1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
import psycopg2
from django.db.models import (
CharField, Expression, Field, FloatField, Func, Lookup, TextField, Value,
)
from django.db.models.expressions import CombinedExpression
from django.db.models.functions import Cast, Coalesce
class SearchVectorExact(Lookup):
lookup_name = 'exact'
def process_rhs(self, qn, connection):
if not isinstance(self.rhs, (SearchQuery, CombinedSearchQuery)):
config = getattr(self.lhs, 'config', None)
self.rhs = SearchQuery(self.rhs, config=config)
rhs, rhs_params = super().process_rhs(qn, connection)
return rhs, rhs_params
def as_sql(self, qn, connection):
lhs, lhs_params = self.process_lhs(qn, connection)
rhs, rhs_params = self.process_rhs(qn, connection)
params = lhs_params + rhs_params
return '%s @@ %s' % (lhs, rhs), params
class SearchVectorField(Field):
def db_type(self, connection):
return 'tsvector'
class SearchQueryField(Field):
def db_type(self, connection):
return 'tsquery'
class SearchConfig(Expression):
def __init__(self, config):
super().__init__()
if not hasattr(config, 'resolve_expression'):
config = Value(config)
self.config = config
@classmethod
def from_parameter(cls, config):
if config is None or isinstance(config, cls):
return config
return cls(config)
def get_source_expressions(self):
return [self.config]
def set_source_expressions(self, exprs):
self.config, = exprs
def as_sql(self, compiler, connection):
sql, params = compiler.compile(self.config)
return '%s::regconfig' % sql, params
class SearchVectorCombinable:
ADD = '||'
def _combine(self, other, connector, reversed):
if not isinstance(other, SearchVectorCombinable):
raise TypeError(
'SearchVector can only be combined with other SearchVector '
'instances, got %s.' % type(other).__name__
)
if reversed:
return CombinedSearchVector(other, connector, self, self.config)
return CombinedSearchVector(self, connector, other, self.config)
class SearchVector(SearchVectorCombinable, Func):
function = 'to_tsvector'
arg_joiner = " || ' ' || "
output_field = SearchVectorField()
def __init__(self, *expressions, config=None, weight=None):
super().__init__(*expressions)
self.config = SearchConfig.from_parameter(config)
if weight is not None and not hasattr(weight, 'resolve_expression'):
weight = Value(weight)
self.weight = weight
def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False):
resolved = super().resolve_expression(query, allow_joins, reuse, summarize, for_save)
if self.config:
resolved.config = self.config.resolve_expression(query, allow_joins, reuse, summarize, for_save)
return resolved
def as_sql(self, compiler, connection, function=None, template=None):
clone = self.copy()
clone.set_source_expressions([
Coalesce(
expression
if isinstance(expression.output_field, (CharField, TextField))
else Cast(expression, TextField()),
Value('')
) for expression in clone.get_source_expressions()
])
config_sql = None
config_params = []
if template is None:
if clone.config:
config_sql, config_params = compiler.compile(clone.config)
template = '%(function)s(%(config)s, %(expressions)s)'
else:
template = clone.template
sql, params = super(SearchVector, clone).as_sql(
compiler, connection, function=function, template=template,
config=config_sql,
)
extra_params = []
if clone.weight:
weight_sql, extra_params = compiler.compile(clone.weight)
sql = 'setweight({}, {})'.format(sql, weight_sql)
return sql, config_params + params + extra_params
class CombinedSearchVector(SearchVectorCombinable, CombinedExpression):
def __init__(self, lhs, connector, rhs, config, output_field=None):
self.config = config
super().__init__(lhs, connector, rhs, output_field)
class SearchQueryCombinable:
BITAND = '&&'
BITOR = '||'
def _combine(self, other, connector, reversed):
if not isinstance(other, SearchQueryCombinable):
raise TypeError(
'SearchQuery can only be combined with other SearchQuery '
'instances, got %s.' % type(other).__name__
)
if reversed:
return CombinedSearchQuery(other, connector, self, self.config)
return CombinedSearchQuery(self, connector, other, self.config)
# On Combinable, these are not implemented to reduce confusion with Q. In
# this case we are actually (ab)using them to do logical combination so
# it's consistent with other usage in Django.
def __or__(self, other):
return self._combine(other, self.BITOR, False)
def __ror__(self, other):
return self._combine(other, self.BITOR, True)
def __and__(self, other):
return self._combine(other, self.BITAND, False)
def __rand__(self, other):
return self._combine(other, self.BITAND, True)
class SearchQuery(SearchQueryCombinable, Func):
output_field = SearchQueryField()
SEARCH_TYPES = {
'plain': 'plainto_tsquery',
'phrase': 'phraseto_tsquery',
'raw': 'to_tsquery',
'websearch': 'websearch_to_tsquery',
}
def __init__(self, value, output_field=None, *, config=None, invert=False, search_type='plain'):
self.function = self.SEARCH_TYPES.get(search_type)
if self.function is None:
raise ValueError("Unknown search_type argument '%s'." % search_type)
if not hasattr(value, 'resolve_expression'):
value = Value(value)
expressions = (value,)
self.config = SearchConfig.from_parameter(config)
if self.config is not None:
expressions = (self.config,) + expressions
self.invert = invert
super().__init__(*expressions, output_field=output_field)
def as_sql(self, compiler, connection, function=None, template=None):
sql, params = super().as_sql(compiler, connection, function, template)
if self.invert:
sql = '!!(%s)' % sql
return sql, params
def __invert__(self):
clone = self.copy()
clone.invert = not self.invert
return clone
def __str__(self):
result = super().__str__()
return ('~%s' % result) if self.invert else result
class CombinedSearchQuery(SearchQueryCombinable, CombinedExpression):
def __init__(self, lhs, connector, rhs, config, output_field=None):
self.config = config
super().__init__(lhs, connector, rhs, output_field)
def __str__(self):
return '(%s)' % super().__str__()
class SearchRank(Func):
function = 'ts_rank'
output_field = FloatField()
def __init__(
self, vector, query, weights=None, normalization=None,
cover_density=False,
):
if not hasattr(vector, 'resolve_expression'):
vector = SearchVector(vector)
if not hasattr(query, 'resolve_expression'):
query = SearchQuery(query)
expressions = (vector, query)
if weights is not None:
if not hasattr(weights, 'resolve_expression'):
weights = Value(weights)
expressions = (weights,) + expressions
if normalization is not None:
if not hasattr(normalization, 'resolve_expression'):
normalization = Value(normalization)
expressions += (normalization,)
if cover_density:
self.function = 'ts_rank_cd'
super().__init__(*expressions)
class SearchHeadline(Func):
function = 'ts_headline'
template = '%(function)s(%(expressions)s%(options)s)'
output_field = TextField()
def __init__(
self, expression, query, *, config=None, start_sel=None, stop_sel=None,
max_words=None, min_words=None, short_word=None, highlight_all=None,
max_fragments=None, fragment_delimiter=None,
):
if not hasattr(query, 'resolve_expression'):
query = SearchQuery(query)
options = {
'StartSel': start_sel,
'StopSel': stop_sel,
'MaxWords': max_words,
'MinWords': min_words,
'ShortWord': short_word,
'HighlightAll': highlight_all,
'MaxFragments': max_fragments,
'FragmentDelimiter': fragment_delimiter,
}
self.options = {
option: value
for option, value in options.items() if value is not None
}
expressions = (expression, query)
if config is not None:
config = SearchConfig.from_parameter(config)
expressions = (config,) + expressions
super().__init__(*expressions)
def as_sql(self, compiler, connection, function=None, template=None):
options_sql = ''
options_params = []
if self.options:
# getquoted() returns a quoted bytestring of the adapted value.
options_params.append(', '.join(
'%s=%s' % (
option,
psycopg2.extensions.adapt(value).getquoted().decode(),
) for option, value in self.options.items()
))
options_sql = ', %s'
sql, params = super().as_sql(
compiler, connection, function=function, template=template,
options=options_sql,
)
return sql, params + options_params
SearchVectorField.register_lookup(SearchVectorExact)
class TrigramBase(Func):
output_field = FloatField()
def __init__(self, expression, string, **extra):
if not hasattr(string, 'resolve_expression'):
string = Value(string)
super().__init__(expression, string, **extra)
class TrigramSimilarity(TrigramBase):
function = 'SIMILARITY'
class TrigramDistance(TrigramBase):
function = ''
arg_joiner = ' <-> '
|