1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
|
"""
The `drizzle` module defines the `Drizzle` class, for combining input
images into a single output image using the drizzle algorithm.
"""
import warnings
import numpy as np
from drizzle import cdrizzle
__all__ = ["Drizzle", "blot_image"]
SUPPORTED_DRIZZLE_KERNELS = [
"square",
"gaussian",
"point",
"turbo",
"lanczos2",
"lanczos3",
]
CTX_PLANE_BITS = 32
_DEPRECATED_ARG = object()
class Drizzle:
"""
A class for managing resampling and co-adding of multiple images onto a
common output grid. The main method of this class is :py:meth:`add_image`.
The main functionality of this class is to resample and co-add multiple
images onto one output image using the "drizzle" algorithm described in
`Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
In the simplest terms, it redistributes flux
from input pixels to one or more output pixels based on the chosen kernel,
supplied weights, and input-to-output coordinate transformations as defined
by the ``pixmap`` argument. For more details, see :ref:`main-user-doc`.
This class keeps track of the total exposure time of all co-added images
and also of which input images have contributed to an output (resampled)
pixel. This is accomplished via *context image*.
Main outputs of :py:meth:`add_image` can be accessed as class properties
``out_img``, ``out_img2``, ``out_wht``, ``out_ctx``, and ``exptime``.
.. warning::
Output arrays (``out_img``, ``out_img2``, ``out_wht``, and ``out_ctx``)
can be pre-allocated by the caller and be passed to the initializer or
the class initializer can allocate these arrays based on other input
parameters such as ``output_shape``. If caller-supplied output arrays
have the correct type (`numpy.float32` for ``out_img``, ``out_img2``
and ``out_wht``, `numpy.int32` for the ``out_ctx`` array and
`numpy.uint32` for the ``out_dq`` array) and if
``out_ctx`` is large enough not to need to be resized, these arrays
will be used as is and may be modified by the :py:meth:`add_image`
method. If not, a copy of these arrays will be made when converting
to the expected type (or expanding the context array).
Scaling of input image data
---------------------------
It is important to highlight that the drizzle algorithm computes
*weighted mean* of input pixel values -- see equations (4) and (5) in
`Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
Therefore, it is important that all input pixel values that contribute
to an output pixel are from the same distribution. In other words,
input pixel values from different images must be on the same footing,
i.e., they must be comparable and must be representative of the same
physical quantity.
For example, for Hubble Space Telescope data, calibrated images
(i.e., ``*_flt.fits``, ``*_flc.fits``) are in unit of counts, counts per
second, electrons, or electrons per second. To convert them to flux
units (e.g., erg/cm^2/s/Angstrom), one needs to multiply these images
by the ``PHOTFLAM``. Sometimes, images that are drizzle-combined have been
observed at very different times (separated by many years) and the
sensitivity of the instrument (represented by ``PHOTFLAM``) may have
changed significantly. Other times a source is observed in different chips,
i.e., the two chips of the Wide Field Camera. In such cases detector's
sensitivity (``PHOTFLAM``) may be different for the images to be combined.
Consequently, pixel values in these images may not be directly comparable
and drizzle-combining such images would result in systematic errors.
In this case, it is important to rescale images to the same flux units
either by multiplying by the appropriate ``PHOTFLAM`` values or some
other appropriate scaling factor before combining them using drizzle.
This can be accomplished by using the ``iscale`` parameter of
:py:meth:`add_image` which simply multiplies each input image by
``iscale``.
Also, for the case of HST images that have flux units instead of surface
brightness, if input images have different pixel scales, then the pixel
values must be rescaled by the square of the pixel scale ratio (the linear
dimension of a side of an output pixel as seen in the input image's
coordinate frame) in order to preserve flux. In this case ``iscale`` is
equivalent to ``s**2`` factor in equations (3) and (5) of
`Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_
(``s`` may be different for each input image).
Output Science Image
--------------------
Output science image is obtained by computing *weighted mean* of input
pixel values according to equations (4) and (5) in
`Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
The weights and coefficients in those equations will depend on the chosen
kernel, input image weights, and pixel overlaps computed from ``pixmap``.
Output Weight Image
-------------------
Output weight image stores the total weight of output science pixels
according to equation (4) in
`Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
It depends on the chosen kernel, input image weights, and pixel overlaps
computed from ``pixmap``.
Output Context Image
--------------------
Each pixel in the context image is a bit field that encodes
information about which input image has contributed to the corresponding
pixel in the resampled data array. Context image uses 32 bit integers to
encode this information and hence it can keep track of only 32 input images.
The first bit corresponds to the first input image, the second bit
corresponds to the second input image, and so on.
We call this (0-indexed) order "context ID" which is represented by
the ``ctx_id`` parameter/property. If the number of
input images exceeds 32, then it is necessary to have multiple context
images ("planes") to hold information about all input images, with the first
plane encoding which of the first 32 images contributed to the output data
pixel, the second plane representing next 32 input images (number 33-64),
etc. For this reason, context array is either a 2D array (if the total
number of resampled images is less than 33) of the type `numpy.int32` and
shape ``(ny, nx)`` or a a 3D array of shape ``(np, ny, nx)`` where ``nx``
and ``ny`` are dimensions of the image data. ``np`` is the number of
"planes" computed as ``(number of input images - 1) // 32 + 1``. If a bit at
position ``k`` in a pixel with coordinates ``(p, y, x)`` is 0, then input
image number ``32 * p + k`` (0-indexed) did not contribute to the output
data pixel with array coordinates ``(y, x)`` and if that bit is 1, then
input image number ``32 * p + k`` did contribute to the pixel ``(y, x)``
in the resampled image.
As an example, let's assume we have 8 input images. Then, when ``out_ctx``
pixel values are displayed using binary representation (and decimal in
parenthesis), one could see values like this::
00000001 (1) - only first input image contributed to this output pixel;
00000010 (2) - 2nd input image contributed;
00000100 (4) - 3rd input image contributed;
10000000 (128) - 8th input image contributed;
10000100 (132=128+4) - 3rd and 8th input images contributed;
11001101 (205=1+4+8+64+128) - input images 1, 3, 4, 7, 8 have contributed
to this output pixel.
In order to test if a specific input image contributed to an output pixel,
one needs to use bitwise operations. Using the example above, to test
whether input images number 4 and 5 have contributed to the output pixel
whose corresponding ``out_ctx`` value is 205 (11001101 in binary form) we
can do the following:
>>> bool(205 & (1 << (5 - 1))) # (205 & 16) = 0 (== 0 => False): did NOT contribute
False
>>> bool(205 & (1 << (4 - 1))) # (205 & 8) = 8 (!= 0 => True): did contribute
True
In general, to get a list of all input images that have contributed to an
output resampled pixel with image coordinates ``(x, y)``, and given a
context array ``ctx``, one can do something like this:
.. doctest-skip::
>>> import numpy as np
>>> np.flatnonzero([v & (1 << k) for v in ctx[:, y, x] for k in range(32)])
For convenience, this functionality was implemented in the
:py:func:`~drizzle.utils.decode_context` function.
Output DQ Image
---------------
If DQ array of input image pixels is provided via ``dq`` parameter of
:py:meth:`add_image`, then an output DQ array will be computed by combining
(using bitwise-OR) DQ bitfields of all input pixels that contribute to
a given output pixel.
References
----------
A full description of the drizzling algorithm can be found in
`Fruchter and Hook, PASP 2002 <https://doi.org/10.1086/338393>`_.
Examples
--------
.. highlight:: python
.. code-block:: python
# wcs1 - WCS of the input image usually with distortions (to be resampled)
# wcs2 - WCS of the output image without distortions
import numpy as np
from drizzle.resample import Drizzle
from drizzle.utils import calc_pixmap
# simulate some data and a pixel map:
data = np.ones((240, 570))
pixmap = calc_pixmap(wcs1, wcs2)
# or simulate a mapping from input image to output image frame:
# y, x = np.indices((240, 570), dtype=np.float64)
# pixmap = np.dstack([x, y])
# initialize Drizzle object
d = Drizzle(out_shape=(240, 570))
d.add_image(data, exptime=15, pixmap=pixmap)
# access outputs:
d.out_img
d.out_ctx
d.out_wht
"""
def __init__(
self,
kernel="square",
fillval=None,
fillval2=None,
out_shape=None,
out_img=None,
out_wht=None,
out_ctx=None,
out_img2=None,
out_dq=None,
exptime=0.0,
begin_ctx_id=0,
max_ctx_id=None,
disable_ctx=False,
):
"""
kernel: str, optional
The name of the kernel used to combine the input. The choice of
kernel controls the distribution of flux over the kernel. The kernel
names are: "square", "gaussian", "point", "turbo",
"lanczos2", and "lanczos3". The square kernel is the default.
.. warning::
The "gaussian" and "lanczos2/3" kernels **DO NOT**
conserve flux.
out_shape : tuple, None, optional
Shape (`numpy` order ``(Ny, Nx)``) of the output images (context
image will have a third dimension of size proportional to the number
of input images). This parameter is helpful when neither
``out_img``, ``out_wht``, nor ``out_ctx`` images are provided.
fillval: float, None, str, optional
The value of output pixels that did not have contributions from
input images' pixels. When ``fillval`` is either `None` or
``"INDEF"`` and ``out_img`` is provided, the values of ``out_img``
will not be modified. When ``fillval`` is either `None` or
``"INDEF"`` and ``out_img`` is **not provided**, the values of
``out_img`` will be initialized to `numpy.nan`. If ``fillval``
is a string that can be converted to a number, then the output
pixels with no contributions from input images will be set to this
``fillval`` value.
fillval2: float, None, str, optional
Same as ``fillval`` but applies to ``out_img2``.
out_img : 2D array of float32, None, optional
A 2D numpy array containing the output image produced by
drizzling. On the first call the array values should be set to zero.
On subsequent calls it will hold the intermediate results.
out_img2 : 2D array of float32, list of 2D arrays of float32, None, optional
A 2D numpy array containing the output image produced by
drizzling *with squared weights*. This is useful when performing
standard error propagation using variance arrays. On the first call
the array values should be set to zero. On subsequent calls it will
hold the intermediate results.
Multiple output arrays (of the same shape as that of ``out_img``)
can be provided as a list of 2D arrays. The number of arrays must
match the number of data arrays that will be resampled and co-added
using squared weights (see argument ``data2`` in `add_data`.)
If ``out_img2`` is None, output arrays for the squared weights
co-adds will be created after the first call to `add_image` based
on the number of ``data2`` arrays.
out_wht : 2D array of float32, None, optional
A 2D numpy array containing the output counts. On the first
call it should be set to zero. On subsequent calls it will
hold the intermediate results.
out_ctx : 2D or 3D array of int32, None, optional
A 2D or 3D numpy array holding a bitmap of which image was an input
for each output pixel. Should be integer zero on first call.
Subsequent calls hold intermediate results. This parameter is
ignored when ``disable_ctx`` is `True`.
out_dq : 2D array of uint32, None, optional
A 2D `~numpy.ndarray` containing DQ bitfields of output (resampled)
pixels. It will be computed by combining (using bitwise-OR)
DQ bitfields of input pixels that contributed to the output pixel.
If provided, it must be a 2D array of the same shape as
``out_img`` and `numpy.uint32` type (unsigned 32-bit integer type).
If `None`, output DQ array will be created during
the first call to `add_image` and will be initialized to zero.
.. warning::
64-bit integer type is not supported and will raise
an exception. Contact the authors to add support for 64-bit DQ
if you need it.
exptime : float, optional
Exposure time of previously resampled images when provided via
parameters ``out_img`` and ``out_wht``.
begin_ctx_id : int, optional
The context ID number (0-based) of the first image that will be
resampled (using `add_image`). Subsequent images will be assigned
consecutively increasing ID numbers. This parameter is ignored
when ``disable_ctx`` is `True`.
max_ctx_id : int, None, optional
The largest integer context ID that is *expected* to be used for
an input image. When it is a non-negative number and ``out_ctx`` is
`None`, it allows to pre-allocate the necessary array for the output
context image. If the actual number of input images that will be
resampled will exceed initial allocation for the context image,
additional context planes will be added as needed (context array
will "grow" in the third dimension as new input images are added.)
The default value of `None` is equivalent to setting ``max_ctx_id``
equal to ``begin_ctx_id``. This parameter is ignored either when
``out_ctx`` is provided or when ``disable_ctx`` is `True`.
disable_ctx : bool, optional
Indicates to not create a context image. If ``disable_ctx`` is set
to `True`, parameters ``out_ctx``, ``begin_ctx_id``, and
``max_ctx_id`` will be ignored.
"""
self._ncoadds = 0
self._out_img2 = None
self._out_dq = None
self._disable_ctx = disable_ctx
if disable_ctx:
self._ctx_id = None
self._max_ctx_id = None
else:
if begin_ctx_id < 0:
raise ValueError("Invalid context image ID")
self._ctx_id = begin_ctx_id # the ID of the *last* image to be resampled
if max_ctx_id is None:
max_ctx_id = begin_ctx_id
elif max_ctx_id < begin_ctx_id:
raise ValueError("'max_ctx_id' cannot be smaller than 'begin_ctx_id'.")
self._max_ctx_id = max_ctx_id
if exptime < 0.0:
raise ValueError("Exposure time must be non-negative.")
if exptime > 0.0 and out_img is None and out_ctx is None and out_wht is None:
raise ValueError(
"Exposure time must be 0.0 for the first resampling "
"(when no output resampled images have been provided)."
)
if exptime == 0.0 and (
(out_ctx is not None and np.sum(out_ctx) > 0)
or (out_wht is not None and np.sum(out_wht) > 0)
):
raise ValueError(
"Inconsistent exposure time and context and/or weight images: "
"Exposure time cannot be 0 when context and/or weight arrays "
"are non-zero."
)
self._texptime = exptime
if kernel.lower() not in SUPPORTED_DRIZZLE_KERNELS:
raise ValueError(f"Kernel '{kernel}' is not supported.")
self._kernel = kernel
self._fillval = _process_fillval(out_img, fillval)
self._fillval2 = _process_fillval(out_img2, fillval2)
# shapes will collect user specified 'out_shape' and shapes of
# out_* arrays (if provided) in order to check all shapes are the same.
shapes = set()
if out_img is not None:
out_img = np.asarray(out_img, dtype=np.float32)
shapes.add(out_img.shape)
if out_wht is not None:
out_wht = np.asarray(out_wht, dtype=np.float32)
shapes.add(out_wht.shape)
if out_ctx is not None:
out_ctx = np.asarray(out_ctx, dtype=np.int32)
if out_ctx.ndim == 2:
out_ctx = out_ctx[None, :, :]
elif out_ctx.ndim != 3:
raise ValueError("'out_ctx' must be either a 2D or 3D array.")
shapes.add(out_ctx.shape[1:])
if out_dq is not None:
t = np.min_scalar_type(out_dq)
if t.kind not in ["i", "u"] or t.itemsize > 4:
raise TypeError(
"'out_dq' must be of an unsigned integer type with itemsize of 4 bytes or less."
)
out_dq = np.asarray(out_dq, dtype=np.uint32)
shapes.add(out_dq.shape)
self._out_dq = out_dq
if out_shape is not None:
shapes.add(tuple(out_shape))
if len(shapes) == 1:
self._out_shape = shapes.pop()
self._alloc_output_arrays(
out_shape=self._out_shape,
max_ctx_id=max_ctx_id,
out_img=out_img,
out_wht=out_wht,
out_ctx=out_ctx,
)
elif len(shapes) > 1:
raise ValueError(
"Inconsistent data shapes specified: 'out_shape' and/or "
"out_img, out_img2, out_wht, out_ctx, out_dq have different "
"shapes."
)
else:
self._out_shape = None
self._out_img = None
self._out_wht = None
self._out_ctx = None
if out_img2 is not None:
if self._out_shape is not None:
shapes.add(self._out_shape)
if isinstance(out_img2, np.ndarray):
out_img2 = np.asarray(out_img2, dtype=np.float32)
shapes.add(out_img2.shape)
else:
for img in out_img2:
if img is not None:
shapes.add(np.shape(img))
if len(shapes) > 1:
raise ValueError(
"Inconsistent data shapes specified: 'out_shape' "
"and/or out_img, out_img2, out_wht, out_ctx have "
"different shapes."
)
self._output_shapes = shapes
self._alloc_output_arrays2_init(out_img2=out_img2)
@property
def fillval(self):
"""Fill value for output pixels without contributions from input images."""
return self._fillval
@property
def fillval2(self):
"""Fill value for output pixels in ``out_img2`` without contributions
from input images.
"""
return self._fillval2
@property
def kernel(self):
"""Resampling kernel."""
return self._kernel
@property
def ctx_id(self):
"""Context image "ID" (0-based ) of the next image to be resampled."""
return self._ctx_id
@property
def out_img(self):
"""Output resampled image."""
return self._out_img
@property
def out_wht(self):
"""Output weight image."""
return self._out_wht
@property
def out_ctx(self):
"""Output "context" image."""
return self._out_ctx
@property
def out_img2(self):
"""Output resampled image(s) obtained with squared weights.
It is always a list of one or more 2D arrays.
"""
return self._out_img2
@property
def out_dq(self):
"""Output DQ image computed by OR-combining DQ bitfields of input
images' pixels that have contributed to a given output pixel.
"""
return self._out_dq
@property
def total_exptime(self):
"""Total exposure time of all resampled images."""
return self._texptime
def _alloc_output_arrays(self, out_shape, max_ctx_id, out_img, out_wht, out_ctx):
# allocate arrays as needed:
if out_wht is None:
self._out_wht = np.zeros(out_shape, dtype=np.float32)
else:
self._out_wht = out_wht
if self._disable_ctx:
self._out_ctx = None
else:
if out_ctx is None:
n_ctx_planes = max_ctx_id // CTX_PLANE_BITS + 1
ctx_shape = (n_ctx_planes,) + out_shape
self._out_ctx = np.zeros(ctx_shape, dtype=np.int32)
else:
self._out_ctx = out_ctx
if not (out_wht is None and out_ctx is None):
# check that input data make sense: weight of pixels with
# non-zero context values must be different from zero:
if np.any(np.bitwise_xor(self._out_wht > 0.0, np.sum(self._out_ctx, axis=0) > 0)):
raise ValueError(
"Inconsistent values of supplied 'out_wht' and "
"'out_ctx' arrays. Pixels with non-zero context "
"values must have positive weights and vice-versa."
)
if out_img is None:
if self._fillval.upper() in ["INDEF", "NAN"]:
fillval = np.nan
else:
fillval = float(self._fillval)
self._out_img = np.full(out_shape, fillval, dtype=np.float32)
else:
self._out_img = out_img
def _alloc_output_arrays2_init(self, out_img2=None):
if hasattr(self, "_out_img2") and self._out_img2 is not None:
raise AssertionError(
"It is expected that _alloc_output_arrays2_init is called "
"before Drizzle._out_img2 is set."
)
if out_img2 is None:
return
if isinstance(out_img2, np.ndarray):
out_img2 = [out_img2]
self._out_img2 = []
if isinstance(self._fillval2, str) and self._fillval2.strip().upper() == "INDEF":
fv = np.nan
else:
fv = np.float32(self._fillval2)
for i2 in out_img2:
if i2 is None:
if self._out_shape is None:
if len(self._output_shapes) == 1:
shape = next(iter(self._output_shapes))
else:
self._out_img2.append(None)
continue
else:
shape = self._out_shape
arr = np.full(shape, fill_value=fv, dtype=np.float32)
else:
arr = np.asarray(i2, dtype=np.float32)
self._out_img2.append(arr)
del arr
def _alloc_output_arrays2_add(self, ninputs2=None):
if isinstance(self._fillval2, str) and self._fillval2.strip().upper() == "INDEF":
fv = np.nan
else:
fv = np.float32(self._fillval2)
if self._out_img2 is None:
if ninputs2 is None or ninputs2 < 1:
# nothing to do
return
if self._ncoadds > 0:
raise ValueError(
"Mismatch between the number of 'out_img2' images and the number of inputs."
)
self._out_img2 = [
np.full(self._out_shape, fill_value=fv, dtype=np.float32) for _ in range(ninputs2)
]
else:
nimg2 = len(self._out_img2)
# replace None values with arrays of _out_shape:
for k, img in enumerate(self._out_img2):
if img is None:
self._out_img2[k] = np.full(self._out_shape, fill_value=fv, dtype=np.float32)
if (ninputs2 is not None and ninputs2 != nimg2) or (ninputs2 is None and nimg2 > 0):
raise ValueError(
"Mismatch between the number of 'out_img2' images "
"previously set and the number of inputs."
)
def _increment_ctx_id(self):
"""
Returns a pair of the *current* plane number and bit number in that
plane and increments context image ID
(after computing the return value).
"""
if self._disable_ctx:
return None, 0
self._plane_no = self._ctx_id // CTX_PLANE_BITS
depth = self._out_ctx.shape[0]
if self._plane_no >= depth:
# Add a new plane to the context image if planeid overflows
plane = np.zeros((1,) + self._out_shape, np.int32)
self._out_ctx = np.append(self._out_ctx, plane, axis=0)
plane_info = (self._plane_no, self._ctx_id % CTX_PLANE_BITS)
# increment ID for the *next* image to be added:
self._ctx_id += 1
return plane_info
def add_image(
self,
data,
exptime,
pixmap,
data2=None,
dq=None,
scale=_DEPRECATED_ARG,
iscale=1.0,
pixel_scale_ratio=1.0,
weight_map=None,
wht_scale=1.0,
pixfrac=1.0,
in_units="cps",
xmin=None,
xmax=None,
ymin=None,
ymax=None,
):
"""
Resample and add an image to the cumulative output image. Also, update
output total weight image and context images.
Parameters
----------
data : 2D numpy.ndarray
A 2D numpy array containing the input image to be drizzled.
exptime : float
The exposure time of the input image, a positive number. The
exposure time is used to scale the image if the units are counts.
pixmap : 3D array
A mapping from input image (``data``) coordinates to resampled
(``out_img``) coordinates. ``pixmap`` must be an array of shape
``(Ny, Nx, 2)`` where ``(Ny, Nx)`` is the shape of the input image.
``pixmap[..., 0]`` forms a 2D array of X-coordinates of input
pixels in the output frame and ``pixmap[..., 1]`` forms a 2D array of
Y-coordinates of input pixels in the output coordinate frame.
data2 : 2D array of float32, list of 2D arrays of float32 or None, None, optional
A 2D numpy array (or a list of 2D arrays) with image data to be
resampled and co-added using squared weights. The resampled output
image can be accessed via ``out_img2`` property of the `Drizzle`
object. This is useful for performing standard error propagation
using variance arrays.
Multiple data arrays (of the same shape as that of ``data``)
can be provided as a list of 2D arrays. The number of arrays must
match the number of output data arrays provided during
initialization via argument ``out_img2``. If an item in the list
is `None`, that item will not be resampled to the corresponding
``out_img2`` element.
.. note::
It is assumed that data in ``data2`` have squared units of
``data``. Therefore, when ``in_units`` are "counts",
``data2`` arrays will be rescaled by ``exptime**2`` to convert
to rate units before resampling.
dq : 2D array, None, optional
A 2D numpy array of type `numpy.uint32` (unsigned 32-bit integer
type) containing DQ bitfields of input pixels. It must
have the same shape as ``data``. If provided, output DQ array
(accessible via ``out_dq`` property) will be computed by combining
(using bitwise-OR) DQ bitfields of input pixels that contributed to
the output pixel. If `None`, DQ array of the output image will
not be computed.
.. warning::
64-bit integer type is not supported and will raise
an exception. Contact the authors to add support for 64-bit DQ
if you need it.
scale : float, optional
Deprecated: use ``iscale`` and ``pixel_scale_ratio`` instead.
It is a factor used both to rescale input image data
by ``scale**2`` AND to compute the correct kernel size for some
kernels ("turbo", "gaussian", and "lanczos"). It is recommended
``scale`` be set to pixel scale ratio: the linear dimension of
a side of an output pixel relative to the size of an input pixel
(or size of an output pixel in the input image's coordinate system).
iscale : float, optional
It is a multiplicative factor used to rescale input image data
by ``iscale`` value. ``data2`` images will be rescaled by
``iscale**2``. It may make sense to rescale input image (``data``)
by squared pixel scale ratio (the linear dimension of a side of an
output pixel as seen in the input image's coordinate frame)
depending on the units of the input image, i.e., counts vs
brightness. For more details see section
"Scaling of input image data" in :py:class:`Drizzle`.
pixel_scale_ratio : float, None, optional
It is a factor used to compute the correct kernel size in output
image's coordinate system for some of the kernels
("turbo", "gaussian", and "lanczos") from their nominal
sizes in input image pixels. For example, for the "lanczos3"
kernel, the nominal size is 3 input pixels. It is recommended that
``pixel_scale_ratio`` be set to pixel scale ratio: the linear dimension of
output pixel relative to the size of an input pixel. When
``pixel_scale_ratio`` is `None`, it will be estimated from ``pixmap`` but this
can impose a performance penalty.
weight_map : 2D array, None, optional
A 2D numpy array containing the pixel by pixel weighting.
Must have the same dimensions as ``data``.
When ``weight_map`` is `None`, the weight of input data pixels will
be assumed to be 1.
wht_scale : float
A scaling factor applied to the pixel by pixel weighting.
pixfrac : float, optional
The fraction of a pixel that the pixel flux is confined to. The
default value of 1 has the pixel flux evenly spread across the image.
A value of 0.5 confines it to half a pixel in the linear dimension,
so the flux is confined to a quarter of the pixel area when the square
kernel is used.
in_units : str
The units of the input image. The units can either be "counts"
or "cps" (counts per second.)
xmin : float, optional
This and the following three parameters set a bounding rectangle
on the input image. Only pixels on the input image inside this
rectangle will have their flux added to the output image. Xmin
sets the minimum value of the x dimension. The x dimension is the
dimension that varies quickest on the image. If the value is zero,
no minimum will be set in the x dimension. All four parameters are
zero based, counting starts at zero.
xmax : float, optional
Sets the maximum value of the x dimension on the bounding box
of the input image. If the value is zero, no maximum will
be set in the x dimension, the full x dimension of the output
image is the bounding box.
ymin : float, optional
Sets the minimum value in the y dimension on the bounding box. The
y dimension varies less rapidly than the x and represents the line
index on the input image. If the value is zero, no minimum will be
set in the y dimension.
ymax : float, optional
Sets the maximum value in the y dimension. If the value is zero, no
maximum will be set in the y dimension, the full x dimension
of the output image is the bounding box.
Returns
-------
nskip : float
The number of lines from the box defined by
``((xmin, xmax), (ymin, ymax))`` in the input image that were
ignored and did not contribute to the output image.
nmiss : float
The number of pixels from the box defined by
``((xmin, xmax), (ymin, ymax))`` in the input image that were
ignored and did not contribute to the output image.
"""
if scale is not _DEPRECATED_ARG:
warnings.warn(
"Argument 'scale' has been deprecated since version 3.0 and "
"it will be removed in a future release. "
"Use 'iscale' and 'pixel_scale_ratio' instead and set iscale=pixel_scale_ratio**2 "
"to achieve the same effect as with 'scale'.",
DeprecationWarning,
)
iscale = scale * scale
pixel_scale_ratio = scale
# this enables initializer to not need output image shape at all and
# set output image shape based on output coordinates from the pixmap.
#
if self._out_shape is None:
nshapes = len(self._output_shapes)
if nshapes == 0:
pmap_xmin = int(np.floor(np.nanmin(pixmap[:, :, 0])))
pmap_xmax = int(np.ceil(np.nanmax(pixmap[:, :, 0])))
pmap_ymin = int(np.floor(np.nanmin(pixmap[:, :, 1])))
pmap_ymax = int(np.ceil(np.nanmax(pixmap[:, :, 1])))
pixmap = pixmap.copy()
pixmap[:, :, 0] -= pmap_xmin
pixmap[:, :, 1] -= pmap_ymin
self._out_shape = (pmap_xmax - pmap_xmin + 1, pmap_ymax - pmap_ymin + 1)
elif nshapes == 1:
self._out_shape = next(iter(self._output_shapes))
else:
raise ValueError(
"Inconsistent data shapes: 'out_shape' and/or "
"out_img, out_img2, out_wht, out_ctx have different shapes."
) # pragma: no cover
self._alloc_output_arrays(
out_shape=self._out_shape,
max_ctx_id=self._max_ctx_id,
out_img=None,
out_wht=None,
out_ctx=None,
)
if data2 is None:
ninputs2 = None
else:
if isinstance(data2, np.ndarray):
ninputs2 = 1
if data2.shape != data.shape:
raise ValueError("'data2' shape is not consistent with 'data' shape.")
else:
shapes2 = set()
ninputs2 = len(data2)
data2 = list(data2)
for k, d in enumerate(data2):
if d is None or d.size == 0:
data2[k] = None
else:
shapes2.add(d.shape)
if (len(shapes2) == 1 and shapes2.pop() != data.shape) or len(shapes2) > 1:
raise ValueError("'data2' shape(s) is not consistent with 'data' shape.")
self._alloc_output_arrays2_add(ninputs2=ninputs2)
plane_no, id_in_plane = self._increment_ctx_id()
if exptime <= 0.0:
raise ValueError("'exptime' *must* be a strictly positive number.")
# Ensure that the fillval parameter gets properly interpreted
# for use with tdriz
if in_units == "cps":
expscale = 1.0
else:
expscale = exptime
self._texptime += exptime
data = np.asarray(data, dtype=np.float32)
pixmap = np.asarray(pixmap, dtype=np.float64)
in_ymax, in_xmax = data.shape
if pixmap.shape[:2] != data.shape:
raise ValueError("'pixmap' shape is not consistent with 'data' shape.")
if xmin is None or xmin < 0:
xmin = 0
if ymin is None or ymin < 0:
ymin = 0
if xmax is None or xmax > in_xmax - 1:
xmax = in_xmax - 1
if ymax is None or ymax > in_ymax - 1:
ymax = in_ymax - 1
if weight_map is not None:
weight_map = np.asarray(weight_map, dtype=np.float32)
if weight_map.shape != data.shape:
raise ValueError("'weight_map' shape is not consistent with 'data' shape.")
else: # TODO: this should not be needed after C code modifications
weight_map = np.ones_like(data)
pixmap = np.asarray(pixmap, dtype=np.float64)
if self._disable_ctx:
ctx_plane = None
else:
if self._out_ctx.ndim == 2:
raise AssertionError("Context image is expected to be 3D")
ctx_plane = self._out_ctx[plane_no]
if dq is not None:
t = np.min_scalar_type(dq)
if t.kind not in ["i", "u"] or t.itemsize > 4:
raise TypeError(
"'dq' must be of an unsigned integer type with itemsize of 4 bytes or less."
)
dq = np.asarray(dq, dtype=np.uint32)
if dq.shape != data.shape:
raise ValueError("'dq' shape is not consistent with 'data' shape.")
if self._out_dq is None:
self._out_dq = np.zeros(self._out_shape, dtype=np.uint32)
# TODO: probably tdriz should be modified to not return version.
# we should not have git, Python, C, ... versions
# TODO: While drizzle code in cdrizzlebox.c supports weight_map=None,
# cdrizzleapi.c does not. It should be modified to support this
# for performance reasons.
_vers, nmiss, nskip = cdrizzle.tdriz(
input=data,
weights=weight_map,
pixmap=pixmap,
output=self._out_img,
counts=self._out_wht,
context=ctx_plane,
input2=data2,
output2=self._out_img2,
dq=dq,
outdq=self._out_dq,
uniqid=id_in_plane + 1,
xmin=xmin,
xmax=xmax,
ymin=ymin,
ymax=ymax,
iscale=iscale, # scales image intensity. usually equal to 1 or
# (pixel scale ratio)**2
pscale_ratio=pixel_scale_ratio, # scales kernel size. usually equal to pixel scale ratio
pixfrac=pixfrac,
kernel=self._kernel,
in_units=in_units,
expscale=expscale,
wtscale=wht_scale,
fillstr=self._fillval,
fillstr2=self._fillval2,
)
self._cversion = _vers # TODO: probably not needed
self._ncoadds += 1
return nmiss, nskip
def blot_image(
data,
pixmap,
pix_ratio=_DEPRECATED_ARG,
exptime=_DEPRECATED_ARG,
output_pixel_shape=_DEPRECATED_ARG,
out_img=None,
fillval=0.0,
iscale=1.0,
interp="poly5",
sinscl=1.0,
):
"""
Resample the ``data`` input image onto an output grid defined by
the ``pixmap`` array. ``blot_image`` performs resampling using one of
the several interpolation algorithms and, unlike the "drizzle" algorithm
with 'square', 'turbo', and 'point' kernels, this resampling is not
flux-conserving.
This method works best for with well sampled images and thus it is
typically used to resample the output of :py:class:`Drizzle` back to the
coordinate grids of input images of :py:meth:`Drizzle.add_image`.
The output of :py:class:`Drizzle` are usually well sampled images especially
if it was created from a set of dithered images.
Parameters
----------
data : 2D array
Input numpy array of the source image in units of 'cps'.
pixmap : 3D array
A mapping from input image (``data``) coordinates to resampled
(``out_img``) coordinates. ``pixmap`` must be an array of shape
``(Ny, Nx, 2)`` where ``(Ny, Nx)`` is the shape of the input image.
``pixmap[..., 0]`` forms a 2D array of X-coordinates of input
pixels in the output frame and ``pixmap[..., 1]`` forms a 2D array of
Y-coordinates of input pixels in the output coordinate frame.
pix_ratio : float
Ratio of the input image pixel scale to the output image pixel scale as
used in the ``drizzle`` context: input is a distorted image that was
"drizzled" onto the output image. That is, it is the ratio of the
scale of the pixels in the input ``data`` argument to the scale of
pixels of the image array returned by ``blot_image()``.
**It is used to scale the input image intensities to account
for the change in pixel area.**
.. warning::
Deprecated since version 3.0 and will be removed in a future
release. Use ``iscale`` instead and set
``iscale=1.0 / pix_ratio**2`` to achieve the same effect as with
``pix_ratio``.
exptime : float
The exposure time of the input image. If provided it is used to scale
the output image values.
.. warning::
Deprecated since version 3.0 and will be removed in a future
release. Use ``iscale`` instead and set
``iscale=exptime`` or ``exptime / pix_ratio**2`` to achieve the
same effect as with ``exptime`` (and ``pix_ratio``).
output_pixel_shape : tuple of int
A tuple of two integer numbers indicating the dimensions of the output
image ``(Nx, Ny)``.
.. warning::
Deprecated since version 3.0 and will be removed in a future
release. It is not needed since the output image shape can be
inferred from ``pixmap``.
output_image : 2D array of float32, None, optional
A 2D numpy array to hold the output image produced by resampling
the input image (``data``). If `None`, a new array will be allocated.
fillval: float, optional
The value of output pixels that did not have contributions from
input image' pixels.
iscale : float, optional
A multiplicative factor used to rescale output image data by
``iscale``. Depending on specific needs, it may make sense to rescale
output image by inverse of squared pixel scale ratio (the linear
dimension of a side of a resampled/drizzled (input) pixel as seen in
the distorted (output) image's coordinate frame) depending on the units
of the input image, i.e., counts (flux) vs surface brightness.
For more details see section "Scaling of input image data" in
:py:class:`Drizzle`.
interp : str, optional
The type of interpolation used in the resampling. The
possible values are:
- "nearest" (nearest neighbor interpolation);
- "linear" (bilinear interpolation);
- "poly3" (cubic polynomial interpolation);
- "poly5" (quintic polynomial interpolation);
- "sinc" (sinc interpolation);
- "lan3" (3rd order Lanczos interpolation); and
- "lan5" (5th order Lanczos interpolation).
.. warning::
The "sinc" interpolation is currently investigated for possible
issues, see https://github.com/spacetelescope/drizzle/issues/209,
and its use is not recommended. Furthermore, sinc interpolation may
be removed in future releases.
sincscl : float, optional
The scaling factor for "sinc" interpolation.
Returns
-------
out_img : 2D numpy.ndarray
A 2D numpy array containing the resampled image data.
"""
if pix_ratio is not _DEPRECATED_ARG:
warnings.warn(
"Argument 'pix_ratio' has been deprecated since version 3.0 and "
"it will be removed in a future release. "
"Use 'iscale' instead and set iscale=1.0 / pix_ratio**2 "
"to achieve the same effect as with 'pix_ratio'.",
DeprecationWarning,
)
iscale /= pix_ratio * pix_ratio
if exptime is not _DEPRECATED_ARG:
warnings.warn(
"Argument 'exptime' has been deprecated since version 3.0 and "
"it will be removed in a future release. "
"Use 'iscale' instead and set iscale=exptime "
"to achieve the same effect as with 'exptime'.",
DeprecationWarning,
)
iscale *= exptime
if output_pixel_shape is _DEPRECATED_ARG:
output_shape = tuple(pixmap.shape[:2])
else:
warnings.warn(
"Argument 'output_pixel_shape' has been deprecated since version "
"3.0 and it will be removed in a future release. It is not needed "
"since the output image shape can be inferred from 'pixmap'.",
DeprecationWarning,
)
output_shape = output_pixel_shape[::-1]
if out_img is None:
out_img = np.empty(output_shape, dtype=np.float32)
else:
out_img = np.asarray(out_img, dtype=np.float32)
if out_img.shape != output_shape:
raise ValueError("'output_image' shape is not consistent with 'pixmap' shape.")
cdrizzle.tblot(
data, pixmap, out_img, iscale=iscale, interp=interp, fillval=fillval, sinscl=sinscl
)
return out_img
def _process_fillval(out_img, fillval):
if fillval is None:
fillval = "INDEF"
elif isinstance(fillval, str):
fillval = fillval.strip()
if fillval.upper() in ["", "INDEF"]:
fillval = "INDEF"
else:
float(fillval)
fillval = str(fillval)
else:
fillval = str(fillval)
if out_img is None and fillval == "INDEF":
fillval = "NaN"
return fillval
|