File: index.md

package info (click to toggle)
python-djantic 0.7.0-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 476 kB
  • sloc: python: 2,599; sh: 19; makefile: 14
file content (267 lines) | stat: -rw-r--r-- 7,397 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
<h1 style="text-align: center;">
    Djantic
</h1>
<p style="text-align: center;">
    <em><a href="https://pydantic-docs.helpmanual.io/">Pydantic</a> model support for <a href="https://www.djangoproject.com/"> Django</a></em>
</p>

---

**Documentation**: https://jordaneremieff.github.io/djantic/

---

Djantic is a library that provides a configurable utility class for automatically creating a Pydantic model instance for any Django model class. It is intended to support all of the underlying Pydantic model functionality such as JSON schema generation and introduces custom behaviour for exporting Django model instance data.

## Quickstart

Install using pip:

```shell
pip install djantic
```

Create a model schema:

```python
from users.models import User

from djantic import ModelSchema

class UserSchema(ModelSchema):
    class Config:
        model = User
        
print(UserSchema.schema())
```

**Output:**

```python
{
        "title": "UserSchema",
        "description": "A user of the application.",
        "type": "object",
        "properties": {
            "profile": {"title": "Profile", "description": "None", "type": "integer"},
            "id": {"title": "Id", "description": "id", "type": "integer"},
            "first_name": {
                "title": "First Name",
                "description": "first_name",
                "maxLength": 50,
                "type": "string",
            },
            "last_name": {
                "title": "Last Name",
                "description": "last_name",
                "maxLength": 50,
                "type": "string",
            },
            "email": {
                "title": "Email",
                "description": "email",
                "maxLength": 254,
                "type": "string",
            },
            "created_at": {
                "title": "Created At",
                "description": "created_at",
                "type": "string",
                "format": "date-time",
            },
            "updated_at": {
                "title": "Updated At",
                "description": "updated_at",
                "type": "string",
                "format": "date-time",
            },
        },
        "required": ["first_name", "email", "created_at", "updated_at"],
    }
```

See https://pydantic-docs.helpmanual.io/usage/models/ for more.

### Loading and exporting model instances

Use the `from_orm` method on the model schema to load a Django model instance for <a href="https://pydantic-docs.helpmanual.io/usage/exporting_models/">export</a>:

```python
user = User.objects.create(
    first_name="Jordan", 
    last_name="Eremieff", 
    email="jordan@eremieff.com"
)

user_schema = UserSchema.from_orm(user)
print(user_schema.json(indent=2))
```

**Output:**

```json
{
    "profile": null,
    "id": 1,
    "first_name": "Jordan",
    "last_name": "Eremieff",
    "email": "jordan@eremieff.com",
    "created_at": "2020-08-15T16:50:30.606345+00:00",
    "updated_at": "2020-08-15T16:50:30.606452+00:00"
}
```

### Using multiple level relations

Djantic supports multiple level relations. This includes foreign keys, many-to-many, and one-to-one relationships.

Consider the following example Django model and Djantic model schema definitions for a number of related database records:

```python
# models.py
from django.db import models

class OrderUser(models.Model):
    email = models.EmailField(unique=True)


class OrderUserProfile(models.Model):
    address = models.CharField(max_length=255)
    user = models.OneToOneField(OrderUser, on_delete=models.CASCADE, related_name='profile')


class Order(models.Model):
    total_price = models.DecimalField(max_digits=8, decimal_places=5, default=0)
    user = models.ForeignKey(
        OrderUser, on_delete=models.CASCADE, related_name="orders"
    )


class OrderItem(models.Model):
    price = models.DecimalField(max_digits=8, decimal_places=5, default=0)
    quantity = models.IntegerField(default=0)
    order = models.ForeignKey(
        Order, on_delete=models.CASCADE, related_name="items"
    )


class OrderItemDetail(models.Model):
    name = models.CharField(max_length=30)
    order_item = models.ForeignKey(
        OrderItem, on_delete=models.CASCADE, related_name="details"
    )
```

```python
# schemas.py
from djantic import ModelSchema

from orders.models import OrderItemDetail, OrderItem, Order, OrderUserProfile


class OrderItemDetailSchema(ModelSchema):
    class Config:
        model = OrderItemDetail

class OrderItemSchema(ModelSchema):
    details: List[OrderItemDetailSchema]

    class Config:
        model = OrderItem

class OrderSchema(ModelSchema):
    items: List[OrderItemSchema]

    class Config:
        model = Order

class OrderUserProfileSchema(ModelSchema):
    class Config:
        model = OrderUserProfile

class OrderUserSchema(ModelSchema):
    orders: List[OrderSchema]
    profile: OrderUserProfileSchema
```

Now let's assume you're interested in exporting the order and profile information for a particular user into a JSON format that contains the details accross all of the related item objects:

```python
user = OrderUser.objects.first()
print(OrderUserSchema.from_orm(user).json(ident=4))
```

**Output:**
```json
{
    "profile": {
        "id": 1,
        "address": "",
        "user": 1
    },
    "orders": [
        {
            "items": [
                {
                    "details": [
                        {
                            "id": 1,
                            "name": "",
                            "order_item": 1
                        }
                    ],
                    "id": 1,
                    "price": 0.0,
                    "quantity": 0,
                    "order": 1
                }
            ],
            "id": 1,
            "total_price": 0.0,
            "user": 1
        }
    ],
    "id": 1,
    "email": ""
}
```

The model schema definitions are composable and support customization of the output according to the auto-generated fields and any additional annotations.

### Including and excluding fields

The fields exposed in the model instance may be configured using two options: `include` and `exclude`. These represent iterables that should contain a list of field name strings. Only one of these options may be set at the same time, and if neither are set then the default behaviour is to include all of the fields from the Django model.

For example, to include all of the fields from a user model <i>except</i> a field named `email_address`, you would use the `exclude` option:

```python
class UserSchema(ModelSchema):
    class Config:
        exclude = ["email_address"]
```

In addition to this, you may also limit the fields to <i>only</i> include annotations from the model schema class by setting the `include` option to a special string value: `"__annotations__"`.

```python
class ProfileSchema(ModelSchema):
        website: str

        class Config:
            model = Profile
            include = "__annotations__"

    assert ProfileSchema.schema() == {
        "title": "ProfileSchema",
        "description": "A user's profile.",
        "type": "object",
        "properties": {
            "website": {
                "title": "Website",
                "type": "string"
            }
        },
        "required": [
            "website"
        ]
    }
```