1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
import os
import numpy as np
from dtcwt.compat import dtwavexfm3, dtwaveifm3
from dtcwt.coeffs import biort, qshift
GRID_SIZE=32
SPHERE_RAD=0.4 * GRID_SIZE
TOLERANCE = 1e-12
def setup_module():
global ellipsoid
grid = slice(-(GRID_SIZE>>1), (GRID_SIZE>>1))
X, Y, Z = np.mgrid[grid,grid,grid]
Y = Y * 1.2
Z = Z * 1.4
r = np.sqrt(X*X + Y*Y + Z*Z)
ellipsoid = np.where(r <= SPHERE_RAD, 1.0, 0.0).astype(np.float64)
def test_ellipsoid():
# Check general aspects of ellipsoid are OK
assert ellipsoid.shape == (GRID_SIZE,GRID_SIZE,GRID_SIZE)
assert ellipsoid.min() == 0
assert ellipsoid.max() == 1
def test_simple_level_1_xfm():
# Just tests that the transform broadly works and gives expected size output
Yl, Yh = dtwavexfm3(ellipsoid, 1)
assert Yl.shape == (GRID_SIZE,GRID_SIZE,GRID_SIZE)
assert len(Yh) == 1
def test_simple_level_1_recon():
# Test for perfect reconstruction with 1 level
Yl, Yh = dtwavexfm3(ellipsoid, 1)
ellipsoid_recon = dtwaveifm3(Yl, Yh)
assert ellipsoid.size == ellipsoid_recon.size
assert np.max(np.abs(ellipsoid - ellipsoid_recon)) < TOLERANCE
def test_simple_level_1_recon_haar():
# Test for perfect reconstruction with 1 level and Haar wavelets
# Form Haar wavelets
h0 = np.array((1.0, 1.0))
g0 = h0
h0 = h0 / np.sum(h0)
g0 = g0 / np.sum(g0)
h1 = g0 * np.cumprod(-np.ones_like(g0))
g1 = -h0 * np.cumprod(-np.ones_like(h0))
haar = (h0, g0, h1, g1)
Yl, Yh = dtwavexfm3(ellipsoid, 1, biort=haar)
ellipsoid_recon = dtwaveifm3(Yl, Yh, biort=haar)
assert ellipsoid.size == ellipsoid_recon.size
assert np.max(np.abs(ellipsoid - ellipsoid_recon)) < TOLERANCE
def test_simple_level_2_xfm():
# Just tests that the transform broadly works and gives expected size output
Yl, Yh = dtwavexfm3(ellipsoid, 2)
assert Yl.shape == (GRID_SIZE>>1,GRID_SIZE>>1,GRID_SIZE>>1)
assert len(Yh) == 2
def test_simple_level_2_recon():
# Test for perfect reconstruction with 2 levels
Yl, Yh = dtwavexfm3(ellipsoid, 2)
ellipsoid_recon = dtwaveifm3(Yl, Yh)
assert ellipsoid.size == ellipsoid_recon.size
assert np.max(np.abs(ellipsoid - ellipsoid_recon)) < TOLERANCE
def test_simple_level_4_xfm():
# Just tests that the transform broadly works and gives expected size output
Yl, Yh = dtwavexfm3(ellipsoid, 4)
assert Yl.shape == (GRID_SIZE>>3,GRID_SIZE>>3,GRID_SIZE>>3)
assert len(Yh) == 4
def test_simple_level_4_recon():
# Test for perfect reconstruction with 3 levels
Yl, Yh = dtwavexfm3(ellipsoid, 4)
ellipsoid_recon = dtwaveifm3(Yl, Yh)
assert ellipsoid.size == ellipsoid_recon.size
assert np.max(np.abs(ellipsoid - ellipsoid_recon)) < TOLERANCE
def test_simple_level_4_recon_custom_wavelets():
# Test for perfect reconstruction with 3 levels
b = biort('legall')
q = qshift('qshift_06')
Yl, Yh = dtwavexfm3(ellipsoid, 4, biort=b, qshift=q)
ellipsoid_recon = dtwaveifm3(Yl, Yh, biort=b, qshift=q)
assert ellipsoid.size == ellipsoid_recon.size
assert np.max(np.abs(ellipsoid - ellipsoid_recon)) < TOLERANCE
def test_simple_level_4_xfm_ext_mode_8():
# Just tests that the transform broadly works and gives expected size output
crop_ellipsoid = ellipsoid[:62,:58,:54]
Yl, Yh = dtwavexfm3(crop_ellipsoid, 4, ext_mode=8)
assert len(Yh) == 4
def test_simple_level_4_recon_ext_mode_8():
# Test for perfect reconstruction with 3 levels
crop_ellipsoid = ellipsoid[:62,:58,:54]
Yl, Yh = dtwavexfm3(crop_ellipsoid, 4, ext_mode=8)
ellipsoid_recon = dtwaveifm3(Yl, Yh)
assert crop_ellipsoid.size == ellipsoid_recon.size
assert np.max(np.abs(crop_ellipsoid - ellipsoid_recon)) < TOLERANCE
def test_simple_level_4_xfm_ext_mode_4():
# Just tests that the transform broadly works and gives expected size output
crop_ellipsoid = ellipsoid[:62,:54,:58]
Yl, Yh = dtwavexfm3(crop_ellipsoid, 4, ext_mode=4)
assert len(Yh) == 4
def test_simple_level_4_recon_ext_mode_4():
# Test for perfect reconstruction with 3 levels
crop_ellipsoid = ellipsoid[:62,:54,:58]
Yl, Yh = dtwavexfm3(crop_ellipsoid, 4, ext_mode=4)
ellipsoid_recon = dtwaveifm3(Yl, Yh)
assert crop_ellipsoid.size == ellipsoid_recon.size
assert np.max(np.abs(crop_ellipsoid - ellipsoid_recon)) < TOLERANCE
def test_integer_input():
# Check that an integer input is correctly coerced into a floating point
# array
Yl, Yh = dtwavexfm3(np.ones((4,4,4), dtype=np.int32))
assert np.any(Yl != 0)
def test_integer_perfect_recon():
# Check that an integer input is correctly coerced into a floating point
# array and reconstructed
A = (np.random.random((4,4,4)) * 5).astype(np.int32)
Yl, Yh = dtwavexfm3(A)
B = dtwaveifm3(Yl, Yh)
assert np.max(np.abs(A-B)) < 1e-12
def test_float32_input():
# Check that an float32 input is correctly output as float32
Yl, Yh = dtwavexfm3(ellipsoid.astype(np.float32))
assert np.issubsctype(Yl.dtype, np.float32)
assert np.all(list(np.issubsctype(x.dtype, np.complex64) for x in Yh))
def test_float32_recon():
# Check that an float32 input is correctly output as float32
Yl, Yh = dtwavexfm3(ellipsoid.astype(np.float32))
assert np.issubsctype(Yl.dtype, np.float32)
assert np.all(list(np.issubsctype(x.dtype, np.complex64) for x in Yh))
recon = dtwaveifm3(Yl, Yh)
assert np.issubsctype(recon.dtype, np.float32)
def test_level_4_recon_discarding_level_1():
# Test for non-perfect but reasonable reconstruction
Yl, Yh = dtwavexfm3(ellipsoid, 4, discard_level_1=True)
ellipsoid_recon = dtwaveifm3(Yl, Yh)
assert ellipsoid.size == ellipsoid_recon.size
# Check that we mostly reconstruct correctly
assert np.median(np.abs(ellipsoid - ellipsoid_recon)[:]) < 1e-3
def test_level_4_discarding_level_1():
# Test that level >= 2 highpasses are identical
Yl1, Yh1 = dtwavexfm3(ellipsoid, 4, discard_level_1=True)
Yl2, Yh2 = dtwavexfm3(ellipsoid, 4, discard_level_1=False)
assert np.abs(Yl1-Yl2).max() < TOLERANCE
for a, b in zip(Yh1[1:], Yh2[1:]):
assert np.abs(a-b).max() < TOLERANCE
# vim:sw=4:sts=4:et
|