File: resample.py

package info (click to toggle)
python-drizzle 2.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 203,404 kB
  • sloc: ansic: 8,489; python: 2,901; makefile: 128
file content (1158 lines) | stat: -rw-r--r-- 47,932 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
"""
The `drizzle` module defines the `Drizzle` class, for combining input
images into a single output image using the drizzle algorithm.
"""

import warnings

import numpy as np

from drizzle import cdrizzle

__all__ = ["Drizzle", "blot_image"]

SUPPORTED_DRIZZLE_KERNELS = [
    "square",
    "gaussian",
    "point",
    "turbo",
    "lanczos2",
    "lanczos3",
]

CTX_PLANE_BITS = 32


_DEPRECATED_ARG = object()


class Drizzle:
    """
    A class for managing resampling and co-adding of multiple images onto a
    common output grid. The main method of this class is :py:meth:`add_image`.
    The main functionality of this class is to resample and co-add multiple
    images onto one output image using the "drizzle" algorithm described in
    `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
    In the simplest terms, it redistributes flux
    from input pixels to one or more output pixels based on the chosen kernel,
    supplied weights, and input-to-output coordinate transformations as defined
    by the ``pixmap`` argument. For more details, see :ref:`main-user-doc`.

    This class keeps track of the total exposure time of all co-added images
    and also of which input images have contributed to an output (resampled)
    pixel. This is accomplished via *context image*.

    Main outputs of :py:meth:`add_image` can be accessed as class properties
    ``out_img``, ``out_img2``, ``out_wht``, ``out_ctx``, and ``exptime``.

    .. warning::
        Output arrays (``out_img``, ``out_img2``, ``out_wht``, and ``out_ctx``)
        can be pre-allocated by the caller and be passed to the initializer or
        the class initializer can allocate these arrays based on other input
        parameters such as ``output_shape``. If caller-supplied output arrays
        have the correct type (`numpy.float32` for ``out_img``, ``out_img2``
        and ``out_wht``, `numpy.int32` for the ``out_ctx`` array and
        `numpy.uint32` for the ``out_dq`` array) and if
        ``out_ctx`` is large enough not to need to be resized, these arrays
        will be used as is and may be modified by the :py:meth:`add_image`
        method. If not, a copy of these arrays will be made when converting
        to the expected type (or expanding the context array).

    Scaling of input image data
    ---------------------------

    It is important to highlight that the drizzle algorithm computes
    *weighted mean* of input pixel values -- see equations (4) and (5) in
    `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
    Therefore, it is important that all input pixel values that contribute
    to an output pixel are from the same distribution. In other words,
    input pixel values from different images must be on the same footing,
    i.e., they must be comparable and must be representative of the same
    physical quantity.

    For example, for Hubble Space Telescope data, calibrated images
    (i.e., ``*_flt.fits``, ``*_flc.fits``) are in unit of counts, counts per
    second, electrons, or electrons per second. To convert them to flux
    units (e.g., erg/cm^2/s/Angstrom), one needs to multiply these images
    by the ``PHOTFLAM``. Sometimes, images that are drizzle-combined have been
    observed at very different times (separated by many years) and the
    sensitivity of the instrument (represented by ``PHOTFLAM``) may have
    changed significantly. Other times a source is observed in different chips,
    i.e., the two chips of the Wide Field Camera. In such cases detector's
    sensitivity (``PHOTFLAM``) may be different for the images to be combined.
    Consequently, pixel values in these images may not be directly comparable
    and drizzle-combining such images would result in systematic errors.

    In this case, it is important to rescale images to the same flux units
    either by multiplying by the appropriate ``PHOTFLAM`` values or some
    other appropriate scaling factor before combining them using drizzle.
    This can be accomplished by using the ``iscale`` parameter of
    :py:meth:`add_image` which simply multiplies each input image by
    ``iscale``.

    Also, for the case of HST images that have flux units instead of surface
    brightness, if input images have different pixel scales, then the pixel
    values must be rescaled by the square of the pixel scale ratio (the linear
    dimension of a side of an output pixel as seen in the input image's
    coordinate frame) in order to preserve flux. In this case ``iscale`` is
    equivalent to ``s**2`` factor in equations (3) and (5) of
    `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_
    (``s`` may be different for each input image).

    Output Science Image
    --------------------

    Output science image is obtained by computing *weighted mean* of input
    pixel values according to equations (4) and (5) in
    `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
    The weights and coefficients in those equations will depend on the chosen
    kernel, input image weights, and pixel overlaps computed from ``pixmap``.

    Output Weight Image
    -------------------

    Output weight image stores the total weight of output science pixels
    according to equation (4) in
    `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
    It depends on the chosen kernel, input image weights, and pixel overlaps
    computed from ``pixmap``.

    Output Context Image
    --------------------

    Each pixel in the context image is a bit field that encodes
    information about which input image has contributed to the corresponding
    pixel in the resampled data array. Context image uses 32 bit integers to
    encode this information and hence it can keep track of only 32 input images.
    The first bit corresponds to the first input image, the second bit
    corresponds to the second input image, and so on.
    We call this (0-indexed) order "context ID" which is represented by
    the ``ctx_id`` parameter/property. If the number of
    input images exceeds 32, then it is necessary to have multiple context
    images ("planes") to hold information about all input images, with the first
    plane encoding which of the first 32 images contributed to the output data
    pixel, the second plane representing next 32 input images (number 33-64),
    etc. For this reason, context array is either a 2D array (if the total
    number of resampled images is less than 33) of the type `numpy.int32` and
    shape ``(ny, nx)`` or a a 3D array of shape ``(np, ny, nx)`` where ``nx``
    and ``ny`` are dimensions of the image data. ``np`` is the number of
    "planes" computed as ``(number of input images - 1) // 32 + 1``. If a bit at
    position ``k`` in a pixel with coordinates ``(p, y, x)`` is 0, then input
    image number ``32 * p + k`` (0-indexed) did not contribute to the output
    data pixel with array coordinates ``(y, x)`` and if that bit is 1, then
    input image number ``32 * p + k`` did contribute to the pixel ``(y, x)``
    in the resampled image.

    As an example, let's assume we have 8 input images. Then, when ``out_ctx``
    pixel values are displayed using binary representation (and decimal in
    parenthesis), one could see values like this::

        00000001 (1) - only first input image contributed to this output pixel;
        00000010 (2) - 2nd input image contributed;
        00000100 (4) - 3rd input image contributed;
        10000000 (128) - 8th input image contributed;
        10000100 (132=128+4) - 3rd and 8th input images contributed;
        11001101 (205=1+4+8+64+128) - input images 1, 3, 4, 7, 8 have contributed
        to this output pixel.

    In order to test if a specific input image contributed to an output pixel,
    one needs to use bitwise operations. Using the example above, to test
    whether input images number 4 and 5 have contributed to the output pixel
    whose corresponding ``out_ctx`` value is 205 (11001101 in binary form) we
    can do the following:

    >>> bool(205 & (1 << (5 - 1)))  # (205 & 16) = 0 (== 0 => False): did NOT contribute
    False
    >>> bool(205 & (1 << (4 - 1)))  # (205 & 8) = 8 (!= 0 => True): did contribute
    True

    In general, to get a list of all input images that have contributed to an
    output resampled pixel with image coordinates ``(x, y)``, and given a
    context array ``ctx``, one can do something like this:

    .. doctest-skip::

        >>> import numpy as np
        >>> np.flatnonzero([v & (1 << k) for v in ctx[:, y, x] for k in range(32)])

    For convenience, this functionality was implemented in the
    :py:func:`~drizzle.utils.decode_context` function.

    Output DQ Image
    ---------------

    If DQ array of input image pixels is provided via ``dq`` parameter of
    :py:meth:`add_image`, then an output DQ array will be computed by combining
    (using bitwise-OR) DQ bitfields of all input pixels that contribute to
    a given output pixel.

    References
    ----------
    A full description of the drizzling algorithm can be found in
    `Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.

    Examples
    --------
    .. highlight:: python
    .. code-block:: python

        # wcs1 - WCS of the input image usually with distortions (to be resampled)
        # wcs2 - WCS of the output image without distortions

        import numpy as np
        from drizzle.resample import Drizzle
        from drizzle.utils import calc_pixmap

        # simulate some data and a pixel map:
        data = np.ones((240, 570))
        pixmap = calc_pixmap(wcs1, wcs2)
        # or simulate a mapping from input image to output image frame:
        # y, x = np.indices((240, 570), dtype=np.float64)
        # pixmap = np.dstack([x, y])

        # initialize Drizzle object
        d = Drizzle(out_shape=(240, 570))
        d.add_image(data, exptime=15, pixmap=pixmap)

        # access outputs:
        d.out_img
        d.out_ctx
        d.out_wht

    """

    def __init__(
        self,
        kernel="square",
        fillval=None,
        fillval2=None,
        out_shape=None,
        out_img=None,
        out_wht=None,
        out_ctx=None,
        out_img2=None,
        out_dq=None,
        exptime=0.0,
        begin_ctx_id=0,
        max_ctx_id=None,
        disable_ctx=False,
    ):
        """
        kernel: str, optional
            The name of the kernel used to combine the input. The choice of
            kernel controls the distribution of flux over the kernel. The kernel
            names are: "square", "gaussian", "point", "turbo",
            "lanczos2", and "lanczos3". The square kernel is the default.

            .. warning::
               The "gaussian" and "lanczos2/3" kernels **DO NOT**
               conserve flux.

        out_shape : tuple, None, optional
            Shape (`numpy` order ``(Ny, Nx)``) of the output images (context
            image will have a third dimension of size proportional to the number
            of input images). This parameter is helpful when neither
            ``out_img``, ``out_wht``, nor ``out_ctx`` images are provided.

        fillval: float, None, str, optional
            The value of output pixels that did not have contributions from
            input images' pixels. When ``fillval`` is either `None` or
            ``"INDEF"`` and ``out_img`` is provided, the values of ``out_img``
            will not be modified. When ``fillval`` is either `None` or
            ``"INDEF"`` and ``out_img`` is **not provided**, the values of
            ``out_img`` will be initialized to `numpy.nan`. If ``fillval``
            is a string that can be converted to a number, then the output
            pixels with no contributions from input images will be set to this
            ``fillval`` value.

        fillval2: float, None, str, optional
            Same as ``fillval`` but applies to ``out_img2``.

        out_img : 2D array of float32, None, optional
            A 2D numpy array containing the output image produced by
            drizzling. On the first call the array values should be set to zero.
            On subsequent calls it will hold the intermediate results.

        out_img2 : 2D array of float32, list of 2D arrays of float32, None, optional
            A 2D numpy array containing the output image produced by
            drizzling *with squared weights*. This is useful when performing
            standard error propagation using variance arrays. On the first call
            the array values should be set to zero. On subsequent calls it will
            hold the intermediate results.

            Multiple output arrays (of the same shape as that of ``out_img``)
            can be provided as a list of 2D arrays. The number of arrays must
            match the number of data arrays that will be resampled and co-added
            using squared weights (see argument ``data2`` in `add_data`.)

            If ``out_img2`` is None, output arrays for the squared weights
            co-adds will be created after the first call to `add_image` based
            on the number of ``data2`` arrays.

        out_wht : 2D array of float32, None, optional
            A 2D numpy array containing the output counts. On the first
            call it should be set to zero. On subsequent calls it will
            hold the intermediate results.

        out_ctx : 2D or 3D array of int32, None, optional
            A 2D or 3D numpy array holding a bitmap of which image was an input
            for each output pixel. Should be integer zero on first call.
            Subsequent calls hold intermediate results. This parameter is
            ignored when ``disable_ctx`` is `True`.

        out_dq : 2D array of uint32, None, optional
            A 2D `~numpy.ndarray` containing DQ bitfields of output (resampled)
            pixels. It will be computed by combining (using bitwise-OR)
            DQ bitfields of input pixels that contributed to the output pixel.
            If provided, it must be a 2D array of the same shape as
            ``out_img`` and `numpy.uint32` type (unsigned 32-bit integer type).
            If `None`, output DQ array will be created during
            the first call to `add_image` and will be initialized to zero.

            .. warning::
                64-bit integer type is not supported and will raise
                an exception. Contact the authors to add support for 64-bit DQ
                if you need it.

        exptime : float, optional
            Exposure time of previously resampled images when provided via
            parameters ``out_img`` and ``out_wht``.

        begin_ctx_id : int, optional
            The context ID number (0-based) of the first image that will be
            resampled (using `add_image`). Subsequent images will be assigned
            consecutively increasing ID numbers. This parameter is ignored
            when ``disable_ctx`` is `True`.

        max_ctx_id : int, None, optional
            The largest integer context ID that is *expected* to be used for
            an input image. When it is a non-negative number and ``out_ctx`` is
            `None`, it allows to pre-allocate the necessary array for the output
            context image. If the actual number of input images that will be
            resampled will exceed initial allocation for the context image,
            additional context planes will be added as needed (context array
            will "grow" in the third dimension as new input images are added.)
            The default value of `None` is equivalent to setting ``max_ctx_id``
            equal to ``begin_ctx_id``. This parameter is ignored either when
            ``out_ctx`` is provided or when ``disable_ctx`` is `True`.

        disable_ctx : bool, optional
            Indicates to not create a context image. If ``disable_ctx`` is set
            to `True`, parameters ``out_ctx``, ``begin_ctx_id``, and
            ``max_ctx_id`` will be ignored.

        """
        self._ncoadds = 0
        self._out_img2 = None
        self._out_dq = None
        self._disable_ctx = disable_ctx

        if disable_ctx:
            self._ctx_id = None
            self._max_ctx_id = None
        else:
            if begin_ctx_id < 0:
                raise ValueError("Invalid context image ID")
            self._ctx_id = begin_ctx_id  # the ID of the *last* image to be resampled
            if max_ctx_id is None:
                max_ctx_id = begin_ctx_id
            elif max_ctx_id < begin_ctx_id:
                raise ValueError("'max_ctx_id' cannot be smaller than 'begin_ctx_id'.")
            self._max_ctx_id = max_ctx_id

        if exptime < 0.0:
            raise ValueError("Exposure time must be non-negative.")

        if exptime > 0.0 and out_img is None and out_ctx is None and out_wht is None:
            raise ValueError(
                "Exposure time must be 0.0 for the first resampling "
                "(when no output resampled images have been provided)."
            )

        if exptime == 0.0 and (
            (out_ctx is not None and np.sum(out_ctx) > 0)
            or (out_wht is not None and np.sum(out_wht) > 0)
        ):
            raise ValueError(
                "Inconsistent exposure time and context and/or weight images: "
                "Exposure time cannot be 0 when context and/or weight arrays "
                "are non-zero."
            )

        self._texptime = exptime

        if kernel.lower() not in SUPPORTED_DRIZZLE_KERNELS:
            raise ValueError(f"Kernel '{kernel}' is not supported.")
        self._kernel = kernel

        self._fillval = _process_fillval(out_img, fillval)
        self._fillval2 = _process_fillval(out_img2, fillval2)

        # shapes will collect user specified 'out_shape' and shapes of
        # out_* arrays (if provided) in order to check all shapes are the same.
        shapes = set()

        if out_img is not None:
            out_img = np.asarray(out_img, dtype=np.float32)
            shapes.add(out_img.shape)

        if out_wht is not None:
            out_wht = np.asarray(out_wht, dtype=np.float32)
            shapes.add(out_wht.shape)

        if out_ctx is not None:
            out_ctx = np.asarray(out_ctx, dtype=np.int32)
            if out_ctx.ndim == 2:
                out_ctx = out_ctx[None, :, :]
            elif out_ctx.ndim != 3:
                raise ValueError("'out_ctx' must be either a 2D or 3D array.")
            shapes.add(out_ctx.shape[1:])

        if out_dq is not None:
            t = np.min_scalar_type(out_dq)
            if t.kind not in ["i", "u"] or t.itemsize > 4:
                raise TypeError(
                    "'out_dq' must be of an unsigned integer type with itemsize of 4 bytes or less."
                )
            out_dq = np.asarray(out_dq, dtype=np.uint32)
            shapes.add(out_dq.shape)
            self._out_dq = out_dq

        if out_shape is not None:
            shapes.add(tuple(out_shape))

        if len(shapes) == 1:
            self._out_shape = shapes.pop()
            self._alloc_output_arrays(
                out_shape=self._out_shape,
                max_ctx_id=max_ctx_id,
                out_img=out_img,
                out_wht=out_wht,
                out_ctx=out_ctx,
            )

        elif len(shapes) > 1:
            raise ValueError(
                "Inconsistent data shapes specified: 'out_shape' and/or "
                "out_img, out_img2, out_wht, out_ctx, out_dq have different "
                "shapes."
            )
        else:
            self._out_shape = None
            self._out_img = None
            self._out_wht = None
            self._out_ctx = None

        if out_img2 is not None:
            if self._out_shape is not None:
                shapes.add(self._out_shape)
            if isinstance(out_img2, np.ndarray):
                out_img2 = np.asarray(out_img2, dtype=np.float32)
                shapes.add(out_img2.shape)
            else:
                for img in out_img2:
                    if img is not None:
                        shapes.add(np.shape(img))
            if len(shapes) > 1:
                raise ValueError(
                    "Inconsistent data shapes specified: 'out_shape' "
                    "and/or out_img, out_img2, out_wht, out_ctx have "
                    "different shapes."
                )
        self._output_shapes = shapes
        self._alloc_output_arrays2_init(out_img2=out_img2)

    @property
    def fillval(self):
        """Fill value for output pixels without contributions from input images."""
        return self._fillval

    @property
    def fillval2(self):
        """Fill value for output pixels in ``out_img2`` without contributions
        from input images.

        """
        return self._fillval2

    @property
    def kernel(self):
        """Resampling kernel."""
        return self._kernel

    @property
    def ctx_id(self):
        """Context image "ID" (0-based ) of the next image to be resampled."""
        return self._ctx_id

    @property
    def out_img(self):
        """Output resampled image."""
        return self._out_img

    @property
    def out_wht(self):
        """Output weight image."""
        return self._out_wht

    @property
    def out_ctx(self):
        """Output "context" image."""
        return self._out_ctx

    @property
    def out_img2(self):
        """Output resampled image(s) obtained with squared weights.
        It is always a list of one or more 2D arrays.

        """
        return self._out_img2

    @property
    def out_dq(self):
        """Output DQ image computed by OR-combining DQ bitfields of input
        images' pixels that have contributed to a given output pixel.

        """
        return self._out_dq

    @property
    def total_exptime(self):
        """Total exposure time of all resampled images."""
        return self._texptime

    def _alloc_output_arrays(self, out_shape, max_ctx_id, out_img, out_wht, out_ctx):
        # allocate arrays as needed:
        if out_wht is None:
            self._out_wht = np.zeros(out_shape, dtype=np.float32)
        else:
            self._out_wht = out_wht

        if self._disable_ctx:
            self._out_ctx = None
        else:
            if out_ctx is None:
                n_ctx_planes = max_ctx_id // CTX_PLANE_BITS + 1
                ctx_shape = (n_ctx_planes,) + out_shape
                self._out_ctx = np.zeros(ctx_shape, dtype=np.int32)
            else:
                self._out_ctx = out_ctx

            if not (out_wht is None and out_ctx is None):
                # check that input data make sense: weight of pixels with
                # non-zero context values must be different from zero:
                if np.any(np.bitwise_xor(self._out_wht > 0.0, np.sum(self._out_ctx, axis=0) > 0)):
                    raise ValueError(
                        "Inconsistent values of supplied 'out_wht' and "
                        "'out_ctx' arrays. Pixels with non-zero context "
                        "values must have positive weights and vice-versa."
                    )

        if out_img is None:
            if self._fillval.upper() in ["INDEF", "NAN"]:
                fillval = np.nan
            else:
                fillval = float(self._fillval)
            self._out_img = np.full(out_shape, fillval, dtype=np.float32)
        else:
            self._out_img = out_img

    def _alloc_output_arrays2_init(self, out_img2=None):
        if hasattr(self, "_out_img2") and self._out_img2 is not None:
            raise AssertionError(
                "It is expected that _alloc_output_arrays2_init is called "
                "before Drizzle._out_img2 is set."
            )

        if out_img2 is None:
            return

        if isinstance(out_img2, np.ndarray):
            out_img2 = [out_img2]

        self._out_img2 = []

        if isinstance(self._fillval2, str) and self._fillval2.strip().upper() == "INDEF":
            fv = np.nan
        else:
            fv = np.float32(self._fillval2)

        for i2 in out_img2:
            if i2 is None:
                if self._out_shape is None:
                    if len(self._output_shapes) == 1:
                        shape = next(iter(self._output_shapes))
                    else:
                        self._out_img2.append(None)
                        continue
                else:
                    shape = self._out_shape
                arr = np.full(shape, fill_value=fv, dtype=np.float32)
            else:
                arr = np.asarray(i2, dtype=np.float32)
            self._out_img2.append(arr)
            del arr

    def _alloc_output_arrays2_add(self, ninputs2=None):
        if isinstance(self._fillval2, str) and self._fillval2.strip().upper() == "INDEF":
            fv = np.nan
        else:
            fv = np.float32(self._fillval2)
        if self._out_img2 is None:
            if ninputs2 is None or ninputs2 < 1:
                # nothing to do
                return
            if self._ncoadds > 0:
                raise ValueError(
                    "Mismatch between the number of 'out_img2' images and the number of inputs."
                )
            self._out_img2 = [
                np.full(self._out_shape, fill_value=fv, dtype=np.float32) for _ in range(ninputs2)
            ]

        else:
            nimg2 = len(self._out_img2)

            # replace None values with arrays of _out_shape:
            for k, img in enumerate(self._out_img2):
                if img is None:
                    self._out_img2[k] = np.full(self._out_shape, fill_value=fv, dtype=np.float32)

            if (ninputs2 is not None and ninputs2 != nimg2) or (ninputs2 is None and nimg2 > 0):
                raise ValueError(
                    "Mismatch between the number of 'out_img2' images "
                    "previously set and the number of inputs."
                )

    def _increment_ctx_id(self):
        """
        Returns a pair of the *current* plane number and bit number in that
        plane and increments context image ID
        (after computing the return value).
        """
        if self._disable_ctx:
            return None, 0

        self._plane_no = self._ctx_id // CTX_PLANE_BITS
        depth = self._out_ctx.shape[0]

        if self._plane_no >= depth:
            # Add a new plane to the context image if planeid overflows
            plane = np.zeros((1,) + self._out_shape, np.int32)
            self._out_ctx = np.append(self._out_ctx, plane, axis=0)

        plane_info = (self._plane_no, self._ctx_id % CTX_PLANE_BITS)
        # increment ID for the *next* image to be added:
        self._ctx_id += 1

        return plane_info

    def add_image(
        self,
        data,
        exptime,
        pixmap,
        data2=None,
        dq=None,
        scale=_DEPRECATED_ARG,
        iscale=1.0,
        pixel_scale_ratio=1.0,
        weight_map=None,
        wht_scale=1.0,
        pixfrac=1.0,
        in_units="cps",
        xmin=None,
        xmax=None,
        ymin=None,
        ymax=None,
    ):
        """
        Resample and add an image to the cumulative output image. Also, update
        output total weight image and context images.

        Parameters
        ----------
        data : 2D numpy.ndarray
            A 2D numpy array containing the input image to be drizzled.

        exptime : float
            The exposure time of the input image, a positive number. The
            exposure time is used to scale the image if the units are counts.

        pixmap : 3D array
            A mapping from input image (``data``) coordinates to resampled
            (``out_img``) coordinates. ``pixmap`` must be an array of shape
            ``(Ny, Nx, 2)`` where ``(Ny, Nx)`` is the shape of the input image.
            ``pixmap[..., 0]`` forms a 2D array of X-coordinates of input
            pixels in the output frame and ``pixmap[..., 1]`` forms a 2D array of
            Y-coordinates of input pixels in the output coordinate frame.

        data2 : 2D array of float32, list of 2D arrays of float32 or None, None, optional
            A 2D numpy array (or a list of 2D arrays) with image data to be
            resampled and co-added using squared weights. The resampled output
            image can be accessed via ``out_img2`` property of the `Drizzle`
            object. This is useful for performing standard error propagation
            using variance arrays.

            Multiple data arrays (of the same shape as that of ``data``)
            can be provided as a list of 2D arrays. The number of arrays must
            match the number of output data arrays provided during
            initialization via argument ``out_img2``. If an item in the list
            is `None`, that item will not be resampled to the corresponding
            ``out_img2`` element.

            .. note::
                It is assumed that data in ``data2`` have squared units of
                ``data``. Therefore, when ``in_units`` are "counts",
                ``data2`` arrays will be rescaled by ``exptime**2`` to convert
                to rate units before resampling.

        dq : 2D array, None, optional
            A 2D numpy array of type `numpy.uint32` (unsigned 32-bit integer
            type) containing DQ bitfields of input pixels. It must
            have the same shape as ``data``. If provided, output DQ array
            (accessible via ``out_dq`` property) will be computed by combining
            (using bitwise-OR) DQ bitfields of input pixels that contributed to
            the output pixel. If `None`, DQ array of the output image will
            not be computed.

            .. warning::
                64-bit integer type is not supported and will raise
                an exception. Contact the authors to add support for 64-bit DQ
                if you need it.

        scale : float, optional
            Deprecated: use ``iscale`` and ``pixel_scale_ratio`` instead.
            It is a factor used both to rescale input image data
            by ``scale**2`` AND to compute the correct kernel size for some
            kernels ("turbo", "gaussian", and "lanczos"). It is recommended
            ``scale`` be set to pixel scale ratio: the linear dimension of
            a side of an output pixel relative to the size of an input pixel
            (or size of an output pixel in the input image's coordinate system).

        iscale : float, optional
            It is a multiplicative factor used to rescale input image data
            by ``iscale`` value. ``data2`` images will be rescaled by
            ``iscale**2``. It may make sense to rescale input image (``data``)
            by squared pixel scale ratio (the linear dimension of a side of an
            output pixel as seen in the input image's coordinate frame)
            depending on the units of the input image, i.e., counts vs
            brightness. For more details see section
            "Scaling of input image data" in :py:class:`Drizzle`.

        pixel_scale_ratio : float, None, optional
            It is a factor used to compute the correct kernel size in output
            image's coordinate system for some of the kernels
            ("turbo", "gaussian", and "lanczos") from their nominal
            sizes in input image pixels. For example, for the "lanczos3"
            kernel, the nominal size is 3 input pixels. It is recommended that
            ``pixel_scale_ratio`` be set to pixel scale ratio: the linear dimension of
            output pixel relative to the size of an input pixel. When
            ``pixel_scale_ratio`` is `None`, it will be estimated from ``pixmap`` but this
            can impose a performance penalty.

        weight_map : 2D array, None, optional
            A 2D numpy array containing the pixel by pixel weighting.
            Must have the same dimensions as ``data``.

            When ``weight_map`` is `None`, the weight of input data pixels will
            be assumed to be 1.

        wht_scale : float
            A scaling factor applied to the pixel by pixel weighting.

        pixfrac : float, optional
            The fraction of a pixel that the pixel flux is confined to. The
            default value of 1 has the pixel flux evenly spread across the image.
            A value of 0.5 confines it to half a pixel in the linear dimension,
            so the flux is confined to a quarter of the pixel area when the square
            kernel is used.

        in_units : str
            The units of the input image. The units can either be "counts"
            or "cps" (counts per second.)

        xmin : float, optional
            This and the following three parameters set a bounding rectangle
            on the input image. Only pixels on the input image inside this
            rectangle will have their flux added to the output image. Xmin
            sets the minimum value of the x dimension. The x dimension is the
            dimension that varies quickest on the image. If the value is zero,
            no minimum will be set in the x dimension. All four parameters are
            zero based, counting starts at zero.

        xmax : float, optional
            Sets the maximum value of the x dimension on the bounding box
            of the input image. If the value is zero, no maximum will
            be set in the x dimension, the full x dimension of the output
            image is the bounding box.

        ymin : float, optional
            Sets the minimum value in the y dimension on the bounding box. The
            y dimension varies less rapidly than the x and represents the line
            index on the input image. If the value is zero, no minimum  will be
            set in the y dimension.

        ymax : float, optional
            Sets the maximum value in the y dimension. If the value is zero, no
            maximum will be set in the y dimension, the full x dimension
            of the output image is the bounding box.

        Returns
        -------
        nskip : float
            The number of lines from the box defined by
            ``((xmin, xmax), (ymin, ymax))`` in the input image that were
            ignored and did not contribute to the output image.

        nmiss : float
            The number of pixels from the box defined by
            ``((xmin, xmax), (ymin, ymax))`` in the input image that were
            ignored and did not contribute to the output image.

        """
        if scale is not _DEPRECATED_ARG:
            warnings.warn(
                "Argument 'scale' has been deprecated since version 3.0 and "
                "it will be removed in a future release. "
                "Use 'iscale' and 'pixel_scale_ratio' instead and set iscale=pixel_scale_ratio**2 "
                "to achieve the same effect as with 'scale'.",
                DeprecationWarning,
            )
            iscale = scale * scale
            pixel_scale_ratio = scale

        # this enables initializer to not need output image shape at all and
        # set output image shape based on output coordinates from the pixmap.
        #
        if self._out_shape is None:
            nshapes = len(self._output_shapes)
            if nshapes == 0:
                pmap_xmin = int(np.floor(np.nanmin(pixmap[:, :, 0])))
                pmap_xmax = int(np.ceil(np.nanmax(pixmap[:, :, 0])))
                pmap_ymin = int(np.floor(np.nanmin(pixmap[:, :, 1])))
                pmap_ymax = int(np.ceil(np.nanmax(pixmap[:, :, 1])))
                pixmap = pixmap.copy()
                pixmap[:, :, 0] -= pmap_xmin
                pixmap[:, :, 1] -= pmap_ymin
                self._out_shape = (pmap_xmax - pmap_xmin + 1, pmap_ymax - pmap_ymin + 1)
            elif nshapes == 1:
                self._out_shape = next(iter(self._output_shapes))
            else:
                raise ValueError(
                    "Inconsistent data shapes: 'out_shape' and/or "
                    "out_img, out_img2, out_wht, out_ctx have different shapes."
                )  # pragma: no cover

            self._alloc_output_arrays(
                out_shape=self._out_shape,
                max_ctx_id=self._max_ctx_id,
                out_img=None,
                out_wht=None,
                out_ctx=None,
            )

        if data2 is None:
            ninputs2 = None
        else:
            if isinstance(data2, np.ndarray):
                ninputs2 = 1
                if data2.shape != data.shape:
                    raise ValueError("'data2' shape is not consistent with 'data' shape.")
            else:
                shapes2 = set()
                ninputs2 = len(data2)
                data2 = list(data2)
                for k, d in enumerate(data2):
                    if d is None or d.size == 0:
                        data2[k] = None
                    else:
                        shapes2.add(d.shape)

                if (len(shapes2) == 1 and shapes2.pop() != data.shape) or len(shapes2) > 1:
                    raise ValueError("'data2' shape(s) is not consistent with 'data' shape.")

        self._alloc_output_arrays2_add(ninputs2=ninputs2)

        plane_no, id_in_plane = self._increment_ctx_id()

        if exptime <= 0.0:
            raise ValueError("'exptime' *must* be a strictly positive number.")

        # Ensure that the fillval parameter gets properly interpreted
        # for use with tdriz
        if in_units == "cps":
            expscale = 1.0
        else:
            expscale = exptime

        self._texptime += exptime

        data = np.asarray(data, dtype=np.float32)
        pixmap = np.asarray(pixmap, dtype=np.float64)
        in_ymax, in_xmax = data.shape

        if pixmap.shape[:2] != data.shape:
            raise ValueError("'pixmap' shape is not consistent with 'data' shape.")

        if xmin is None or xmin < 0:
            xmin = 0

        if ymin is None or ymin < 0:
            ymin = 0

        if xmax is None or xmax > in_xmax - 1:
            xmax = in_xmax - 1

        if ymax is None or ymax > in_ymax - 1:
            ymax = in_ymax - 1

        if weight_map is not None:
            weight_map = np.asarray(weight_map, dtype=np.float32)
            if weight_map.shape != data.shape:
                raise ValueError("'weight_map' shape is not consistent with 'data' shape.")
        else:  # TODO: this should not be needed after C code modifications
            weight_map = np.ones_like(data)

        pixmap = np.asarray(pixmap, dtype=np.float64)

        if self._disable_ctx:
            ctx_plane = None
        else:
            if self._out_ctx.ndim == 2:
                raise AssertionError("Context image is expected to be 3D")
            ctx_plane = self._out_ctx[plane_no]

        if dq is not None:
            t = np.min_scalar_type(dq)
            if t.kind not in ["i", "u"] or t.itemsize > 4:
                raise TypeError(
                    "'dq' must be of an unsigned integer type with itemsize of 4 bytes or less."
                )
            dq = np.asarray(dq, dtype=np.uint32)
            if dq.shape != data.shape:
                raise ValueError("'dq' shape is not consistent with 'data' shape.")
            if self._out_dq is None:
                self._out_dq = np.zeros(self._out_shape, dtype=np.uint32)

        # TODO: probably tdriz should be modified to not return version.
        #       we should not have git, Python, C, ... versions

        # TODO: While drizzle code in cdrizzlebox.c supports weight_map=None,
        #       cdrizzleapi.c does not. It should be modified to support this
        #       for performance reasons.

        _vers, nmiss, nskip = cdrizzle.tdriz(
            input=data,
            weights=weight_map,
            pixmap=pixmap,
            output=self._out_img,
            counts=self._out_wht,
            context=ctx_plane,
            input2=data2,
            output2=self._out_img2,
            dq=dq,
            outdq=self._out_dq,
            uniqid=id_in_plane + 1,
            xmin=xmin,
            xmax=xmax,
            ymin=ymin,
            ymax=ymax,
            iscale=iscale,  # scales image intensity. usually equal to 1 or
            # (pixel scale ratio)**2
            pscale_ratio=pixel_scale_ratio,  # scales kernel size. usually equal to pixel scale ratio
            pixfrac=pixfrac,
            kernel=self._kernel,
            in_units=in_units,
            expscale=expscale,
            wtscale=wht_scale,
            fillstr=self._fillval,
            fillstr2=self._fillval2,
        )
        self._cversion = _vers  # TODO: probably not needed
        self._ncoadds += 1

        return nmiss, nskip


def blot_image(
    data,
    pixmap,
    pix_ratio=_DEPRECATED_ARG,
    exptime=_DEPRECATED_ARG,
    output_pixel_shape=_DEPRECATED_ARG,
    out_img=None,
    fillval=0.0,
    iscale=1.0,
    interp="poly5",
    sinscl=1.0,
):
    """
    Resample the ``data`` input image onto an output grid defined by
    the ``pixmap`` array. ``blot_image`` performs resampling using one of
    the several interpolation algorithms and, unlike the "drizzle" algorithm
    with 'square', 'turbo', and 'point' kernels, this resampling is not
    flux-conserving.

    This method works best for with well sampled images and thus it is
    typically used to resample the output of :py:class:`Drizzle` back to the
    coordinate grids of input images of :py:meth:`Drizzle.add_image`.
    The output of :py:class:`Drizzle` are usually well sampled images especially
    if it was created from a set of dithered images.

    Parameters
    ----------
    data : 2D array
        Input numpy array of the source image in units of 'cps'.

    pixmap : 3D array
        A mapping from input image (``data``) coordinates to resampled
        (``out_img``) coordinates. ``pixmap`` must be an array of shape
        ``(Ny, Nx, 2)`` where ``(Ny, Nx)`` is the shape of the input image.
        ``pixmap[..., 0]`` forms a 2D array of X-coordinates of input
        pixels in the output frame and ``pixmap[..., 1]`` forms a 2D array of
        Y-coordinates of input pixels in the output coordinate frame.

    pix_ratio : float
        Ratio of the input image pixel scale to the output image pixel scale as
        used in the ``drizzle`` context: input is a distorted image that was
        "drizzled" onto the output image. That is, it is the ratio of the
        scale of the pixels in the input ``data`` argument to the scale of
        pixels of the image array returned by ``blot_image()``.
        **It is used to scale the input image intensities to account
        for the change in pixel area.**

        .. warning::
            Deprecated since version 3.0 and will be removed in a future
            release. Use ``iscale`` instead and set
            ``iscale=1.0 / pix_ratio**2`` to achieve the same effect as with
            ``pix_ratio``.

    exptime : float
        The exposure time of the input image. If provided it is used to scale
        the output image values.

        .. warning::
            Deprecated since version 3.0 and will be removed in a future
            release. Use ``iscale`` instead and set
            ``iscale=exptime`` or ``exptime / pix_ratio**2`` to achieve the
            same effect as with ``exptime`` (and ``pix_ratio``).

    output_pixel_shape : tuple of int
        A tuple of two integer numbers indicating the dimensions of the output
        image ``(Nx, Ny)``.

        .. warning::
            Deprecated since version 3.0 and will be removed in a future
            release. It is not needed since the output image shape can be
            inferred from ``pixmap``.

    output_image : 2D array of float32, None, optional
        A 2D numpy array to hold the output image produced by resampling
        the input image (``data``). If `None`, a new array will be allocated.

    fillval: float, optional
        The value of output pixels that did not have contributions from
        input image' pixels.

    iscale : float, optional
        A multiplicative factor used to rescale output image data by
        ``iscale``. Depending on specific needs, it may make sense to rescale
        output image by inverse of squared pixel scale ratio (the linear
        dimension of a side of a resampled/drizzled (input) pixel as seen in
        the distorted (output) image's coordinate frame) depending on the units
        of the input image, i.e., counts (flux) vs surface brightness.
        For more details see section "Scaling of input image data" in
        :py:class:`Drizzle`.

    interp : str, optional
        The type of interpolation used in the resampling. The
        possible values are:

            - "nearest" (nearest neighbor interpolation);
            - "linear" (bilinear interpolation);
            - "poly3" (cubic polynomial interpolation);
            - "poly5" (quintic polynomial interpolation);
            - "sinc" (sinc interpolation);
            - "lan3" (3rd order Lanczos interpolation); and
            - "lan5" (5th order Lanczos interpolation).

        .. warning::
            The "sinc" interpolation is currently investigated for possible
            issues, see https://github.com/spacetelescope/drizzle/issues/209,
            and its use is not recommended. Furthermore, sinc interpolation may
            be removed in future releases.

    sincscl : float, optional
        The scaling factor for "sinc" interpolation.

    Returns
    -------
    out_img : 2D numpy.ndarray
        A 2D numpy array containing the resampled image data.

    """
    if pix_ratio is not _DEPRECATED_ARG:
        warnings.warn(
            "Argument 'pix_ratio' has been deprecated since version 3.0 and "
            "it will be removed in a future release. "
            "Use 'iscale' instead and set iscale=1.0 / pix_ratio**2 "
            "to achieve the same effect as with 'pix_ratio'.",
            DeprecationWarning,
        )
        iscale /= pix_ratio * pix_ratio

    if exptime is not _DEPRECATED_ARG:
        warnings.warn(
            "Argument 'exptime' has been deprecated since version 3.0 and "
            "it will be removed in a future release. "
            "Use 'iscale' instead and set iscale=exptime "
            "to achieve the same effect as with 'exptime'.",
            DeprecationWarning,
        )
        iscale *= exptime

    if output_pixel_shape is _DEPRECATED_ARG:
        output_shape = tuple(pixmap.shape[:2])
    else:
        warnings.warn(
            "Argument 'output_pixel_shape' has been deprecated since version "
            "3.0 and it will be removed in a future release. It is not needed "
            "since the output image shape can be inferred from 'pixmap'.",
            DeprecationWarning,
        )
        output_shape = output_pixel_shape[::-1]

    if out_img is None:
        out_img = np.empty(output_shape, dtype=np.float32)
    else:
        out_img = np.asarray(out_img, dtype=np.float32)
        if out_img.shape != output_shape:
            raise ValueError("'output_image' shape is not consistent with 'pixmap' shape.")

    cdrizzle.tblot(
        data, pixmap, out_img, iscale=iscale, interp=interp, fillval=fillval, sinscl=sinscl
    )

    return out_img


def _process_fillval(out_img, fillval):
    if fillval is None:
        fillval = "INDEF"

    elif isinstance(fillval, str):
        fillval = fillval.strip()
        if fillval.upper() in ["", "INDEF"]:
            fillval = "INDEF"
        else:
            float(fillval)
            fillval = str(fillval)

    else:
        fillval = str(fillval)

    if out_img is None and fillval == "INDEF":
        fillval = "NaN"

    return fillval