File: compare-speed.py

package info (click to toggle)
python-dmsh 0.2.19-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 480 kB
  • sloc: python: 1,893; makefile: 5
file content (107 lines) | stat: -rw-r--r-- 3,250 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import time

import matplotlib.pyplot as plt
import meshplex
import numpy as np
import pygmsh

import dmsh


def _compute_num_boundary_points(total_num_points):
    # The number of boundary points, the total number of points, and the number of cells
    # are connected by two equations (the second of which is approximate).
    #
    # Euler:
    # 2 * num_points - num_boundary_edges - 2 = num_cells
    #
    # edge_length = 2 * np.pi / num_boundary_points
    # tri_area = np.sqrt(3) / 4 * edge_length ** 2
    # num_cells = int(np.pi / tri_area)
    #
    # num_boundary_points = num_boundary_edges
    #
    # Hence:
    # 2 * num_points =
    # num_boundary_points + 2 + np.pi / (np.sqrt(3) / 4 * (2 * np.pi / num_boundary_points) ** 2)
    #
    # We need to solve
    #
    # + num_boundary_points ** 2
    # + (sqrt(3) * pi) * num_boundary_points
    # + (2 - 2 * num_points) * (sqrt(3) * pi)
    # = 0
    #
    # for the number of boundary points.
    sqrt3_pi = np.sqrt(3) * np.pi
    num_boundary_points = -sqrt3_pi / 2 + np.sqrt(
        3 / 4 * np.pi**2 - (2 - 2 * total_num_points) * sqrt3_pi
    )
    return num_boundary_points


def dmsh_circle(num_points):
    target_edge_length = 2 * np.pi / _compute_num_boundary_points(num_points)
    geo = dmsh.Circle([0.0, 0.0], 1.0)
    X, cells = dmsh.generate(geo, target_edge_length)
    return X, cells


def gmsh_circle(num_points):
    geom = pygmsh.built_in.Geometry()
    target_edge_length = 2 * np.pi / _compute_num_boundary_points(num_points)
    geom.add_circle(
        [0.0, 0.0, 0.0], 1.0, lcar=target_edge_length, num_sections=4, compound=True
    )
    mesh = pygmsh.generate_mesh(geom, remove_lower_dim_cells=True, verbose=False)
    return mesh.points[:, :2], mesh.cells[0].data


data = {
    "dmsh": {"n": [], "time": [], "q": [], "version": dmsh.__version__},
    "gmsh": {"n": [], "time": [], "q": [], "version": pygmsh.get_gmsh_version()},
}
for num_points in range(1000, 10000, 1000):
    print(num_points)
    # dmsh
    t = time.time()
    pts, cells = dmsh_circle(num_points)
    t = time.time() - t
    mesh = meshplex.MeshTri(pts, cells)
    avg_q = np.sum(mesh.cell_quality) / len(mesh.cell_quality)
    data["dmsh"]["n"].append(len(pts))
    data["dmsh"]["time"].append(t)
    data["dmsh"]["q"].append(avg_q)

    # gmsh
    t = time.time()
    pts, cells = gmsh_circle(num_points)
    t = time.time() - t
    mesh = meshplex.MeshTri(pts, cells)
    avg_q = np.sum(mesh.cell_quality) / len(mesh.cell_quality)
    data["gmsh"]["n"].append(len(pts))
    data["gmsh"]["time"].append(t)
    data["gmsh"]["q"].append(avg_q)


# plot condition number
for key, value in data.items():
    plt.plot(value["n"], value["time"], "-x", label=key + " " + value["version"])
plt.xlabel("num points")
plt.title("generation time [s]")
plt.grid()
plt.legend()
plt.show()
# plt.savefig("time.svg", transparent=True, bbox_inches="tight")
plt.close()

# plot CG iterations number
for key, value in data.items():
    plt.plot(value["n"], value["q"], "-x", label=key + " " + value["version"])
plt.xlabel("num points")
plt.title("average cell quality")
plt.grid()
plt.legend()
plt.show()
# plt.savefig("average-cell-quality.svg", transparent=True, bbox_inches="tight")
plt.close()