1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
import os
import pytest
from importlib import import_module
from .util import skip_if_no_tf
from dtcwt.utils import unpack
import dtcwt
import dtcwt.compat
PRECISION_DECIMAL = 5
@skip_if_no_tf
def setup_module():
global tf
tf = import_module('tensorflow')
dtcwt.push_backend('tf')
# Make sure we run tests on cpu rather than gpus
os.environ["CUDA_VISIBLE_DEVICES"] = ""
@skip_if_no_tf
@pytest.mark.parametrize("nlevels, include_scale", [
(2,False),
(2,True),
(4,False),
(3,True)
])
def test_scales(nlevels, include_scale):
in_ = tf.placeholder(tf.float32, [512, 512])
t = dtcwt.Transform2d()
p = t.forward(in_, nlevels, include_scale)
# At level 1, the lowpass output will be the same size as the input. At
# levels above that, it will be half the size per level
extent = 512 * 2**(-(nlevels-1))
assert p.lowpass_op.get_shape().as_list() == [extent, extent]
assert p.lowpass_op.dtype == tf.float32
for i in range(nlevels):
extent = 512 * 2**(-(i+1))
assert (p.highpasses_ops[i].get_shape().as_list() ==
[extent, extent, 6])
assert (p.highpasses_ops[i].dtype ==
tf.complex64)
if include_scale:
assert (p.scales_ops[i].get_shape().as_list() ==
[2*extent, 2*extent])
assert p.scales_ops[i].dtype == tf.float32
@skip_if_no_tf
@pytest.mark.parametrize("nlevels, include_scale", [
(2,False),
(2,True),
(4,False),
(3,True)
])
def test_2d_input_tuple(nlevels, include_scale):
in_ = tf.placeholder(tf.float32, [512, 512])
t = dtcwt.Transform2d()
if include_scale:
Yl, Yh, Yscale = unpack(t.forward(in_, nlevels, include_scale), 'tf')
else:
Yl, Yh = unpack(t.forward(in_, nlevels, include_scale), 'tf')
# At level 1, the lowpass output will be the same size as the input. At
# levels above that, it will be half the size per level
extent = 512 * 2**(-(nlevels-1))
assert Yl.get_shape().as_list() == [extent, extent]
assert Yl.dtype == tf.float32
for i in range(nlevels):
extent = 512 * 2**(-(i+1))
assert Yh[i].get_shape().as_list() == [extent, extent, 6]
assert Yh[i].dtype == tf.complex64
if include_scale:
assert Yscale[i].get_shape().as_list() == [2*extent, 2*extent]
assert Yscale[i].dtype == tf.float32
@skip_if_no_tf
@pytest.mark.parametrize("nlevels, include_scale, batch_size", [
(2,False,None),
(2,True,10),
(4,False,None),
(3,True,2)
])
def test_batch_input(nlevels, include_scale, batch_size):
in_ = tf.placeholder(tf.float32, [batch_size, 512, 512])
t = dtcwt.Transform2d()
p = t.forward_channels(in_, "nhw", nlevels, include_scale)
# At level 1, the lowpass output will be the same size as the input. At
# levels above that, it will be half the size per level
extent = 512 * 2**(-(nlevels-1))
assert p.lowpass_op.get_shape().as_list() == [batch_size, extent, extent]
assert p.lowpass_op.dtype == tf.float32
for i in range(nlevels):
extent = 512 * 2**(-(i+1))
assert (p.highpasses_ops[i].get_shape().as_list() ==
[batch_size, extent, extent, 6])
assert p.highpasses_ops[i].dtype == tf.complex64
if include_scale:
assert (p.scales_ops[i].get_shape().as_list() ==
[batch_size, 2*extent, 2*extent])
assert p.scales_ops[i].dtype == tf.float32
@skip_if_no_tf
@pytest.mark.parametrize("nlevels, include_scale, batch_size", [
(2,False,None),
(2,True,10),
(4,False,None),
(3,True,2)
])
def test_batch_input_tuple(nlevels, include_scale, batch_size):
in_ = tf.placeholder(tf.float32, [batch_size, 512, 512])
t = dtcwt.Transform2d()
if include_scale:
Yl, Yh, Yscale = unpack(
t.forward_channels(in_, "nhw", nlevels, include_scale), "tf")
else:
Yl, Yh = unpack(
t.forward_channels(in_, "nhw", nlevels, include_scale), "tf")
# At level 1, the lowpass output will be the same size as the input. At
# levels above that, it will be half the size per level
extent = 512 * 2**(-(nlevels-1))
assert Yl.get_shape().as_list() == [batch_size, extent, extent]
assert Yl.dtype == tf.float32
for i in range(nlevels):
extent = 512 * 2**(-(i+1))
assert Yh[i].get_shape().as_list() == [batch_size, extent, extent, 6]
assert Yh[i].dtype == tf.complex64
if include_scale:
assert (Yscale[i].get_shape().as_list() ==
[batch_size, 2*extent, 2*extent])
assert Yscale[i].dtype == tf.float32
@skip_if_no_tf
@pytest.mark.parametrize("nlevels, channels", [
(2,5),
(2,2),
(4,10),
(3,6)
])
def test_multichannel(nlevels, channels):
in_ = tf.placeholder(tf.float32, [None, 512, 512, channels])
t = dtcwt.Transform2d()
Yl, Yh, Yscale = unpack(
t.forward_channels(in_, "nhwc", nlevels, include_scale=True), "tf")
# At level 1, the lowpass output will be the same size as the input. At
# levels above that, it will be half the size per level
extent = 512 * 2**(-(nlevels-1))
assert Yl.get_shape().as_list() == [None, extent, extent, channels]
assert Yl.dtype == tf.float32
for i in range(nlevels):
extent = 512 * 2**(-(i+1))
assert (Yh[i].get_shape().as_list() ==
[None, extent, extent, channels, 6])
assert Yh[i].dtype == tf.complex64
assert Yscale[i].get_shape().as_list() == [
None, 2*extent, 2*extent, channels]
assert Yscale[i].dtype == tf.float32
|