1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
|
# Usage
The main functionality this library intends to provide is a means to automatically generate Pydantic models based on Django ORM model definitions. Most of the Pydantic [model properties](https://pydantic-docs.helpmanual.io/usage/models/#model-properties) are expected to work with the generated model schemas.
In addition to this, the model schemas provide a `from_orm` method for loading Django object instance data to be used with Pydantic's [model export](https://pydantic-docs.helpmanual.io/usage/exporting_models/) methods.
## Creating a model schema
The `ModelSchema` class can be used to generate a Pydantic model that maps to a Django model's fields automatically, and they also support customization using type annotations and field configurations.
Consider the following model definition for a user in Django:
```python
from django.db import models
class User(models.Model):
"""
A user of the application.
"""
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50, null=True, blank=True)
email = models.EmailField(unique=True)
created_at = models.DateTimeField(auto_now_add=True)
updated_at = models.DateTimeField(auto_now=True)
```
A custom `ModelSchema` class could then be configured for this model:
```python
from djantic import ModelSchema
from myapp.models import User
class UserSchema(ModelSchema):
class Config:
model = User
```
Once defined, the `UserSchema` can be used to perform various functions on the underlying Django model object, such as generating JSON schemas or exporting serialized instance data.
### Basic schema usage
The `UserSchema` above can be used to generate a JSON schema using Pydantic's [schema](https://pydantic-docs.helpmanual.io/usage/schema/) method:
```python
print(UserSchema.schema())
```
Output:
```python
{
"title": "UserSchema",
"description": "A user of the application.",
"type": "object",
"properties": {
"profile": {"title": "Profile", "description": "None", "type": "integer"},
"id": {"title": "Id", "description": "id", "type": "integer"},
"first_name": {
"title": "First Name",
"description": "first_name",
"maxLength": 50,
"type": "string",
},
"last_name": {
"title": "Last Name",
"description": "last_name",
"maxLength": 50,
"type": "string",
},
"email": {
"title": "Email",
"description": "email",
"maxLength": 254,
"type": "string",
},
"created_at": {
"title": "Created At",
"description": "created_at",
"type": "string",
"format": "date-time",
},
"updated_at": {
"title": "Updated At",
"description": "updated_at",
"type": "string",
"format": "date-time",
},
},
"required": ["first_name", "email", "created_at", "updated_at"],
}
```
By default, all of the fields in a Django model will be included in the model schema produced using the details of each field's configuration.
### Customizing the schema
By default, the docstrings and help text of the Django model definition is used to populate the various titles and descriptive text and constraints in the schema outputs.
However, the model schema class itself can be used to override this behaviour:
```python
from pydantic import Field, constr
from djantic import ModelSchema
from myapp.models import User
class UserSchema(ModelSchema):
"""
My custom model schema.
"""
first_name: str = Field(
None,
title="The user's first name",
description="This is the user's first name",
)
last_name: constr(strip_whitespace=True)
class Config:
model = User
title = "My user schema"
```
Output:
```python
{
"title": "My user schema",
"description": "My custom model schema.",
"type": "object",
"properties": {
"id": {"title": "Id", "description": "id", "type": "integer"},
"first_name": {
"title": "The user's first name",
"description": "This is the user's first name",
"type": "string",
},
"last_name": {"title": "Last Name", "type": "string"},
"email": {
"title": "Email",
"description": "email",
"maxLength": 254,
"type": "string",
},
"created_at": {
"title": "Created At",
"description": "created_at",
"type": "string",
"format": "date-time",
},
"updated_at": {
"title": "Updated At",
"description": "updated_at",
"type": "string",
"format": "date-time",
},
},
"required": ["first_name", "last_name", "email", "created_at", "updated_at"],
}
```
Model schemas also support using standard Python type annotations and field inclusion/exclusion configurations to customize the schemas beyond the definitions inferred from the Django model.
For example, the `last_name` field in the Django model is considered optional because of the `null=True` and `blank=True` parameters in the field definition, and the `first_name` field is required.
These details can be modified by defining specific field rules using type annotations, and the schema fields can limited using the `include` (or `exclude`) configuration setting:
```python
class UserSchema(ModelSchema):
first_name: Optional[str]
last_name: str
class Config:
model = User
include = ["first_name", "last_name"]
```
Output:
```python
{
"description": "A user of the application.",
"properties": {
"first_name": {"title": "First Name", "type": "string"},
"last_name": {"title": "Last Name", "type": "string"},
},
"required": ["last_name"],
"title": "UserSchema",
"type": "object",
}
```
## Handling related objects
Database relations (many to one, one to one, many to many) are also supported in the schema definition. Generic relations are also supported, but not extensively tested.
Consider the initial `User` model in [creating a schema](/schemas/#creating-a-schema), but with the addition of a `Profile` model containing a one to one relationship:
```python
from django.db import models
class User(models.Model):
"""
A user of the application.
"""
first_name = models.CharField(max_length=50)
last_name = models.CharField(max_length=50, null=True, blank=True)
email = models.EmailField(unique=True)
created_at = models.DateTimeField(auto_now_add=True)
updated_at = models.DateTimeField(auto_now=True)
class Profile(models.Model):
"""
A user's profile.
"""
user = models.OneToOneField(User, on_delete=models.CASCADE, related_name="profile")
website = models.URLField(default="", blank=True)
location = models.CharField(max_length=100, default="", blank=True)
```
The new `Profile` relationship would be available to the generated model schema:
```python
from djantic import ModelSchema
from myapp.models import User
class UserSchema(ModelSchema):
class Config:
model = User
include = ["id", "email", "profile"]
print(UserSchema.schema())
```
Output:
```python
{
"title": "UserSchema",
"description": "A user of the application.",
"type": "object",
"properties": {
"profile": {"title": "Profile", "description": "id", "type": "integer"},
"id": {"title": "Id", "description": "id", "type": "integer"},
"email": {
"title": "Email",
"description": "email",
"maxLength": 254,
"type": "string",
},
},
"required": ["email"],
}
```
***Note***: The initial `UserSchema` example in [creating a schema](/schemas/#creating-a-schema) could be used without modification. The `include` list here is used to reduce the example output and is not required for relations support.
#### Related schema models
The auto-generated `profile` definition can be expanded using an additional model schema set on the user schema:
```python
class ProfileSchema(ModelSchema):
class Config:
model = Profile
class UserSchema(ModelSchema):
profile: ProfileSchema
class Config:
model = User
include = ["id", "profile"]
print(UserSchema.schema())
```
Output:
```python
{
"title": "UserSchema",
"description": "A user of the application.",
"type": "object",
"properties": {
"profile": {"$ref": "#/definitions/ProfileSchema"},
"id": {"title": "Id", "description": "id", "type": "integer"},
},
"required": ["profile"],
"definitions": {
"ProfileSchema": {
"title": "ProfileSchema",
"description": "A user's profile.",
"type": "object",
"properties": {
"id": {"title": "Id", "description": "id", "type": "integer"},
"user": {"title": "User", "description": "id", "type": "integer"},
"website": {
"title": "Website",
"description": "website",
"default": "",
"maxLength": 200,
"type": "string",
},
"location": {
"title": "Location",
"description": "location",
"default": "",
"maxLength": 100,
"type": "string",
},
},
"required": ["user"],
}
},
}
```
These schema relationships also work in reverse:
```python
class UserSchema(ModelSchema):
class Config:
model = User
include = ["id", "email"]
class ProfileSchemaWithUser(ModelSchema):
user: UserSchema
class Config:
model = Profile
include = ["id", "user"]
print(ProfileSchemaWithUser.schema())
```
Output:
```python
{
"title": "ProfileSchemaWithUser",
"description": "A user's profile.",
"type": "object",
"properties": {
"id": {"title": "Id", "description": "id", "type": "integer"},
"user": {"$ref": "#/definitions/UserSchema"},
},
"required": ["user"],
"definitions": {
"UserSchema": {
"title": "UserSchema",
"description": "A user of the application.",
"type": "object",
"properties": {
"id": {"title": "Id", "description": "id", "type": "integer"},
"email": {
"title": "Email",
"description": "email",
"maxLength": 254,
"type": "string",
},
},
"required": ["email"],
}
},
}
```
The above behaviour works similarly to one to many and many to many relations. You can see more examples in the [tests](https://github.com/jordaneremieff/djantic/blob/main/tests/test_relations.py).
## Exporting model data
Model schemas support a `from_orm` method that allows loading Django model instances for export using the generated schema. This method is similar to Pydantic's builtin [from_orm](https://pydantic-docs.helpmanual.io/usage/models/#orm-mode-aka-arbitrary-class-instances), but very specific to Django's ORM.
It is intended to provide support for all of Pydantic's [model export](https://pydantic-docs.helpmanual.io/usage/exporting_models/) methods.
### Basic export usage
Create one or more Django model instances to be used when populating the model schema:
```python
user = User.objects.create(
first_name="Jordan", last_name="Eremieff", email="jordan@eremieff.com"
)
profile = Profile.objects.create(user=user, website="https://github.com", location="AU")
```
Then use the `from_orm` method to load this object:
```python
from djantic import ModelSchema
from myapp.models import User
class ProfileSchema(ModelSchema):
class Config:
model = Profile
exclude = ["user"]
class UserSchema(ModelSchema):
profile: ProfileSchema
class Config:
model = User
user = User.objects.get(id=1)
obj = UserSchema.from_orm(user)
```
Now that the instance is loaded, it can be used with the various export methods to produce different outputs according to the schema definition. These outputs will be validated against the schema rules:
#### model.dict()
```python
print(obj.dict())
```
Output:
```python
{
"profile": {"id": 1, "website": "https://github.com", "location": "AU"},
"id": 1,
"first_name": "Jordan",
"last_name": "Eremieff",
"email": "jordan@eremieff.com",
"created_at": datetime.datetime(2021, 4, 4, 8, 47, 39, 567410, tzinfo=<UTC>),
"updated_at": datetime.datetime(2021, 4, 4, 8, 47, 39, 567455, tzinfo=<UTC>)
}
```
#### model.json()
```python
print(obj.json(indent=2))
```
Output:
```json
{
"profile": {
"id": 1,
"website": "https://github.com",
"location": "AU"
},
"id": 1,
"first_name": "Jordan",
"last_name": "Eremieff",
"email": "jordan@eremieff.com",
"created_at": "2021-04-04T08:47:39.567410+00:00",
"updated_at": "2021-04-04T08:47:39.567455+00:00"
}
```
|