1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
import math
import numpy as np
__all__ = ["calc_pixmap", "decode_context", "estimate_pixel_scale_ratio"]
_DEG2RAD = math.pi / 180.0
def calc_pixmap(wcs_from, wcs_to, shape=None, disable_bbox="to"):
"""
Calculate a discretized on a grid mapping between the pixels of two images
using provided WCS of the original ("from") image and the destination ("to")
image.
.. note::
This function assumes that output frames of ``wcs_from`` and ``wcs_to``
WCS have the same units.
Parameters
----------
wcs_from : wcs
A WCS object representing the coordinate system you are
converting from. This object's ``array_shape`` (or ``pixel_shape``)
property will be used to define the shape of the pixel map array.
If ``shape`` parameter is provided, it will take precedence
over this object's ``array_shape`` value.
wcs_to : wcs
A WCS object representing the coordinate system you are
converting to.
shape : tuple, None, optional
A tuple of integers indicating the shape of the output array in the
``numpy.ndarray`` order. When provided, it takes precedence over the
``wcs_from.array_shape`` property.
disable_bbox : {"to", "from", "both", "none"}, optional
Indicates whether to use or not to use the bounding box of either
(both) ``wcs_from`` or (and) ``wcs_to`` when computing pixel map. When
``disable_bbox`` is "none", pixel coordinates outside of the bounding
box are set to `NaN` only if ``wcs_from`` or (and) ``wcs_to`` sets
world coordinates to NaN when input pixel coordinates are outside of
the bounding box.
Returns
-------
pixmap : numpy.ndarray
A three dimensional array representing the transformation between
the two. The last dimension is of length two and contains the x and
y coordinates of a pixel center, repectively. The other two coordinates
correspond to the two coordinates of the image the first WCS is from.
Raises
------
ValueError
A `ValueError` is raised when output pixel map shape cannot be
determined from provided inputs.
Notes
-----
When ``shape`` is not provided and ``wcs_from.array_shape`` is not set
(i.e., it is `None`), `calc_pixmap` will attempt to determine pixel map
shape from the ``bounding_box`` property of the input ``wcs_from`` object.
If ``bounding_box`` is not available, a `ValueError` will be raised.
"""
if (bbox_from := getattr(wcs_from, "bounding_box", None)) is not None:
try:
# to avoid dependency on astropy just to check whether
# the bounding box is an instance of
# modeling.bounding_box.ModelBoundingBox, we try to
# directly use and bounding_box(order='F') and if it fails,
# fall back to converting the bounding box to a tuple
# (of intervals):
bbox_from = bbox_from.bounding_box(order='F')
except AttributeError:
bbox_from = tuple(bbox_from)
if (bbox_to := getattr(wcs_to, "bounding_box", None)) is not None:
try:
# to avoid dependency on astropy just to check whether
# the bounding box is an instance of
# modeling.bounding_box.ModelBoundingBox, we try to
# directly use and bounding_box(order='F') and if it fails,
# fall back to converting the bounding box to a tuple
# (of intervals):
bbox_to = bbox_to.bounding_box(order='F')
except AttributeError:
bbox_to = tuple(bbox_to)
if shape is None:
shape = wcs_from.array_shape
if shape is None and bbox_from is not None:
if (nd := np.ndim(bbox_from)) == 1:
bbox_from = (bbox_from, )
if nd > 1:
shape = tuple(
math.ceil(lim[1] + 0.5) for lim in bbox_from[::-1]
)
if shape is None:
raise ValueError(
'The "from" WCS must have pixel_shape property set.'
)
y, x = np.indices(shape, dtype=np.float64)
# temporarily disable the bounding box for the "from" WCS:
if disable_bbox in ["from", "both"] and bbox_from is not None:
wcs_from.bounding_box = None
if disable_bbox in ["to", "both"] and bbox_to is not None:
wcs_to.bounding_box = None
try:
x, y = wcs_to.world_to_pixel_values(
*wcs_from.pixel_to_world_values(x, y)
)
finally:
if bbox_from is not None:
wcs_from.bounding_box = bbox_from
if bbox_to is not None:
wcs_to.bounding_box = bbox_to
pixmap = np.dstack([x, y])
return pixmap
def estimate_pixel_scale_ratio(wcs_from, wcs_to, refpix_from=None, refpix_to=None):
"""
Compute the ratio of the pixel scale of the "to" WCS at the ``refpix_to``
position to the pixel scale of the "from" WCS at the ``refpix_from``
position. Pixel scale ratio,
when requested, is computed near the centers of the bounding box
(a property of the WCS object) or near ``refpix_*`` coordinates
if supplied.
Pixel scale is estimated as the square root of pixel's area, i.e.,
pixels are assumed to have a square shape at the reference
pixel position. If input reference pixel position for a WCS is `None`,
it will be taken as the center of the bounding box
if ``wcs_*`` has a bounding box defined, or as the center of the box
defined by the ``pixel_shape`` attribute of the input WCS if
``pixel_shape`` is defined (not `None`), or at pixel coordinates
``(0, 0)``.
Parameters
----------
wcs_from : wcs
A WCS object representing the coordinate system you are
converting from. This object *must* have ``pixel_shape`` property
defined.
wcs_to : wcs
A WCS object representing the coordinate system you are
converting to.
refpix_from : numpy.ndarray, tuple, list
Image coordinates of the reference pixel near which pixel scale should
be computed in the "from" image. In FITS WCS this could be, for example,
the value of CRPIX of the ``wcs_from`` WCS.
refpix_to : numpy.ndarray, tuple, list
Image coordinates of the reference pixel near which pixel scale should
be computed in the "to" image. In FITS WCS this could be, for example,
the value of CRPIX of the ``wcs_to`` WCS.
Returns
-------
pixel_scale_ratio : float
Estimate the ratio of "to" to "from" WCS pixel scales. This value is
returned only when ``estimate_pixel_scale_ratio`` is `True`.
"""
pscale_ratio = (_estimate_pixel_scale(wcs_to, refpix_to) /
_estimate_pixel_scale(wcs_from, refpix_from))
return pscale_ratio
def _estimate_pixel_scale(wcs, refpix):
# estimate pixel scale (in rad) using approximate algorithm
# from https://trs.jpl.nasa.gov/handle/2014/40409
if refpix is None:
if hasattr(wcs, 'bounding_box') and wcs.bounding_box is not None:
refpix = np.mean(wcs.bounding_box, axis=-1)
else:
if wcs.pixel_shape:
refpix = np.array([(i - 1) // 2 for i in wcs.pixel_shape])
else:
refpix = np.zeros(wcs.pixel_n_dim)
else:
refpix = np.asarray(refpix)
l1, phi1 = wcs.pixel_to_world_values(*(refpix - 0.5))
l2, phi2 = wcs.pixel_to_world_values(*(refpix + [-0.5, 0.5]))
l3, phi3 = wcs.pixel_to_world_values(*(refpix + 0.5))
l4, phi4 = wcs.pixel_to_world_values(*(refpix + [0.5, -0.5]))
area = _DEG2RAD * abs(
0.5 * (
(l4 - l2) * (math.sin(_DEG2RAD * phi1) - math.sin(_DEG2RAD * phi3)) +
(l1 - l3) * (math.sin(_DEG2RAD * phi2) - math.sin(_DEG2RAD * phi4))
)
)
return math.sqrt(area)
def decode_context(context, x, y):
"""Get 0-based indices of input images that contributed to (resampled)
output pixel with coordinates ``x`` and ``y``.
Parameters
----------
context: numpy.ndarray
A 3D `~numpy.ndarray` of integral data type.
x: int, list of integers, numpy.ndarray of integers
X-coordinate of pixels to decode (3rd index into the ``context`` array)
y: int, list of integers, numpy.ndarray of integers
Y-coordinate of pixels to decode (2nd index into the ``context`` array)
Returns
-------
A list of `numpy.ndarray` objects each containing indices of input images
that have contributed to an output pixel with coordinates ``x`` and ``y``.
The length of returned list is equal to the number of input coordinate
arrays ``x`` and ``y``.
Examples
--------
An example context array for an output image of array shape ``(5, 6)``
obtained by resampling 80 input images.
>>> import numpy as np
>>> from drizzle.utils import decode_context
>>> ctx = np.array(
... [[[0, 0, 0, 0, 0, 0],
... [0, 0, 0, 36196864, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 537920000, 0, 0, 0]],
... [[0, 0, 0, 0, 0, 0,],
... [0, 0, 0, 67125536, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 163856, 0, 0, 0]],
... [[0, 0, 0, 0, 0, 0],
... [0, 0, 0, 8203, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 32865, 0, 0, 0]]],
... dtype=np.int32
... )
>>> decode_context(ctx, [3, 2], [1, 4])
[array([ 9, 12, 14, 19, 21, 25, 37, 40, 46, 58, 64, 65, 67, 77]),
array([ 9, 20, 29, 36, 47, 49, 64, 69, 70, 79])]
"""
if context.ndim != 3:
raise ValueError("'context' must be a 3D array.")
x = np.atleast_1d(x)
y = np.atleast_1d(y)
if x.size != y.size:
raise ValueError("Coordinate arrays must have equal length.")
if x.ndim != 1:
raise ValueError("Coordinates must be scalars or 1D arrays.")
if not (np.issubdtype(x.dtype, np.integer) and
np.issubdtype(y.dtype, np.integer)):
raise ValueError('Pixel coordinates must be integer values')
nbits = 8 * context.dtype.itemsize
one = np.array(1, context.dtype)
flags = np.array([one << i for i in range(nbits)])
idx = []
for xi, yi in zip(x, y):
idx.append(
np.flatnonzero(np.bitwise_and.outer(context[:, yi, xi], flags))
)
return idx
|