File: query.py

package info (click to toggle)
python-django 1%3A1.11.29-1~deb10u1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 47,428 kB
  • sloc: python: 220,776; javascript: 13,523; makefile: 209; xml: 201; sh: 64
file content (2145 lines) | stat: -rw-r--r-- 95,533 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
"""
Create SQL statements for QuerySets.

The code in here encapsulates all of the SQL construction so that QuerySets
themselves do not have to (and could be backed by things other than SQL
databases). The abstraction barrier only works one way: this module has to know
all about the internals of models in order to get the information it needs.
"""
import copy
import warnings
from collections import Counter, Iterator, Mapping, OrderedDict
from itertools import chain, count, product
from string import ascii_uppercase

from django.core.exceptions import FieldDoesNotExist, FieldError
from django.db import DEFAULT_DB_ALIAS, connections
from django.db.models.aggregates import Count
from django.db.models.constants import LOOKUP_SEP
from django.db.models.expressions import Col, Ref
from django.db.models.fields.related_lookups import MultiColSource
from django.db.models.lookups import Lookup
from django.db.models.query_utils import (
    Q, check_rel_lookup_compatibility, refs_expression,
)
from django.db.models.sql.constants import (
    INNER, LOUTER, ORDER_DIR, ORDER_PATTERN, QUERY_TERMS, SINGLE,
)
from django.db.models.sql.datastructures import (
    BaseTable, Empty, EmptyResultSet, Join, MultiJoin,
)
from django.db.models.sql.where import (
    AND, OR, ExtraWhere, NothingNode, WhereNode,
)
from django.utils import six
from django.utils.deprecation import RemovedInDjango20Warning
from django.utils.encoding import force_text
from django.utils.tree import Node

__all__ = ['Query', 'RawQuery']


def get_field_names_from_opts(opts):
    return set(chain.from_iterable(
        (f.name, f.attname) if f.concrete else (f.name,)
        for f in opts.get_fields()
    ))


class RawQuery(object):
    """
    A single raw SQL query
    """

    def __init__(self, sql, using, params=None, context=None):
        self.params = params or ()
        self.sql = sql
        self.using = using
        self.cursor = None

        # Mirror some properties of a normal query so that
        # the compiler can be used to process results.
        self.low_mark, self.high_mark = 0, None  # Used for offset/limit
        self.extra_select = {}
        self.annotation_select = {}
        self.context = context or {}

    def clone(self, using):
        return RawQuery(self.sql, using, params=self.params, context=self.context.copy())

    def get_columns(self):
        if self.cursor is None:
            self._execute_query()
        converter = connections[self.using].introspection.column_name_converter
        return [converter(column_meta[0])
                for column_meta in self.cursor.description]

    def __iter__(self):
        # Always execute a new query for a new iterator.
        # This could be optimized with a cache at the expense of RAM.
        self._execute_query()
        if not connections[self.using].features.can_use_chunked_reads:
            # If the database can't use chunked reads we need to make sure we
            # evaluate the entire query up front.
            result = list(self.cursor)
        else:
            result = self.cursor
        return iter(result)

    def __repr__(self):
        return "<%s: %s>" % (self.__class__.__name__, self)

    @property
    def params_type(self):
        return dict if isinstance(self.params, Mapping) else tuple

    def __str__(self):
        return self.sql % self.params_type(self.params)

    def _execute_query(self):
        connection = connections[self.using]

        # Adapt parameters to the database, as much as possible considering
        # that the target type isn't known. See #17755.
        params_type = self.params_type
        adapter = connection.ops.adapt_unknown_value
        if params_type is tuple:
            params = tuple(adapter(val) for val in self.params)
        elif params_type is dict:
            params = dict((key, adapter(val)) for key, val in six.iteritems(self.params))
        else:
            raise RuntimeError("Unexpected params type: %s" % params_type)

        self.cursor = connection.cursor()
        self.cursor.execute(self.sql, params)


class Query(object):
    """
    A single SQL query.
    """

    alias_prefix = 'T'
    subq_aliases = frozenset([alias_prefix])
    query_terms = QUERY_TERMS

    compiler = 'SQLCompiler'

    def __init__(self, model, where=WhereNode):
        self.model = model
        self.alias_refcount = {}
        # alias_map is the most important data structure regarding joins.
        # It's used for recording which joins exist in the query and what
        # types they are. The key is the alias of the joined table (possibly
        # the table name) and the value is a Join-like object (see
        # sql.datastructures.Join for more information).
        self.alias_map = OrderedDict()
        # Sometimes the query contains references to aliases in outer queries (as
        # a result of split_exclude). Correct alias quoting needs to know these
        # aliases too.
        self.external_aliases = set()
        self.table_map = {}     # Maps table names to list of aliases.
        self.default_cols = True
        self.default_ordering = True
        self.standard_ordering = True
        self.used_aliases = set()
        self.filter_is_sticky = False
        self.subquery = False

        # SQL-related attributes
        # Select and related select clauses are expressions to use in the
        # SELECT clause of the query.
        # The select is used for cases where we want to set up the select
        # clause to contain other than default fields (values(), subqueries...)
        # Note that annotations go to annotations dictionary.
        self.select = []
        self.tables = []    # Aliases in the order they are created.
        self.where = where()
        self.where_class = where
        # The group_by attribute can have one of the following forms:
        #  - None: no group by at all in the query
        #  - A list of expressions: group by (at least) those expressions.
        #    String refs are also allowed for now.
        #  - True: group by all select fields of the model
        # See compiler.get_group_by() for details.
        self.group_by = None
        self.order_by = []
        self.low_mark, self.high_mark = 0, None  # Used for offset/limit
        self.distinct = False
        self.distinct_fields = []
        self.select_for_update = False
        self.select_for_update_nowait = False
        self.select_for_update_skip_locked = False

        self.select_related = False
        # Arbitrary limit for select_related to prevents infinite recursion.
        self.max_depth = 5

        # Holds the selects defined by a call to values() or values_list()
        # excluding annotation_select and extra_select.
        self.values_select = []

        # SQL annotation-related attributes
        # The _annotations will be an OrderedDict when used. Due to the cost
        # of creating OrderedDict this attribute is created lazily (in
        # self.annotations property).
        self._annotations = None  # Maps alias -> Annotation Expression
        self.annotation_select_mask = None
        self._annotation_select_cache = None

        # Set combination attributes
        self.combinator = None
        self.combinator_all = False
        self.combined_queries = ()

        # These are for extensions. The contents are more or less appended
        # verbatim to the appropriate clause.
        # The _extra attribute is an OrderedDict, lazily created similarly to
        # .annotations
        self._extra = None  # Maps col_alias -> (col_sql, params).
        self.extra_select_mask = None
        self._extra_select_cache = None

        self.extra_tables = ()
        self.extra_order_by = ()

        # A tuple that is a set of model field names and either True, if these
        # are the fields to defer, or False if these are the only fields to
        # load.
        self.deferred_loading = (set(), True)

        self.context = {}

    @property
    def extra(self):
        if self._extra is None:
            self._extra = OrderedDict()
        return self._extra

    @property
    def annotations(self):
        if self._annotations is None:
            self._annotations = OrderedDict()
        return self._annotations

    def __str__(self):
        """
        Returns the query as a string of SQL with the parameter values
        substituted in (use sql_with_params() to see the unsubstituted string).

        Parameter values won't necessarily be quoted correctly, since that is
        done by the database interface at execution time.
        """
        sql, params = self.sql_with_params()
        return sql % params

    def sql_with_params(self):
        """
        Returns the query as an SQL string and the parameters that will be
        substituted into the query.
        """
        return self.get_compiler(DEFAULT_DB_ALIAS).as_sql()

    def __deepcopy__(self, memo):
        result = self.clone(memo=memo)
        memo[id(self)] = result
        return result

    def _prepare(self, field):
        return self

    def get_compiler(self, using=None, connection=None):
        if using is None and connection is None:
            raise ValueError("Need either using or connection")
        if using:
            connection = connections[using]
        return connection.ops.compiler(self.compiler)(self, connection, using)

    def get_meta(self):
        """
        Returns the Options instance (the model._meta) from which to start
        processing. Normally, this is self.model._meta, but it can be changed
        by subclasses.
        """
        return self.model._meta

    def clone(self, klass=None, memo=None, **kwargs):
        """
        Creates a copy of the current instance. The 'kwargs' parameter can be
        used by clients to update attributes after copying has taken place.
        """
        obj = Empty()
        obj.__class__ = klass or self.__class__
        obj.model = self.model
        obj.alias_refcount = self.alias_refcount.copy()
        obj.alias_map = self.alias_map.copy()
        obj.external_aliases = self.external_aliases.copy()
        obj.table_map = self.table_map.copy()
        obj.default_cols = self.default_cols
        obj.default_ordering = self.default_ordering
        obj.standard_ordering = self.standard_ordering
        obj.select = self.select[:]
        obj.tables = self.tables[:]
        obj.where = self.where.clone()
        obj.where_class = self.where_class
        if self.group_by is None:
            obj.group_by = None
        elif self.group_by is True:
            obj.group_by = True
        else:
            obj.group_by = self.group_by[:]
        obj.order_by = self.order_by[:]
        obj.low_mark, obj.high_mark = self.low_mark, self.high_mark
        obj.distinct = self.distinct
        obj.distinct_fields = self.distinct_fields[:]
        obj.select_for_update = self.select_for_update
        obj.select_for_update_nowait = self.select_for_update_nowait
        obj.select_for_update_skip_locked = self.select_for_update_skip_locked
        obj.select_related = self.select_related
        obj.values_select = self.values_select[:]
        obj._annotations = self._annotations.copy() if self._annotations is not None else None
        if self.annotation_select_mask is None:
            obj.annotation_select_mask = None
        else:
            obj.annotation_select_mask = self.annotation_select_mask.copy()
        # _annotation_select_cache cannot be copied, as doing so breaks the
        # (necessary) state in which both annotations and
        # _annotation_select_cache point to the same underlying objects.
        # It will get re-populated in the cloned queryset the next time it's
        # used.
        obj._annotation_select_cache = None
        obj.max_depth = self.max_depth
        obj.combinator = self.combinator
        obj.combinator_all = self.combinator_all
        obj.combined_queries = self.combined_queries
        obj._extra = self._extra.copy() if self._extra is not None else None
        if self.extra_select_mask is None:
            obj.extra_select_mask = None
        else:
            obj.extra_select_mask = self.extra_select_mask.copy()
        if self._extra_select_cache is None:
            obj._extra_select_cache = None
        else:
            obj._extra_select_cache = self._extra_select_cache.copy()
        obj.extra_tables = self.extra_tables
        obj.extra_order_by = self.extra_order_by
        obj.deferred_loading = copy.copy(self.deferred_loading[0]), self.deferred_loading[1]
        if self.filter_is_sticky and self.used_aliases:
            obj.used_aliases = self.used_aliases.copy()
        else:
            obj.used_aliases = set()
        obj.filter_is_sticky = False
        obj.subquery = self.subquery
        if 'alias_prefix' in self.__dict__:
            obj.alias_prefix = self.alias_prefix
        if 'subq_aliases' in self.__dict__:
            obj.subq_aliases = self.subq_aliases.copy()

        obj.__dict__.update(kwargs)
        if hasattr(obj, '_setup_query'):
            obj._setup_query()
        obj.context = self.context.copy()
        obj._forced_pk = getattr(self, '_forced_pk', False)
        return obj

    def add_context(self, key, value):
        self.context[key] = value

    def get_context(self, key, default=None):
        return self.context.get(key, default)

    def relabeled_clone(self, change_map):
        clone = self.clone()
        clone.change_aliases(change_map)
        return clone

    def rewrite_cols(self, annotation, col_cnt):
        # We must make sure the inner query has the referred columns in it.
        # If we are aggregating over an annotation, then Django uses Ref()
        # instances to note this. However, if we are annotating over a column
        # of a related model, then it might be that column isn't part of the
        # SELECT clause of the inner query, and we must manually make sure
        # the column is selected. An example case is:
        #    .aggregate(Sum('author__awards'))
        # Resolving this expression results in a join to author, but there
        # is no guarantee the awards column of author is in the select clause
        # of the query. Thus we must manually add the column to the inner
        # query.
        orig_exprs = annotation.get_source_expressions()
        new_exprs = []
        for expr in orig_exprs:
            # FIXME: These conditions are fairly arbitrary. Identify a better
            # method of having expressions decide which code path they should
            # take.
            if isinstance(expr, Ref):
                # Its already a Ref to subquery (see resolve_ref() for
                # details)
                new_exprs.append(expr)
            elif isinstance(expr, (WhereNode, Lookup)):
                # Decompose the subexpressions further. The code here is
                # copied from the else clause, but this condition must appear
                # before the contains_aggregate/is_summary condition below.
                new_expr, col_cnt = self.rewrite_cols(expr, col_cnt)
                new_exprs.append(new_expr)
            elif isinstance(expr, Col) or (expr.contains_aggregate and not expr.is_summary):
                # Reference to column. Make sure the referenced column
                # is selected.
                col_cnt += 1
                col_alias = '__col%d' % col_cnt
                self.annotations[col_alias] = expr
                self.append_annotation_mask([col_alias])
                new_exprs.append(Ref(col_alias, expr))
            else:
                # Some other expression not referencing database values
                # directly. Its subexpression might contain Cols.
                new_expr, col_cnt = self.rewrite_cols(expr, col_cnt)
                new_exprs.append(new_expr)
        annotation.set_source_expressions(new_exprs)
        return annotation, col_cnt

    def get_aggregation(self, using, added_aggregate_names):
        """
        Returns the dictionary with the values of the existing aggregations.
        """
        if not self.annotation_select:
            return {}
        has_limit = self.low_mark != 0 or self.high_mark is not None
        has_existing_annotations = any(
            annotation for alias, annotation
            in self.annotations.items()
            if alias not in added_aggregate_names
        )
        # Decide if we need to use a subquery.
        #
        # Existing annotations would cause incorrect results as get_aggregation()
        # must produce just one result and thus must not use GROUP BY. But we
        # aren't smart enough to remove the existing annotations from the
        # query, so those would force us to use GROUP BY.
        #
        # If the query has limit or distinct, or uses set operations, then
        # those operations must be done in a subquery so that the query
        # aggregates on the limit and/or distinct results instead of applying
        # the distinct and limit after the aggregation.
        if (isinstance(self.group_by, list) or has_limit or has_existing_annotations or
                self.distinct or self.combinator):
            from django.db.models.sql.subqueries import AggregateQuery
            outer_query = AggregateQuery(self.model)
            inner_query = self.clone()
            inner_query.select_for_update = False
            inner_query.select_related = False
            if not has_limit and not self.distinct_fields:
                # Queries with distinct_fields need ordering and when a limit
                # is applied we must take the slice from the ordered query.
                # Otherwise no need for ordering.
                inner_query.clear_ordering(True)
            if not inner_query.distinct:
                # If the inner query uses default select and it has some
                # aggregate annotations, then we must make sure the inner
                # query is grouped by the main model's primary key. However,
                # clearing the select clause can alter results if distinct is
                # used.
                if inner_query.default_cols and has_existing_annotations:
                    inner_query.group_by = [self.model._meta.pk.get_col(inner_query.get_initial_alias())]
                inner_query.default_cols = False

            relabels = {t: 'subquery' for t in inner_query.tables}
            relabels[None] = 'subquery'
            # Remove any aggregates marked for reduction from the subquery
            # and move them to the outer AggregateQuery.
            col_cnt = 0
            for alias, expression in list(inner_query.annotation_select.items()):
                if expression.is_summary:
                    expression, col_cnt = inner_query.rewrite_cols(expression, col_cnt)
                    outer_query.annotations[alias] = expression.relabeled_clone(relabels)
                    del inner_query.annotations[alias]
                # Make sure the annotation_select wont use cached results.
                inner_query.set_annotation_mask(inner_query.annotation_select_mask)
            if inner_query.select == [] and not inner_query.default_cols and not inner_query.annotation_select_mask:
                # In case of Model.objects[0:3].count(), there would be no
                # field selected in the inner query, yet we must use a subquery.
                # So, make sure at least one field is selected.
                inner_query.select = [self.model._meta.pk.get_col(inner_query.get_initial_alias())]
            try:
                outer_query.add_subquery(inner_query, using)
            except EmptyResultSet:
                return {
                    alias: None
                    for alias in outer_query.annotation_select
                }
        else:
            outer_query = self
            self.select = []
            self.default_cols = False
            self._extra = {}

        outer_query.clear_ordering(True)
        outer_query.clear_limits()
        outer_query.select_for_update = False
        outer_query.select_related = False
        compiler = outer_query.get_compiler(using)
        result = compiler.execute_sql(SINGLE)
        if result is None:
            result = [None for q in outer_query.annotation_select.items()]

        converters = compiler.get_converters(outer_query.annotation_select.values())
        result = compiler.apply_converters(result, converters)

        return {
            alias: val
            for (alias, annotation), val
            in zip(outer_query.annotation_select.items(), result)
        }

    def get_count(self, using):
        """
        Performs a COUNT() query using the current filter constraints.
        """
        obj = self.clone()
        obj.add_annotation(Count('*'), alias='__count', is_summary=True)
        number = obj.get_aggregation(using, ['__count'])['__count']
        if number is None:
            number = 0
        return number

    def has_filters(self):
        return self.where

    def has_results(self, using):
        q = self.clone()
        if not q.distinct:
            if q.group_by is True:
                q.add_fields((f.attname for f in self.model._meta.concrete_fields), False)
                q.set_group_by()
            q.clear_select_clause()
        q.clear_ordering(True)
        q.set_limits(high=1)
        compiler = q.get_compiler(using=using)
        return compiler.has_results()

    def combine(self, rhs, connector):
        """
        Merge the 'rhs' query into the current one (with any 'rhs' effects
        being applied *after* (that is, "to the right of") anything in the
        current query. 'rhs' is not modified during a call to this function.

        The 'connector' parameter describes how to connect filters from the
        'rhs' query.
        """
        assert self.model == rhs.model, \
            "Cannot combine queries on two different base models."
        assert self.can_filter(), \
            "Cannot combine queries once a slice has been taken."
        assert self.distinct == rhs.distinct, \
            "Cannot combine a unique query with a non-unique query."
        assert self.distinct_fields == rhs.distinct_fields, \
            "Cannot combine queries with different distinct fields."

        # Work out how to relabel the rhs aliases, if necessary.
        change_map = {}
        conjunction = (connector == AND)

        # Determine which existing joins can be reused. When combining the
        # query with AND we must recreate all joins for m2m filters. When
        # combining with OR we can reuse joins. The reason is that in AND
        # case a single row can't fulfill a condition like:
        #     revrel__col=1 & revrel__col=2
        # But, there might be two different related rows matching this
        # condition. In OR case a single True is enough, so single row is
        # enough, too.
        #
        # Note that we will be creating duplicate joins for non-m2m joins in
        # the AND case. The results will be correct but this creates too many
        # joins. This is something that could be fixed later on.
        reuse = set() if conjunction else set(self.tables)
        # Base table must be present in the query - this is the same
        # table on both sides.
        self.get_initial_alias()
        joinpromoter = JoinPromoter(connector, 2, False)
        joinpromoter.add_votes(
            j for j in self.alias_map if self.alias_map[j].join_type == INNER)
        rhs_votes = set()
        # Now, add the joins from rhs query into the new query (skipping base
        # table).
        for alias in rhs.tables[1:]:
            join = rhs.alias_map[alias]
            # If the left side of the join was already relabeled, use the
            # updated alias.
            join = join.relabeled_clone(change_map)
            new_alias = self.join(join, reuse=reuse)
            if join.join_type == INNER:
                rhs_votes.add(new_alias)
            # We can't reuse the same join again in the query. If we have two
            # distinct joins for the same connection in rhs query, then the
            # combined query must have two joins, too.
            reuse.discard(new_alias)
            if alias != new_alias:
                change_map[alias] = new_alias
            if not rhs.alias_refcount[alias]:
                # The alias was unused in the rhs query. Unref it so that it
                # will be unused in the new query, too. We have to add and
                # unref the alias so that join promotion has information of
                # the join type for the unused alias.
                self.unref_alias(new_alias)
        joinpromoter.add_votes(rhs_votes)
        joinpromoter.update_join_types(self)

        # Now relabel a copy of the rhs where-clause and add it to the current
        # one.
        w = rhs.where.clone()
        w.relabel_aliases(change_map)
        self.where.add(w, connector)

        # Selection columns and extra extensions are those provided by 'rhs'.
        self.select = []
        for col in rhs.select:
            self.add_select(col.relabeled_clone(change_map))

        if connector == OR:
            # It would be nice to be able to handle this, but the queries don't
            # really make sense (or return consistent value sets). Not worth
            # the extra complexity when you can write a real query instead.
            if self._extra and rhs._extra:
                raise ValueError("When merging querysets using 'or', you cannot have extra(select=...) on both sides.")
        self.extra.update(rhs.extra)
        extra_select_mask = set()
        if self.extra_select_mask is not None:
            extra_select_mask.update(self.extra_select_mask)
        if rhs.extra_select_mask is not None:
            extra_select_mask.update(rhs.extra_select_mask)
        if extra_select_mask:
            self.set_extra_mask(extra_select_mask)
        self.extra_tables += rhs.extra_tables

        # Ordering uses the 'rhs' ordering, unless it has none, in which case
        # the current ordering is used.
        self.order_by = rhs.order_by[:] if rhs.order_by else self.order_by
        self.extra_order_by = rhs.extra_order_by or self.extra_order_by

    def deferred_to_data(self, target, callback):
        """
        Converts the self.deferred_loading data structure to an alternate data
        structure, describing the field that *will* be loaded. This is used to
        compute the columns to select from the database and also by the
        QuerySet class to work out which fields are being initialized on each
        model. Models that have all their fields included aren't mentioned in
        the result, only those that have field restrictions in place.

        The "target" parameter is the instance that is populated (in place).
        The "callback" is a function that is called whenever a (model, field)
        pair need to be added to "target". It accepts three parameters:
        "target", and the model and list of fields being added for that model.
        """
        field_names, defer = self.deferred_loading
        if not field_names:
            return
        orig_opts = self.get_meta()
        seen = {}
        must_include = {orig_opts.concrete_model: {orig_opts.pk}}
        for field_name in field_names:
            parts = field_name.split(LOOKUP_SEP)
            cur_model = self.model._meta.concrete_model
            opts = orig_opts
            for name in parts[:-1]:
                old_model = cur_model
                source = opts.get_field(name)
                if is_reverse_o2o(source):
                    cur_model = source.related_model
                else:
                    cur_model = source.remote_field.model
                opts = cur_model._meta
                # Even if we're "just passing through" this model, we must add
                # both the current model's pk and the related reference field
                # (if it's not a reverse relation) to the things we select.
                if not is_reverse_o2o(source):
                    must_include[old_model].add(source)
                add_to_dict(must_include, cur_model, opts.pk)
            field = opts.get_field(parts[-1])
            is_reverse_object = field.auto_created and not field.concrete
            model = field.related_model if is_reverse_object else field.model
            model = model._meta.concrete_model
            if model == opts.model:
                model = cur_model
            if not is_reverse_o2o(field):
                add_to_dict(seen, model, field)

        if defer:
            # We need to load all fields for each model, except those that
            # appear in "seen" (for all models that appear in "seen"). The only
            # slight complexity here is handling fields that exist on parent
            # models.
            workset = {}
            for model, values in six.iteritems(seen):
                for field in model._meta.local_fields:
                    if field in values:
                        continue
                    m = field.model._meta.concrete_model
                    add_to_dict(workset, m, field)
            for model, values in six.iteritems(must_include):
                # If we haven't included a model in workset, we don't add the
                # corresponding must_include fields for that model, since an
                # empty set means "include all fields". That's why there's no
                # "else" branch here.
                if model in workset:
                    workset[model].update(values)
            for model, values in six.iteritems(workset):
                callback(target, model, values)
        else:
            for model, values in six.iteritems(must_include):
                if model in seen:
                    seen[model].update(values)
                else:
                    # As we've passed through this model, but not explicitly
                    # included any fields, we have to make sure it's mentioned
                    # so that only the "must include" fields are pulled in.
                    seen[model] = values
            # Now ensure that every model in the inheritance chain is mentioned
            # in the parent list. Again, it must be mentioned to ensure that
            # only "must include" fields are pulled in.
            for model in orig_opts.get_parent_list():
                if model not in seen:
                    seen[model] = set()
            for model, values in six.iteritems(seen):
                callback(target, model, values)

    def table_alias(self, table_name, create=False):
        """
        Returns a table alias for the given table_name and whether this is a
        new alias or not.

        If 'create' is true, a new alias is always created. Otherwise, the
        most recently created alias for the table (if one exists) is reused.
        """
        alias_list = self.table_map.get(table_name)
        if not create and alias_list:
            alias = alias_list[0]
            self.alias_refcount[alias] += 1
            return alias, False

        # Create a new alias for this table.
        if alias_list:
            alias = '%s%d' % (self.alias_prefix, len(self.alias_map) + 1)
            alias_list.append(alias)
        else:
            # The first occurrence of a table uses the table name directly.
            alias = table_name
            self.table_map[alias] = [alias]
        self.alias_refcount[alias] = 1
        self.tables.append(alias)
        return alias, True

    def ref_alias(self, alias):
        """ Increases the reference count for this alias. """
        self.alias_refcount[alias] += 1

    def unref_alias(self, alias, amount=1):
        """ Decreases the reference count for this alias. """
        self.alias_refcount[alias] -= amount

    def promote_joins(self, aliases):
        """
        Promotes recursively the join type of given aliases and its children to
        an outer join. If 'unconditional' is False, the join is only promoted if
        it is nullable or the parent join is an outer join.

        The children promotion is done to avoid join chains that contain a LOUTER
        b INNER c. So, if we have currently a INNER b INNER c and a->b is promoted,
        then we must also promote b->c automatically, or otherwise the promotion
        of a->b doesn't actually change anything in the query results.
        """
        aliases = list(aliases)
        while aliases:
            alias = aliases.pop(0)
            if self.alias_map[alias].join_type is None:
                # This is the base table (first FROM entry) - this table
                # isn't really joined at all in the query, so we should not
                # alter its join type.
                continue
            # Only the first alias (skipped above) should have None join_type
            assert self.alias_map[alias].join_type is not None
            parent_alias = self.alias_map[alias].parent_alias
            parent_louter = parent_alias and self.alias_map[parent_alias].join_type == LOUTER
            already_louter = self.alias_map[alias].join_type == LOUTER
            if ((self.alias_map[alias].nullable or parent_louter) and
                    not already_louter):
                self.alias_map[alias] = self.alias_map[alias].promote()
                # Join type of 'alias' changed, so re-examine all aliases that
                # refer to this one.
                aliases.extend(
                    join for join in self.alias_map.keys()
                    if self.alias_map[join].parent_alias == alias and join not in aliases
                )

    def demote_joins(self, aliases):
        """
        Change join type from LOUTER to INNER for all joins in aliases.

        Similarly to promote_joins(), this method must ensure no join chains
        containing first an outer, then an inner join are generated. If we
        are demoting b->c join in chain a LOUTER b LOUTER c then we must
        demote a->b automatically, or otherwise the demotion of b->c doesn't
        actually change anything in the query results. .
        """
        aliases = list(aliases)
        while aliases:
            alias = aliases.pop(0)
            if self.alias_map[alias].join_type == LOUTER:
                self.alias_map[alias] = self.alias_map[alias].demote()
                parent_alias = self.alias_map[alias].parent_alias
                if self.alias_map[parent_alias].join_type == INNER:
                    aliases.append(parent_alias)

    def reset_refcounts(self, to_counts):
        """
        This method will reset reference counts for aliases so that they match
        the value passed in :param to_counts:.
        """
        for alias, cur_refcount in self.alias_refcount.copy().items():
            unref_amount = cur_refcount - to_counts.get(alias, 0)
            self.unref_alias(alias, unref_amount)

    def change_aliases(self, change_map):
        """
        Changes the aliases in change_map (which maps old-alias -> new-alias),
        relabelling any references to them in select columns and the where
        clause.
        """
        assert set(change_map.keys()).intersection(set(change_map.values())) == set()

        # 1. Update references in "select" (normal columns plus aliases),
        # "group by" and "where".
        self.where.relabel_aliases(change_map)
        if isinstance(self.group_by, list):
            self.group_by = [col.relabeled_clone(change_map) for col in self.group_by]
        self.select = [col.relabeled_clone(change_map) for col in self.select]
        if self._annotations:
            self._annotations = OrderedDict(
                (key, col.relabeled_clone(change_map)) for key, col in self._annotations.items())

        # 2. Rename the alias in the internal table/alias datastructures.
        for old_alias, new_alias in six.iteritems(change_map):
            if old_alias not in self.alias_map:
                continue
            alias_data = self.alias_map[old_alias].relabeled_clone(change_map)
            self.alias_map[new_alias] = alias_data
            self.alias_refcount[new_alias] = self.alias_refcount[old_alias]
            del self.alias_refcount[old_alias]
            del self.alias_map[old_alias]

            table_aliases = self.table_map[alias_data.table_name]
            for pos, alias in enumerate(table_aliases):
                if alias == old_alias:
                    table_aliases[pos] = new_alias
                    break
        self.external_aliases = {change_map.get(alias, alias)
                                 for alias in self.external_aliases}

    def bump_prefix(self, outer_query):
        """
        Changes the alias prefix to the next letter in the alphabet in a way
        that the outer query's aliases and this query's aliases will not
        conflict. Even tables that previously had no alias will get an alias
        after this call.
        """
        def prefix_gen():
            """
            Generates a sequence of characters in alphabetical order:
                -> 'A', 'B', 'C', ...

            When the alphabet is finished, the sequence will continue with the
            Cartesian product:
                -> 'AA', 'AB', 'AC', ...
            """
            alphabet = ascii_uppercase
            prefix = chr(ord(self.alias_prefix) + 1)
            yield prefix
            for n in count(1):
                seq = alphabet[alphabet.index(prefix):] if prefix else alphabet
                for s in product(seq, repeat=n):
                    yield ''.join(s)
                prefix = None

        if self.alias_prefix != outer_query.alias_prefix:
            # No clashes between self and outer query should be possible.
            return

        local_recursion_limit = 127  # explicitly avoid infinite loop
        for pos, prefix in enumerate(prefix_gen()):
            if prefix not in self.subq_aliases:
                self.alias_prefix = prefix
                break
            if pos > local_recursion_limit:
                raise RuntimeError(
                    'Maximum recursion depth exceeded: too many subqueries.'
                )
        self.subq_aliases = self.subq_aliases.union([self.alias_prefix])
        outer_query.subq_aliases = outer_query.subq_aliases.union(self.subq_aliases)
        change_map = OrderedDict()
        for pos, alias in enumerate(self.tables):
            new_alias = '%s%d' % (self.alias_prefix, pos)
            change_map[alias] = new_alias
            self.tables[pos] = new_alias
        self.change_aliases(change_map)

    def get_initial_alias(self):
        """
        Returns the first alias for this query, after increasing its reference
        count.
        """
        if self.tables:
            alias = self.tables[0]
            self.ref_alias(alias)
        else:
            alias = self.join(BaseTable(self.get_meta().db_table, None))
        return alias

    def count_active_tables(self):
        """
        Returns the number of tables in this query with a non-zero reference
        count. Note that after execution, the reference counts are zeroed, so
        tables added in compiler will not be seen by this method.
        """
        return len([1 for count in self.alias_refcount.values() if count])

    def join(self, join, reuse=None):
        """
        Return an alias for the 'join', either reusing an existing alias for
        that join or creating a new one. 'join' is either a
        sql.datastructures.BaseTable or Join.

        The 'reuse' parameter can be either None which means all joins are
        reusable, or it can be a set containing the aliases that can be reused.

        A join is always created as LOUTER if the lhs alias is LOUTER to make
        sure chains like t1 LOUTER t2 INNER t3 aren't generated. All new
        joins are created as LOUTER if the join is nullable.
        """
        reuse = [a for a, j in self.alias_map.items()
                 if (reuse is None or a in reuse) and j == join]
        if reuse:
            self.ref_alias(reuse[0])
            return reuse[0]

        # No reuse is possible, so we need a new alias.
        alias, _ = self.table_alias(join.table_name, create=True)
        if join.join_type:
            if self.alias_map[join.parent_alias].join_type == LOUTER or join.nullable:
                join_type = LOUTER
            else:
                join_type = INNER
            join.join_type = join_type
        join.table_alias = alias
        self.alias_map[alias] = join
        return alias

    def join_parent_model(self, opts, model, alias, seen):
        """
        Makes sure the given 'model' is joined in the query. If 'model' isn't
        a parent of 'opts' or if it is None this method is a no-op.

        The 'alias' is the root alias for starting the join, 'seen' is a dict
        of model -> alias of existing joins. It must also contain a mapping
        of None -> some alias. This will be returned in the no-op case.
        """
        if model in seen:
            return seen[model]
        chain = opts.get_base_chain(model)
        if not chain:
            return alias
        curr_opts = opts
        for int_model in chain:
            if int_model in seen:
                curr_opts = int_model._meta
                alias = seen[int_model]
                continue
            # Proxy model have elements in base chain
            # with no parents, assign the new options
            # object and skip to the next base in that
            # case
            if not curr_opts.parents[int_model]:
                curr_opts = int_model._meta
                continue
            link_field = curr_opts.get_ancestor_link(int_model)
            _, _, _, joins, _ = self.setup_joins(
                [link_field.name], curr_opts, alias)
            curr_opts = int_model._meta
            alias = seen[int_model] = joins[-1]
        return alias or seen[None]

    def add_annotation(self, annotation, alias, is_summary=False):
        """
        Adds a single annotation expression to the Query
        """
        annotation = annotation.resolve_expression(self, allow_joins=True, reuse=None,
                                                   summarize=is_summary)
        self.append_annotation_mask([alias])
        self.annotations[alias] = annotation

    def _prepare_as_filter_value(self):
        return self.clone()

    def prepare_lookup_value(self, value, lookups, can_reuse, allow_joins=True):
        # Default lookup if none given is exact.
        used_joins = []
        if len(lookups) == 0:
            lookups = ['exact']
        # Interpret '__exact=None' as the sql 'is NULL'; otherwise, reject all
        # uses of None as a query value.
        if value is None:
            if lookups[-1] not in ('exact', 'iexact'):
                raise ValueError("Cannot use None as a query value")
            return True, ['isnull'], used_joins
        elif hasattr(value, 'resolve_expression'):
            pre_joins = self.alias_refcount.copy()
            value = value.resolve_expression(self, reuse=can_reuse, allow_joins=allow_joins)
            used_joins = [k for k, v in self.alias_refcount.items() if v > pre_joins.get(k, 0)]
        elif isinstance(value, (list, tuple)):
            # The items of the iterable may be expressions and therefore need
            # to be resolved independently.
            processed_values = []
            used_joins = set()
            for sub_value in value:
                if hasattr(sub_value, 'resolve_expression'):
                    pre_joins = self.alias_refcount.copy()
                    processed_values.append(
                        sub_value.resolve_expression(self, reuse=can_reuse, allow_joins=allow_joins)
                    )
                    # The used_joins for a tuple of expressions is the union of
                    # the used_joins for the individual expressions.
                    used_joins |= set(k for k, v in self.alias_refcount.items() if v > pre_joins.get(k, 0))
        # Subqueries need to use a different set of aliases than the
        # outer query. Call bump_prefix to change aliases of the inner
        # query (the value).
        if hasattr(value, '_prepare_as_filter_value'):
            value = value._prepare_as_filter_value()
            value.bump_prefix(self)
        # For Oracle '' is equivalent to null. The check needs to be done
        # at this stage because join promotion can't be done at compiler
        # stage. Using DEFAULT_DB_ALIAS isn't nice, but it is the best we
        # can do here. Similar thing is done in is_nullable(), too.
        if (connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls and
                lookups[-1] == 'exact' and value == ''):
            value = True
            lookups[-1] = 'isnull'
        return value, lookups, used_joins

    def solve_lookup_type(self, lookup):
        """
        Solve the lookup type from the lookup (eg: 'foobar__id__icontains')
        """
        lookup_splitted = lookup.split(LOOKUP_SEP)
        if self._annotations:
            expression, expression_lookups = refs_expression(lookup_splitted, self.annotations)
            if expression:
                return expression_lookups, (), expression
        _, field, _, lookup_parts = self.names_to_path(lookup_splitted, self.get_meta())
        field_parts = lookup_splitted[0:len(lookup_splitted) - len(lookup_parts)]
        if len(lookup_parts) == 0:
            lookup_parts = ['exact']
        elif len(lookup_parts) > 1:
            if not field_parts:
                raise FieldError(
                    'Invalid lookup "%s" for model %s".' %
                    (lookup, self.get_meta().model.__name__))
        return lookup_parts, field_parts, False

    def check_query_object_type(self, value, opts, field):
        """
        Checks whether the object passed while querying is of the correct type.
        If not, it raises a ValueError specifying the wrong object.
        """
        if hasattr(value, '_meta'):
            if not check_rel_lookup_compatibility(value._meta.model, opts, field):
                raise ValueError(
                    'Cannot query "%s": Must be "%s" instance.' %
                    (value, opts.object_name))

    def check_related_objects(self, field, value, opts):
        """
        Checks the type of object passed to query relations.
        """
        if field.is_relation:
            # Check that the field and the queryset use the same model in a
            # query like .filter(author=Author.objects.all()). For example, the
            # opts would be Author's (from the author field) and value.model
            # would be Author.objects.all() queryset's .model (Author also).
            # The field is the related field on the lhs side.
            # If _forced_pk isn't set, this isn't a queryset query or values()
            # or values_list() was specified by the developer in which case
            # that choice is trusted.
            if (getattr(value, '_forced_pk', False) and
                    not check_rel_lookup_compatibility(value.model, opts, field)):
                raise ValueError(
                    'Cannot use QuerySet for "%s": Use a QuerySet for "%s".' %
                    (value.model._meta.object_name, opts.object_name)
                )
            elif hasattr(value, '_meta'):
                self.check_query_object_type(value, opts, field)
            elif hasattr(value, '__iter__'):
                for v in value:
                    self.check_query_object_type(v, opts, field)

    def build_lookup(self, lookups, lhs, rhs):
        """
        Tries to extract transforms and lookup from given lhs.

        The lhs value is something that works like SQLExpression.
        The rhs value is what the lookup is going to compare against.
        The lookups is a list of names to extract using get_lookup()
        and get_transform().
        """
        lookups = lookups[:]
        while lookups:
            name = lookups[0]
            # If there is just one part left, try first get_lookup() so
            # that if the lhs supports both transform and lookup for the
            # name, then lookup will be picked.
            if len(lookups) == 1:
                final_lookup = lhs.get_lookup(name)
                if not final_lookup:
                    # We didn't find a lookup. We are going to interpret
                    # the name as transform, and do an Exact lookup against
                    # it.
                    lhs = self.try_transform(lhs, name, lookups)
                    final_lookup = lhs.get_lookup('exact')
                return final_lookup(lhs, rhs)
            lhs = self.try_transform(lhs, name, lookups)
            lookups = lookups[1:]

    def try_transform(self, lhs, name, rest_of_lookups):
        """
        Helper method for build_lookup. Tries to fetch and initialize
        a transform for name parameter from lhs.
        """
        transform_class = lhs.get_transform(name)
        if transform_class:
            return transform_class(lhs)
        else:
            raise FieldError(
                "Unsupported lookup '%s' for %s or join on the field not "
                "permitted." %
                (name, lhs.output_field.__class__.__name__))

    def build_filter(self, filter_expr, branch_negated=False, current_negated=False,
                     can_reuse=None, connector=AND, allow_joins=True, split_subq=True):
        """
        Builds a WhereNode for a single filter clause, but doesn't add it
        to this Query. Query.add_q() will then add this filter to the where
        Node.

        The 'branch_negated' tells us if the current branch contains any
        negations. This will be used to determine if subqueries are needed.

        The 'current_negated' is used to determine if the current filter is
        negated or not and this will be used to determine if IS NULL filtering
        is needed.

        The difference between current_netageted and branch_negated is that
        branch_negated is set on first negation, but current_negated is
        flipped for each negation.

        Note that add_filter will not do any negating itself, that is done
        upper in the code by add_q().

        The 'can_reuse' is a set of reusable joins for multijoins.

        The method will create a filter clause that can be added to the current
        query. However, if the filter isn't added to the query then the caller
        is responsible for unreffing the joins used.
        """
        if isinstance(filter_expr, dict):
            raise FieldError("Cannot parse keyword query as dict")
        arg, value = filter_expr
        if not arg:
            raise FieldError("Cannot parse keyword query %r" % arg)
        lookups, parts, reffed_expression = self.solve_lookup_type(arg)
        if not allow_joins and len(parts) > 1:
            raise FieldError("Joined field references are not permitted in this query")

        # Work out the lookup type and remove it from the end of 'parts',
        # if necessary.
        value, lookups, used_joins = self.prepare_lookup_value(value, lookups, can_reuse, allow_joins)

        clause = self.where_class()
        if reffed_expression:
            condition = self.build_lookup(lookups, reffed_expression, value)
            clause.add(condition, AND)
            return clause, []

        opts = self.get_meta()
        alias = self.get_initial_alias()
        allow_many = not branch_negated or not split_subq

        try:
            field, sources, opts, join_list, path = self.setup_joins(
                parts, opts, alias, can_reuse=can_reuse, allow_many=allow_many)

            # Prevent iterator from being consumed by check_related_objects()
            if isinstance(value, Iterator):
                value = list(value)
            self.check_related_objects(field, value, opts)

            # split_exclude() needs to know which joins were generated for the
            # lookup parts
            self._lookup_joins = join_list
        except MultiJoin as e:
            return self.split_exclude(filter_expr, LOOKUP_SEP.join(parts[:e.level]),
                                      can_reuse, e.names_with_path)

        if can_reuse is not None:
            can_reuse.update(join_list)
        used_joins = set(used_joins).union(set(join_list))
        targets, alias, join_list = self.trim_joins(sources, join_list, path)

        if field.is_relation:
            # No support for transforms for relational fields
            num_lookups = len(lookups)
            if num_lookups > 1:
                raise FieldError('Related Field got invalid lookup: {}'.format(lookups[0]))
            assert num_lookups > 0  # Likely a bug in Django if this fails.
            lookup_class = field.get_lookup(lookups[0])
            if lookup_class is None:
                raise FieldError('Related Field got invalid lookup: {}'.format(lookups[0]))
            if len(targets) == 1:
                lhs = targets[0].get_col(alias, field)
            else:
                lhs = MultiColSource(alias, targets, sources, field)
            condition = lookup_class(lhs, value)
            lookup_type = lookup_class.lookup_name
        else:
            col = targets[0].get_col(alias, field)
            condition = self.build_lookup(lookups, col, value)
            lookup_type = condition.lookup_name

        clause.add(condition, AND)

        require_outer = lookup_type == 'isnull' and value is True and not current_negated
        if current_negated and (lookup_type != 'isnull' or value is False):
            require_outer = True
            if (lookup_type != 'isnull' and (
                    self.is_nullable(targets[0]) or
                    self.alias_map[join_list[-1]].join_type == LOUTER)):
                # The condition added here will be SQL like this:
                # NOT (col IS NOT NULL), where the first NOT is added in
                # upper layers of code. The reason for addition is that if col
                # is null, then col != someval will result in SQL "unknown"
                # which isn't the same as in Python. The Python None handling
                # is wanted, and it can be gotten by
                # (col IS NULL OR col != someval)
                #   <=>
                # NOT (col IS NOT NULL AND col = someval).
                lookup_class = targets[0].get_lookup('isnull')
                clause.add(lookup_class(targets[0].get_col(alias, sources[0]), False), AND)
        return clause, used_joins if not require_outer else ()

    def add_filter(self, filter_clause):
        self.add_q(Q(**{filter_clause[0]: filter_clause[1]}))

    def add_q(self, q_object):
        """
        A preprocessor for the internal _add_q(). Responsible for doing final
        join promotion.
        """
        # For join promotion this case is doing an AND for the added q_object
        # and existing conditions. So, any existing inner join forces the join
        # type to remain inner. Existing outer joins can however be demoted.
        # (Consider case where rel_a is LOUTER and rel_a__col=1 is added - if
        # rel_a doesn't produce any rows, then the whole condition must fail.
        # So, demotion is OK.
        existing_inner = set(
            (a for a in self.alias_map if self.alias_map[a].join_type == INNER))
        clause, _ = self._add_q(q_object, self.used_aliases)
        if clause:
            self.where.add(clause, AND)
        self.demote_joins(existing_inner)

    def _add_q(self, q_object, used_aliases, branch_negated=False,
               current_negated=False, allow_joins=True, split_subq=True):
        """
        Adds a Q-object to the current filter.
        """
        connector = q_object.connector
        current_negated = current_negated ^ q_object.negated
        branch_negated = branch_negated or q_object.negated
        target_clause = self.where_class(connector=connector,
                                         negated=q_object.negated)
        joinpromoter = JoinPromoter(q_object.connector, len(q_object.children), current_negated)
        for child in q_object.children:
            if isinstance(child, Node):
                child_clause, needed_inner = self._add_q(
                    child, used_aliases, branch_negated,
                    current_negated, allow_joins, split_subq)
                joinpromoter.add_votes(needed_inner)
            else:
                child_clause, needed_inner = self.build_filter(
                    child, can_reuse=used_aliases, branch_negated=branch_negated,
                    current_negated=current_negated, connector=connector,
                    allow_joins=allow_joins, split_subq=split_subq,
                )
                joinpromoter.add_votes(needed_inner)
            if child_clause:
                target_clause.add(child_clause, connector)
        needed_inner = joinpromoter.update_join_types(self)
        return target_clause, needed_inner

    def names_to_path(self, names, opts, allow_many=True, fail_on_missing=False):
        """
        Walks the list of names and turns them into PathInfo tuples. Note that
        a single name in 'names' can generate multiple PathInfos (m2m for
        example).

        'names' is the path of names to travel, 'opts' is the model Options we
        start the name resolving from, 'allow_many' is as for setup_joins().
        If fail_on_missing is set to True, then a name that can't be resolved
        will generate a FieldError.

        Returns a list of PathInfo tuples. In addition returns the final field
        (the last used join field), and target (which is a field guaranteed to
        contain the same value as the final field). Finally, the method returns
        those names that weren't found (which are likely transforms and the
        final lookup).
        """
        path, names_with_path = [], []
        for pos, name in enumerate(names):
            cur_names_with_path = (name, [])
            if name == 'pk':
                name = opts.pk.name

            field = None
            try:
                field = opts.get_field(name)
            except FieldDoesNotExist:
                if name in self.annotation_select:
                    field = self.annotation_select[name].output_field
                elif pos == 0:
                    for rel in opts.related_objects:
                        if (name == rel.related_model._meta.model_name and
                                rel.related_name == rel.related_model._meta.default_related_name):
                            related_name = rel.related_name
                            field = opts.get_field(related_name)
                            warnings.warn(
                                "Query lookup '%s' is deprecated in favor of "
                                "Meta.default_related_name '%s'."
                                % (name, related_name),
                                RemovedInDjango20Warning, 2
                            )
                            break

            if field is not None:
                # Fields that contain one-to-many relations with a generic
                # model (like a GenericForeignKey) cannot generate reverse
                # relations and therefore cannot be used for reverse querying.
                if field.is_relation and not field.related_model:
                    raise FieldError(
                        "Field %r does not generate an automatic reverse "
                        "relation and therefore cannot be used for reverse "
                        "querying. If it is a GenericForeignKey, consider "
                        "adding a GenericRelation." % name
                    )
                try:
                    model = field.model._meta.concrete_model
                except AttributeError:
                    # QuerySet.annotate() may introduce fields that aren't
                    # attached to a model.
                    model = None
            else:
                # We didn't find the current field, so move position back
                # one step.
                pos -= 1
                if pos == -1 or fail_on_missing:
                    field_names = list(get_field_names_from_opts(opts))
                    available = sorted(field_names + list(self.annotation_select))
                    raise FieldError("Cannot resolve keyword '%s' into field. "
                                     "Choices are: %s" % (name, ", ".join(available)))
                break
            # Check if we need any joins for concrete inheritance cases (the
            # field lives in parent, but we are currently in one of its
            # children)
            if model is not opts.model:
                path_to_parent = opts.get_path_to_parent(model)
                if path_to_parent:
                    path.extend(path_to_parent)
                    cur_names_with_path[1].extend(path_to_parent)
                    opts = path_to_parent[-1].to_opts
            if hasattr(field, 'get_path_info'):
                pathinfos = field.get_path_info()
                if not allow_many:
                    for inner_pos, p in enumerate(pathinfos):
                        if p.m2m:
                            cur_names_with_path[1].extend(pathinfos[0:inner_pos + 1])
                            names_with_path.append(cur_names_with_path)
                            raise MultiJoin(pos + 1, names_with_path)
                last = pathinfos[-1]
                path.extend(pathinfos)
                final_field = last.join_field
                opts = last.to_opts
                targets = last.target_fields
                cur_names_with_path[1].extend(pathinfos)
                names_with_path.append(cur_names_with_path)
            else:
                # Local non-relational field.
                final_field = field
                targets = (field,)
                if fail_on_missing and pos + 1 != len(names):
                    raise FieldError(
                        "Cannot resolve keyword %r into field. Join on '%s'"
                        " not permitted." % (names[pos + 1], name))
                break
        return path, final_field, targets, names[pos + 1:]

    def setup_joins(self, names, opts, alias, can_reuse=None, allow_many=True):
        """
        Compute the necessary table joins for the passage through the fields
        given in 'names'. 'opts' is the Options class for the current model
        (which gives the table we are starting from), 'alias' is the alias for
        the table to start the joining from.

        The 'can_reuse' defines the reverse foreign key joins we can reuse. It
        can be None in which case all joins are reusable or a set of aliases
        that can be reused. Note that non-reverse foreign keys are always
        reusable when using setup_joins().

        If 'allow_many' is False, then any reverse foreign key seen will
        generate a MultiJoin exception.

        Returns the final field involved in the joins, the target field (used
        for any 'where' constraint), the final 'opts' value, the joins and the
        field path travelled to generate the joins.

        The target field is the field containing the concrete value. Final
        field can be something different, for example foreign key pointing to
        that value. Final field is needed for example in some value
        conversions (convert 'obj' in fk__id=obj to pk val using the foreign
        key field for example).
        """
        joins = [alias]
        # First, generate the path for the names
        path, final_field, targets, rest = self.names_to_path(
            names, opts, allow_many, fail_on_missing=True)

        # Then, add the path to the query's joins. Note that we can't trim
        # joins at this stage - we will need the information about join type
        # of the trimmed joins.
        for join in path:
            opts = join.to_opts
            if join.direct:
                nullable = self.is_nullable(join.join_field)
            else:
                nullable = True
            connection = Join(opts.db_table, alias, None, INNER, join.join_field, nullable)
            reuse = can_reuse if join.m2m else None
            alias = self.join(connection, reuse=reuse)
            joins.append(alias)
        return final_field, targets, opts, joins, path

    def trim_joins(self, targets, joins, path):
        """
        The 'target' parameter is the final field being joined to, 'joins'
        is the full list of join aliases. The 'path' contain the PathInfos
        used to create the joins.

        Returns the final target field and table alias and the new active
        joins.

        We will always trim any direct join if we have the target column
        available already in the previous table. Reverse joins can't be
        trimmed as we don't know if there is anything on the other side of
        the join.
        """
        joins = joins[:]
        for pos, info in enumerate(reversed(path)):
            if len(joins) == 1 or not info.direct:
                break
            join_targets = set(t.column for t in info.join_field.foreign_related_fields)
            cur_targets = set(t.column for t in targets)
            if not cur_targets.issubset(join_targets):
                break
            targets_dict = {r[1].column: r[0] for r in info.join_field.related_fields if r[1].column in cur_targets}
            targets = tuple(targets_dict[t.column] for t in targets)
            self.unref_alias(joins.pop())
        return targets, joins[-1], joins

    def resolve_ref(self, name, allow_joins=True, reuse=None, summarize=False):
        if not allow_joins and LOOKUP_SEP in name:
            raise FieldError("Joined field references are not permitted in this query")
        if name in self.annotations:
            if summarize:
                # Summarize currently means we are doing an aggregate() query
                # which is executed as a wrapped subquery if any of the
                # aggregate() elements reference an existing annotation. In
                # that case we need to return a Ref to the subquery's annotation.
                return Ref(name, self.annotation_select[name])
            else:
                return self.annotation_select[name]
        else:
            field_list = name.split(LOOKUP_SEP)
            field, sources, opts, join_list, path = self.setup_joins(
                field_list, self.get_meta(),
                self.get_initial_alias(), reuse)
            targets, _, join_list = self.trim_joins(sources, join_list, path)
            if len(targets) > 1:
                raise FieldError("Referencing multicolumn fields with F() objects "
                                 "isn't supported")
            if reuse is not None:
                reuse.update(join_list)
            col = targets[0].get_col(join_list[-1], sources[0])
            return col

    def split_exclude(self, filter_expr, prefix, can_reuse, names_with_path):
        """
        When doing an exclude against any kind of N-to-many relation, we need
        to use a subquery. This method constructs the nested query, given the
        original exclude filter (filter_expr) and the portion up to the first
        N-to-many relation field.

        As an example we could have original filter ~Q(child__name='foo').
        We would get here with filter_expr = child__name, prefix = child and
        can_reuse is a set of joins usable for filters in the original query.

        We will turn this into equivalent of:
            WHERE NOT (pk IN (SELECT parent_id FROM thetable
                              WHERE name = 'foo' AND parent_id IS NOT NULL))

        It might be worth it to consider using WHERE NOT EXISTS as that has
        saner null handling, and is easier for the backend's optimizer to
        handle.
        """
        # Generate the inner query.
        query = Query(self.model)
        query.add_filter(filter_expr)
        query.clear_ordering(True)
        # Try to have as simple as possible subquery -> trim leading joins from
        # the subquery.
        trimmed_prefix, contains_louter = query.trim_start(names_with_path)

        # Add extra check to make sure the selected field will not be null
        # since we are adding an IN <subquery> clause. This prevents the
        # database from tripping over IN (...,NULL,...) selects and returning
        # nothing
        col = query.select[0]
        select_field = col.target
        alias = col.alias
        if self.is_nullable(select_field):
            lookup_class = select_field.get_lookup('isnull')
            lookup = lookup_class(select_field.get_col(alias), False)
            query.where.add(lookup, AND)
        if alias in can_reuse:
            pk = select_field.model._meta.pk
            # Need to add a restriction so that outer query's filters are in effect for
            # the subquery, too.
            query.bump_prefix(self)
            lookup_class = select_field.get_lookup('exact')
            # Note that the query.select[0].alias is different from alias
            # due to bump_prefix above.
            lookup = lookup_class(pk.get_col(query.select[0].alias),
                                  pk.get_col(alias))
            query.where.add(lookup, AND)
            query.external_aliases.add(alias)

        condition, needed_inner = self.build_filter(
            ('%s__in' % trimmed_prefix, query),
            current_negated=True, branch_negated=True, can_reuse=can_reuse)
        if contains_louter:
            or_null_condition, _ = self.build_filter(
                ('%s__isnull' % trimmed_prefix, True),
                current_negated=True, branch_negated=True, can_reuse=can_reuse)
            condition.add(or_null_condition, OR)
            # Note that the end result will be:
            # (outercol NOT IN innerq AND outercol IS NOT NULL) OR outercol IS NULL.
            # This might look crazy but due to how IN works, this seems to be
            # correct. If the IS NOT NULL check is removed then outercol NOT
            # IN will return UNKNOWN. If the IS NULL check is removed, then if
            # outercol IS NULL we will not match the row.
        return condition, needed_inner

    def set_empty(self):
        self.where.add(NothingNode(), AND)

    def is_empty(self):
        return any(isinstance(c, NothingNode) for c in self.where.children)

    def set_limits(self, low=None, high=None):
        """
        Adjusts the limits on the rows retrieved. We use low/high to set these,
        as it makes it more Pythonic to read and write. When the SQL query is
        created, they are converted to the appropriate offset and limit values.

        Any limits passed in here are applied relative to the existing
        constraints. So low is added to the current low value and both will be
        clamped to any existing high value.
        """
        if high is not None:
            if self.high_mark is not None:
                self.high_mark = min(self.high_mark, self.low_mark + high)
            else:
                self.high_mark = self.low_mark + high
        if low is not None:
            if self.high_mark is not None:
                self.low_mark = min(self.high_mark, self.low_mark + low)
            else:
                self.low_mark = self.low_mark + low

        if self.low_mark == self.high_mark:
            self.set_empty()

    def clear_limits(self):
        """
        Clears any existing limits.
        """
        self.low_mark, self.high_mark = 0, None

    def can_filter(self):
        """
        Returns True if adding filters to this instance is still possible.

        Typically, this means no limits or offsets have been put on the results.
        """
        return not self.low_mark and self.high_mark is None

    def clear_select_clause(self):
        """
        Removes all fields from SELECT clause.
        """
        self.select = []
        self.default_cols = False
        self.select_related = False
        self.set_extra_mask(())
        self.set_annotation_mask(())

    def clear_select_fields(self):
        """
        Clears the list of fields to select (but not extra_select columns).
        Some queryset types completely replace any existing list of select
        columns.
        """
        self.select = []
        self.values_select = []

    def add_select(self, col):
        self.default_cols = False
        self.select.append(col)

    def set_select(self, cols):
        self.default_cols = False
        self.select = cols

    def add_distinct_fields(self, *field_names):
        """
        Adds and resolves the given fields to the query's "distinct on" clause.
        """
        self.distinct_fields = field_names
        self.distinct = True

    def add_fields(self, field_names, allow_m2m=True):
        """
        Adds the given (model) fields to the select set. The field names are
        added in the order specified.
        """
        alias = self.get_initial_alias()
        opts = self.get_meta()

        try:
            for name in field_names:
                # Join promotion note - we must not remove any rows here, so
                # if there is no existing joins, use outer join.
                _, targets, _, joins, path = self.setup_joins(
                    name.split(LOOKUP_SEP), opts, alias, allow_many=allow_m2m)
                targets, final_alias, joins = self.trim_joins(targets, joins, path)
                for target in targets:
                    self.add_select(target.get_col(final_alias))
        except MultiJoin:
            raise FieldError("Invalid field name: '%s'" % name)
        except FieldError:
            if LOOKUP_SEP in name:
                # For lookups spanning over relationships, show the error
                # from the model on which the lookup failed.
                raise
            else:
                names = sorted(list(get_field_names_from_opts(opts)) + list(self.extra) + list(self.annotation_select))
                raise FieldError("Cannot resolve keyword %r into field. "
                                 "Choices are: %s" % (name, ", ".join(names)))

    def add_ordering(self, *ordering):
        """
        Adds items from the 'ordering' sequence to the query's "order by"
        clause. These items are either field names (not column names) --
        possibly with a direction prefix ('-' or '?') -- or OrderBy
        expressions.

        If 'ordering' is empty, all ordering is cleared from the query.
        """
        errors = []
        for item in ordering:
            if not hasattr(item, 'resolve_expression') and not ORDER_PATTERN.match(item):
                errors.append(item)
            if getattr(item, 'contains_aggregate', False):
                raise FieldError(
                    'Using an aggregate in order_by() without also including '
                    'it in annotate() is not allowed: %s' % item
                )
        if errors:
            raise FieldError('Invalid order_by arguments: %s' % errors)
        if ordering:
            self.order_by.extend(ordering)
        else:
            self.default_ordering = False

    def clear_ordering(self, force_empty):
        """
        Removes any ordering settings. If 'force_empty' is True, there will be
        no ordering in the resulting query (not even the model's default).
        """
        self.order_by = []
        self.extra_order_by = ()
        if force_empty:
            self.default_ordering = False

    def set_group_by(self):
        """
        Expands the GROUP BY clause required by the query.

        This will usually be the set of all non-aggregate fields in the
        return data. If the database backend supports grouping by the
        primary key, and the query would be equivalent, the optimization
        will be made automatically.
        """
        self.group_by = []

        for col in self.select:
            self.group_by.append(col)

        if self.annotation_select:
            for alias, annotation in six.iteritems(self.annotation_select):
                for col in annotation.get_group_by_cols():
                    self.group_by.append(col)

    def add_select_related(self, fields):
        """
        Sets up the select_related data structure so that we only select
        certain related models (as opposed to all models, when
        self.select_related=True).
        """
        if isinstance(self.select_related, bool):
            field_dict = {}
        else:
            field_dict = self.select_related
        for field in fields:
            d = field_dict
            for part in field.split(LOOKUP_SEP):
                d = d.setdefault(part, {})
        self.select_related = field_dict

    def add_extra(self, select, select_params, where, params, tables, order_by):
        """
        Adds data to the various extra_* attributes for user-created additions
        to the query.
        """
        if select:
            # We need to pair any placeholder markers in the 'select'
            # dictionary with their parameters in 'select_params' so that
            # subsequent updates to the select dictionary also adjust the
            # parameters appropriately.
            select_pairs = OrderedDict()
            if select_params:
                param_iter = iter(select_params)
            else:
                param_iter = iter([])
            for name, entry in select.items():
                entry = force_text(entry)
                entry_params = []
                pos = entry.find("%s")
                while pos != -1:
                    if pos == 0 or entry[pos - 1] != '%':
                        entry_params.append(next(param_iter))
                    pos = entry.find("%s", pos + 2)
                select_pairs[name] = (entry, entry_params)
            # This is order preserving, since self.extra_select is an OrderedDict.
            self.extra.update(select_pairs)
        if where or params:
            self.where.add(ExtraWhere(where, params), AND)
        if tables:
            self.extra_tables += tuple(tables)
        if order_by:
            self.extra_order_by = order_by

    def clear_deferred_loading(self):
        """
        Remove any fields from the deferred loading set.
        """
        self.deferred_loading = (set(), True)

    def add_deferred_loading(self, field_names):
        """
        Add the given list of model field names to the set of fields to
        exclude from loading from the database when automatic column selection
        is done. The new field names are added to any existing field names that
        are deferred (or removed from any existing field names that are marked
        as the only ones for immediate loading).
        """
        # Fields on related models are stored in the literal double-underscore
        # format, so that we can use a set datastructure. We do the foo__bar
        # splitting and handling when computing the SQL column names (as part of
        # get_columns()).
        existing, defer = self.deferred_loading
        if defer:
            # Add to existing deferred names.
            self.deferred_loading = existing.union(field_names), True
        else:
            # Remove names from the set of any existing "immediate load" names.
            self.deferred_loading = existing.difference(field_names), False

    def add_immediate_loading(self, field_names):
        """
        Add the given list of model field names to the set of fields to
        retrieve when the SQL is executed ("immediate loading" fields). The
        field names replace any existing immediate loading field names. If
        there are field names already specified for deferred loading, those
        names are removed from the new field_names before storing the new names
        for immediate loading. (That is, immediate loading overrides any
        existing immediate values, but respects existing deferrals.)
        """
        existing, defer = self.deferred_loading
        field_names = set(field_names)
        if 'pk' in field_names:
            field_names.remove('pk')
            field_names.add(self.get_meta().pk.name)

        if defer:
            # Remove any existing deferred names from the current set before
            # setting the new names.
            self.deferred_loading = field_names.difference(existing), False
        else:
            # Replace any existing "immediate load" field names.
            self.deferred_loading = field_names, False

    def get_loaded_field_names(self):
        """
        If any fields are marked to be deferred, returns a dictionary mapping
        models to a set of names in those fields that will be loaded. If a
        model is not in the returned dictionary, none of its fields are
        deferred.

        If no fields are marked for deferral, returns an empty dictionary.
        """
        # We cache this because we call this function multiple times
        # (compiler.fill_related_selections, query.iterator)
        try:
            return self._loaded_field_names_cache
        except AttributeError:
            collection = {}
            self.deferred_to_data(collection, self.get_loaded_field_names_cb)
            self._loaded_field_names_cache = collection
            return collection

    def get_loaded_field_names_cb(self, target, model, fields):
        """
        Callback used by get_deferred_field_names().
        """
        target[model] = {f.attname for f in fields}

    def set_annotation_mask(self, names):
        "Set the mask of annotations that will actually be returned by the SELECT"
        if names is None:
            self.annotation_select_mask = None
        else:
            self.annotation_select_mask = set(names)
        self._annotation_select_cache = None

    def append_annotation_mask(self, names):
        if self.annotation_select_mask is not None:
            self.set_annotation_mask(set(names).union(self.annotation_select_mask))

    def set_extra_mask(self, names):
        """
        Set the mask of extra select items that will be returned by SELECT,
        we don't actually remove them from the Query since they might be used
        later
        """
        if names is None:
            self.extra_select_mask = None
        else:
            self.extra_select_mask = set(names)
        self._extra_select_cache = None

    def set_values(self, fields):
        self.select_related = False
        self.clear_deferred_loading()
        self.clear_select_fields()

        if self.group_by is True:
            self.add_fields((f.attname for f in self.model._meta.concrete_fields), False)
            self.set_group_by()
            self.clear_select_fields()

        if fields:
            field_names = []
            extra_names = []
            annotation_names = []
            if not self._extra and not self._annotations:
                # Shortcut - if there are no extra or annotations, then
                # the values() clause must be just field names.
                field_names = list(fields)
            else:
                self.default_cols = False
                for f in fields:
                    if f in self.extra_select:
                        extra_names.append(f)
                    elif f in self.annotation_select:
                        annotation_names.append(f)
                    else:
                        field_names.append(f)
            self.set_extra_mask(extra_names)
            self.set_annotation_mask(annotation_names)
        else:
            field_names = [f.attname for f in self.model._meta.concrete_fields]

        self.values_select = field_names
        self.add_fields(field_names, True)

    @property
    def annotation_select(self):
        """The OrderedDict of aggregate columns that are not masked, and should
        be used in the SELECT clause.

        This result is cached for optimization purposes.
        """
        if self._annotation_select_cache is not None:
            return self._annotation_select_cache
        elif not self._annotations:
            return {}
        elif self.annotation_select_mask is not None:
            self._annotation_select_cache = OrderedDict(
                (k, v) for k, v in self.annotations.items()
                if k in self.annotation_select_mask
            )
            return self._annotation_select_cache
        else:
            return self.annotations

    @property
    def extra_select(self):
        if self._extra_select_cache is not None:
            return self._extra_select_cache
        if not self._extra:
            return {}
        elif self.extra_select_mask is not None:
            self._extra_select_cache = OrderedDict(
                (k, v) for k, v in self.extra.items()
                if k in self.extra_select_mask
            )
            return self._extra_select_cache
        else:
            return self.extra

    def trim_start(self, names_with_path):
        """
        Trims joins from the start of the join path. The candidates for trim
        are the PathInfos in names_with_path structure that are m2m joins.

        Also sets the select column so the start matches the join.

        This method is meant to be used for generating the subquery joins &
        cols in split_exclude().

        Returns a lookup usable for doing outerq.filter(lookup=self). Returns
        also if the joins in the prefix contain a LEFT OUTER join.
        _"""
        all_paths = []
        for _, paths in names_with_path:
            all_paths.extend(paths)
        contains_louter = False
        # Trim and operate only on tables that were generated for
        # the lookup part of the query. That is, avoid trimming
        # joins generated for F() expressions.
        lookup_tables = [t for t in self.tables if t in self._lookup_joins or t == self.tables[0]]
        for trimmed_paths, path in enumerate(all_paths):
            if path.m2m:
                break
            if self.alias_map[lookup_tables[trimmed_paths + 1]].join_type == LOUTER:
                contains_louter = True
            alias = lookup_tables[trimmed_paths]
            self.unref_alias(alias)
        # The path.join_field is a Rel, lets get the other side's field
        join_field = path.join_field.field
        # Build the filter prefix.
        paths_in_prefix = trimmed_paths
        trimmed_prefix = []
        for name, path in names_with_path:
            if paths_in_prefix - len(path) < 0:
                break
            trimmed_prefix.append(name)
            paths_in_prefix -= len(path)
        trimmed_prefix.append(
            join_field.foreign_related_fields[0].name)
        trimmed_prefix = LOOKUP_SEP.join(trimmed_prefix)
        # Lets still see if we can trim the first join from the inner query
        # (that is, self). We can't do this for LEFT JOINs because we would
        # miss those rows that have nothing on the outer side.
        if self.alias_map[lookup_tables[trimmed_paths + 1]].join_type != LOUTER:
            select_fields = [r[0] for r in join_field.related_fields]
            select_alias = lookup_tables[trimmed_paths + 1]
            self.unref_alias(lookup_tables[trimmed_paths])
            extra_restriction = join_field.get_extra_restriction(
                self.where_class, None, lookup_tables[trimmed_paths + 1])
            if extra_restriction:
                self.where.add(extra_restriction, AND)
        else:
            # TODO: It might be possible to trim more joins from the start of the
            # inner query if it happens to have a longer join chain containing the
            # values in select_fields. Lets punt this one for now.
            select_fields = [r[1] for r in join_field.related_fields]
            select_alias = lookup_tables[trimmed_paths]
        # The found starting point is likely a Join instead of a BaseTable reference.
        # But the first entry in the query's FROM clause must not be a JOIN.
        for table in self.tables:
            if self.alias_refcount[table] > 0:
                self.alias_map[table] = BaseTable(self.alias_map[table].table_name, table)
                break
        self.set_select([f.get_col(select_alias) for f in select_fields])
        return trimmed_prefix, contains_louter

    def is_nullable(self, field):
        """
        A helper to check if the given field should be treated as nullable.

        Some backends treat '' as null and Django treats such fields as
        nullable for those backends. In such situations field.null can be
        False even if we should treat the field as nullable.
        """
        # We need to use DEFAULT_DB_ALIAS here, as QuerySet does not have
        # (nor should it have) knowledge of which connection is going to be
        # used. The proper fix would be to defer all decisions where
        # is_nullable() is needed to the compiler stage, but that is not easy
        # to do currently.
        if connections[DEFAULT_DB_ALIAS].features.interprets_empty_strings_as_nulls and field.empty_strings_allowed:
            return True
        else:
            return field.null

    def as_subquery_filter(self, db):
        self._db = db
        self.subquery = True
        # It's safe to drop ordering if the queryset isn't using slicing,
        # distinct(*fields) or select_for_update().
        if (self.low_mark == 0 and self.high_mark is None and
                not self.distinct_fields and
                not self.select_for_update):
            self.clear_ordering(True)
        return self


def get_order_dir(field, default='ASC'):
    """
    Returns the field name and direction for an order specification. For
    example, '-foo' is returned as ('foo', 'DESC').

    The 'default' param is used to indicate which way no prefix (or a '+'
    prefix) should sort. The '-' prefix always sorts the opposite way.
    """
    dirn = ORDER_DIR[default]
    if field[0] == '-':
        return field[1:], dirn[1]
    return field, dirn[0]


def add_to_dict(data, key, value):
    """
    A helper function to add "value" to the set of values for "key", whether or
    not "key" already exists.
    """
    if key in data:
        data[key].add(value)
    else:
        data[key] = {value}


def is_reverse_o2o(field):
    """
    A little helper to check if the given field is reverse-o2o. The field is
    expected to be some sort of relation field or related object.
    """
    return field.is_relation and field.one_to_one and not field.concrete


class JoinPromoter(object):
    """
    A class to abstract away join promotion problems for complex filter
    conditions.
    """

    def __init__(self, connector, num_children, negated):
        self.connector = connector
        self.negated = negated
        if self.negated:
            if connector == AND:
                self.effective_connector = OR
            else:
                self.effective_connector = AND
        else:
            self.effective_connector = self.connector
        self.num_children = num_children
        # Maps of table alias to how many times it is seen as required for
        # inner and/or outer joins.
        self.votes = Counter()

    def add_votes(self, votes):
        """
        Add single vote per item to self.votes. Parameter can be any
        iterable.
        """
        self.votes.update(votes)

    def update_join_types(self, query):
        """
        Change join types so that the generated query is as efficient as
        possible, but still correct. So, change as many joins as possible
        to INNER, but don't make OUTER joins INNER if that could remove
        results from the query.
        """
        to_promote = set()
        to_demote = set()
        # The effective_connector is used so that NOT (a AND b) is treated
        # similarly to (a OR b) for join promotion.
        for table, votes in self.votes.items():
            # We must use outer joins in OR case when the join isn't contained
            # in all of the joins. Otherwise the INNER JOIN itself could remove
            # valid results. Consider the case where a model with rel_a and
            # rel_b relations is queried with rel_a__col=1 | rel_b__col=2. Now,
            # if rel_a join doesn't produce any results is null (for example
            # reverse foreign key or null value in direct foreign key), and
            # there is a matching row in rel_b with col=2, then an INNER join
            # to rel_a would remove a valid match from the query. So, we need
            # to promote any existing INNER to LOUTER (it is possible this
            # promotion in turn will be demoted later on).
            if self.effective_connector == 'OR' and votes < self.num_children:
                to_promote.add(table)
            # If connector is AND and there is a filter that can match only
            # when there is a joinable row, then use INNER. For example, in
            # rel_a__col=1 & rel_b__col=2, if either of the rels produce NULL
            # as join output, then the col=1 or col=2 can't match (as
            # NULL=anything is always false).
            # For the OR case, if all children voted for a join to be inner,
            # then we can use INNER for the join. For example:
            #     (rel_a__col__icontains=Alex | rel_a__col__icontains=Russell)
            # then if rel_a doesn't produce any rows, the whole condition
            # can't match. Hence we can safely use INNER join.
            if self.effective_connector == 'AND' or (
                    self.effective_connector == 'OR' and votes == self.num_children):
                to_demote.add(table)
            # Finally, what happens in cases where we have:
            #    (rel_a__col=1|rel_b__col=2) & rel_a__col__gte=0
            # Now, we first generate the OR clause, and promote joins for it
            # in the first if branch above. Both rel_a and rel_b are promoted
            # to LOUTER joins. After that we do the AND case. The OR case
            # voted no inner joins but the rel_a__col__gte=0 votes inner join
            # for rel_a. We demote it back to INNER join (in AND case a single
            # vote is enough). The demotion is OK, if rel_a doesn't produce
            # rows, then the rel_a__col__gte=0 clause can't be true, and thus
            # the whole clause must be false. So, it is safe to use INNER
            # join.
            # Note that in this example we could just as well have the __gte
            # clause and the OR clause swapped. Or we could replace the __gte
            # clause with an OR clause containing rel_a__col=1|rel_a__col=2,
            # and again we could safely demote to INNER.
        query.promote_joins(to_promote)
        query.demote_joins(to_demote)
        return to_demote