you can use
:meth:`~Field.pre_save`. For example, Django's
:class:`~django.db.models.DateTimeField` uses this method to set the attribute
correctly in the case of :attr:`~django.db.models.DateField.auto_now` or
:attr:`~django.db.models.DateField.auto_now_add`.
If you do override this method, you must return the value of the attribute at
the end. You should also update the model's attribute if you make any changes
to the value so that code holding references to the model will always see the
correct value.
.. _preparing-values-for-use-in-database-lookups:
Preparing values for use in database lookups
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As with value conversions, preparing a value for database lookups is a
two phase process.
:meth:`.get_prep_lookup` performs the first phase of lookup preparation:
type conversion and data validation.
Prepares the ``value`` for passing to the database when used in a lookup (a
``WHERE`` constraint in SQL). The ``lookup_type`` parameter will be one of the
valid Django filter lookups: ``exact``, ``iexact``, ``contains``, ``icontains``,
``gt``, ``gte``, ``lt``, ``lte``, ``in``, ``startswith``, ``istartswith``,
``endswith``, ``iendswith``, ``range``, ``year``, ``month``, ``day``,
``isnull``, ``search``, ``regex``, and ``iregex``.
.. versionadded:: 1.7
If you are using :doc:`Custom lookups </howto/custom-lookups>` the
``lookup_type`` can be any ``lookup_name`` used by the project's custom
lookups.
Your method must be prepared to handle all of these ``lookup_type`` values and
should raise either a ``ValueError`` if the ``value`` is of the wrong sort (a
list when you were expecting an object, for example) or a ``TypeError`` if
your field does not support that type of lookup. For many fields, you can get
by with handling the lookup types that need special handling for your field
and pass the rest to the :meth:`~Field.get_db_prep_lookup` method of the parent
class.
If you needed to implement :meth:`.get_db_prep_save`, you will usually need to
implement :meth:`.get_prep_lookup`. If you don't, :meth:`.get_prep_value` will
be called by the default implementation, to manage ``exact``, ``gt``, ``gte``,
``lt``, ``lte``, ``in`` and ``range`` lookups.
You may also want to implement this method to limit the lookup types that could
be used with your custom field type.
Note that, for ``"range"`` and ``"in"`` lookups, ``get_prep_lookup`` will receive
a list of objects (presumably of the right type) and will need to convert them
to a list of things of the right type for passing to the database. Most of the
time, you can reuse ``get_prep_value()``, or at least factor out some common
pieces.
For example, the following code implements ``get_prep_lookup`` to limit the
accepted lookup types to ``exact`` and ``in``::
class HandField(models.Field):
# ...
def get_prep_lookup(self, lookup_type, value):
# We only handle 'exact' and 'in'. All others are errors.
if lookup_type == 'exact':
return self.get_prep_value(value)
elif lookup_type == 'in':
return [self.get_prep_value(v) for v in value]
else:
raise TypeError('Lookup type %r not supported.' % lookup_type)
For performing database-specific data conversions required by a lookup,
you can override :meth:`~Field.get_db_prep_lookup`.
.. _specifying-form-field-for-model-field:
Specifying the form field for a model field
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To customize the form field used by :class:`~django.forms.ModelForm`, you can
override :meth:`~Field.formfield`.
The form field class can be specified via the ``form_class`` and
``choices_form_class`` arguments; the latter is used if the field has choices
specified, the former otherwise. If these arguments are not provided,
:class:`~django.forms.CharField` or :class:`~django.forms.TypedChoiceField`
will be used.
All of the ``kwargs`` dictionary is passed directly to the form field's
``__init__()`` method. Normally, all you need to do is set up a good default
for the ``form_class`` (and maybe ``choices_form_class``) argument and then
delegate further handling to the parent class. This might require you to write
a custom form field (and even a form widget). See the :doc:`forms documentation
</topics/forms/index>` for information about this.
Continuing our ongoing example, we can write the :meth:`~Field.formfield` method
as::
class HandField(models.Field):
# ...
def formfield(self, **kwargs):
# This is a fairly standard way to set up some defaults
# while letting the caller override them.
defaults = {'form_class': MyFormField}
defaults.update(kwargs)
return super(HandField, self).formfield(**defaults)
This assumes we've imported a ``MyFormField`` field class (which has its own
default widget). This document doesn't cover the details of writing custom form
fields.
.. _helper functions: ../forms/#generating-forms-for-models
.. _forms documentation: ../forms/
.. _emulating-built-in-field-types:
Emulating built-in field types
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you have created a :meth:`.db_type` method, you don't need to worry about
:meth:`.get_internal_type` -- it won't be used much. Sometimes, though, your
database storage is similar in type to some other field, so you can use that
other field's logic to create the right column.
For example::
class HandField(models.Field):
# ...
def get_internal_type(self):
return 'CharField'
No matter which database backend we are using, this will mean that
:djadmin:`migrate` and other SQL commands create the right column type for
storing a string.
If :meth:`.get_internal_type` returns a string that is not known to Django for
the database backend you are using -- that is, it doesn't appear in
``django.db.backends.<db_name>.creation.data_types`` -- the string will still be
used by the serializer, but the default :meth:`~Field.db_type` method will
return ``None``. See the documentation of :meth:`~Field.db_type` for reasons why
this might be useful. Putting a descriptive string in as the type of the field
for the serializer is a useful idea if you're ever going to be using the
serializer output in some other place, outside of Django.
.. _converting-model-field-to-serialization:
Converting field data for serialization
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To customize how the values are serialized by a serializer, you can override
:meth:`~Field.value_to_string`. Calling ``Field._get_val_from_obj(obj)`` is the
best way to get the value serialized. For example, since our ``HandField`` uses
strings for its data storage anyway, we can reuse some existing conversion code::
class HandField(models.Field):
# ...
def value_to_string(self, obj):
value = self._get_val_from_obj(obj)
return self.get_prep_value(value)
Some general advice
--------------------
Writing a custom field can be a tricky process, particularly if you're doing
complex conversions between your Python types and your database and
serialization formats. Here are a couple of tips to make things go more
smoothly:
1. Look at the existing Django fields (in
:file:`django/db/models/fields/__init__.py`) for inspiration. Try to find
a field that's similar to what you want and extend it a little bit,
instead of creating an entirely new field from scratch.
2. Put a ``__str__()`` (``__unicode__()`` on Python 2) method on the class you're
wrapping up as a field. There are a lot of places where the default
behavior of the field code is to call
:func:`~django.utils.encoding.force_text` on the value. (In our
examples in this document, ``value`` would be a ``Hand`` instance, not a
``HandField``). So if your ``__str__()`` method (``__unicode__()`` on
Python 2) automatically converts to the string form of your Python object,
you can save yourself a lot of work.
Writing a ``FileField`` subclass
================================
In addition to the above methods, fields that deal with files have a few other
special requirements which must be taken into account. The majority of the
mechanics provided by ``FileField``, such as controlling database storage and
retrieval, can remain unchanged, leaving subclasses to deal with the challenge
of supporting a particular type of file.
Django provides a ``File`` class, which is used as a proxy to the file's
contents and operations. This can be subclassed to customize how the file is
accessed, and what methods are available. It lives at
``django.db.models.fields.files``, and its default behavior is explained in the
:doc:`file documentation </ref/files/file>`.
Once a subclass of ``File`` is created, the new ``FileField`` subclass must be
told to use it. To do so, simply assign the new ``File`` subclass to the special
``attr_class`` attribute of the ``FileField`` subclass.
A few suggestions
------------------
In addition to the above details, there are a few guidelines which can greatly
improve the efficiency and readability of the field's code.
1. The source for Django's own ``ImageField`` (in
``django/db/models/fields/files.py``) is a great example of how to
subclass ``FileField`` to support a particular type of file, as it
incorporates all of the techniques described above.
2. Cache file attributes wherever possible. Since files may be stored in
remote storage systems, retrieving them may cost extra time, or even
money, that isn't always necessary. Once a file is retrieved to obtain
some data about its content, cache as much of that data as possible to
reduce the number of times the file must be retrieved on subsequent
calls for that information.
|