1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
# Copyright 2021 The Duet Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Internal implementation details for duet."""
import enum
import functools
import heapq
import itertools
import signal
import threading
import time
from concurrent.futures import Future
from contextvars import ContextVar
from typing import (
Any,
Awaitable,
Callable,
cast,
Coroutine,
Generic,
Iterator,
List,
Optional,
Set,
TypeVar,
)
import duet.futuretools as futuretools
T = TypeVar("T")
class Interrupt(BaseException):
def __init__(self, task, error):
self.task = task
self.error = error
class TaskState(enum.Enum):
WAITING = 0
SUCCEEDED = 1
FAILED = 2
class TaskStateError(Exception):
def __init__(self, state: TaskState, expected_state: TaskState) -> None:
self.state = state
self.expected_state = expected_state
super().__init__(f"state: {state}, expected: {expected_state}")
# Sentinel local variable name that we insert into coroutines.
# This allows us to detect whether a task is running when we get Ctrl-C.
LOCALS_TASK_SCHEDULER = "__duet_task_scheduler__"
class Task(Generic[T]):
def __init__(
self, awaitable: Awaitable[T], scheduler: "Scheduler", main_task: Optional["Task"]
) -> None:
self.scheduler = scheduler
self.main_task = main_task
self._state = TaskState.WAITING
self._future: Optional[Future] = None
self._ready_future = futuretools.AwaitableFuture[None]()
self._ready_future.set_result(None) # Ready to advance.
self.interruptible = True
self._interrupt: Optional[Interrupt] = None
self._result: Optional[T] = None
self._error: Optional[Exception] = None
self._deadlines: List[DeadlineEntry] = []
if main_task and main_task.deadline_entry is not None:
entry = main_task.deadline_entry
self.push_deadline(deadline=entry.deadline, timeout_error=entry.timeout_error)
self._generator = awaitable.__await__() # Returns coroutine generator.
if isinstance(awaitable, Coroutine):
awaitable.cr_frame.f_locals.setdefault(LOCALS_TASK_SCHEDULER, scheduler)
def _check_state(self, expected_state: TaskState) -> None:
if self._state != expected_state:
raise TaskStateError(self._state, expected_state)
@property
def future(self) -> Optional[Future]:
self._check_state(TaskState.WAITING)
return self._future
@property
def result(self) -> T:
self._check_state(TaskState.SUCCEEDED)
return cast(T, self._result)
@property
def done(self) -> bool:
return self._state == TaskState.SUCCEEDED or self._state == TaskState.FAILED
def add_ready_callback(self, callback: Callable[["Task"], Any]) -> None:
self._check_state(TaskState.WAITING)
self._ready_future.add_done_callback(lambda _: callback(self))
def advance(self):
if self.done:
return
if self._state == TaskState.WAITING:
self._ready_future.result()
token = _current_task.set(self)
try:
if self._interrupt:
interrupt = self._interrupt
self._interrupt = None
if interrupt.task is self:
error = interrupt.error
else:
error = interrupt
f = self._generator.throw(error)
else:
f = next(self._generator)
except StopIteration as e:
self._result = e.value
self._state = TaskState.SUCCEEDED
return
except BaseException as error:
self._error = error
self._state = TaskState.FAILED
if self.main_task:
self.main_task.interrupt(self, error)
return
else:
raise
else:
if not isinstance(f, Future):
raise TypeError(f"expected Future, got {type(f)}: {f}")
ready_future = futuretools.AwaitableFuture()
f.add_done_callback(lambda _: ready_future.try_set_result(None))
self._future = f
self._ready_future = ready_future
self._state = TaskState.WAITING
finally:
_current_task.reset(token)
def push_deadline(self, deadline: float, timeout_error: TimeoutError) -> None:
if self._deadlines:
entry = self._deadlines[-1]
if entry.deadline < deadline:
deadline = entry.deadline
timeout_error = entry.timeout_error
entry = DeadlineEntry(self, deadline, timeout_error)
self.scheduler.add_deadline(entry)
self._deadlines.append(entry)
def pop_deadline(self) -> None:
entry = self._deadlines.pop(-1)
entry.valid = False
@property
def deadline_entry(self) -> Optional["DeadlineEntry"]:
return self._deadlines[-1] if self._deadlines else None
def interrupt(self, task, error):
if self.done or not self.interruptible or self._interrupt:
return
self._interrupt = Interrupt(task, error)
self._ready_future.try_set_result(None)
if self._future:
self._future.cancel()
def close(self):
self._generator.close()
self.scheduler = None
self.main_task = None
_current_task: ContextVar[Task] = ContextVar("current_task")
def current_task() -> Task:
"""Gets the currently-running duet task.
This must be called from within a running async function, or else it will
raise a RuntimeError.
"""
try:
return _current_task.get()
except LookupError:
raise RuntimeError("Can only be called from an async function.")
def current_scheduler() -> "Scheduler":
"""Gets the currently-running duet scheduler.
This must be called from within a running async function, or else it will
raise a RuntimeError.
"""
return current_task().scheduler
def any_ready(tasks: Set[Task]) -> futuretools.AwaitableFuture[None]:
"""Returns a Future that will fire when any of the given tasks is ready."""
if not tasks or any(task.done for task in tasks):
return futuretools.completed_future(None)
f = futuretools.AwaitableFuture[None]()
for task in tasks:
task.add_ready_callback(lambda _: f.try_set_result(None))
return f
class ReadySet:
"""Container for an ordered set of tasks that are ready to advance."""
def __init__(self):
self._cond = threading.Condition()
self._buffer = futuretools.BufferGroup()
self._tasks: List[Task] = []
self._task_set: Set[Task] = set()
def register(self, task: Task) -> None:
"""Registers task to be added to this set when it is ready."""
self._buffer.add(task.future)
task.add_ready_callback(self._add)
def _add(self, task: Task) -> None:
"""Adds the given task to the ready set, if it is not already there."""
with self._cond:
if task not in self._task_set:
self._task_set.add(task)
self._tasks.append(task)
self._cond.notify()
def get_all(self, timeout: Optional[float] = None) -> List[Task]:
"""Gets all ready tasks and clears the ready set.
If no tasks are ready yet, we flush buffered futures to notify them
that they should proceed, and then block until one or more tasks become
ready.
Raises:
ValueError if timeout is < 0 or > threading.TIMEOUT_MAX
"""
if timeout is not None and (timeout < 0 or timeout > threading.TIMEOUT_MAX):
raise ValueError(f"invalid timeout: {timeout}")
with self._cond:
if self._tasks:
return self._pop_tasks()
# Flush buffered futures to ensure we make progress. Note that we must
# release the condition lock before flushing to avoid a deadlock if
# buffered futures complete and trigger a call to self._add.
self._buffer.flush()
with self._cond:
if not self._tasks:
if not self._cond.wait(timeout):
raise TimeoutError()
return self._pop_tasks()
def _pop_tasks(self) -> List[Task]:
tasks = self._tasks
self._tasks = []
self._task_set.clear()
return tasks
def interrupt(self) -> None:
with self._cond:
self._cond.notify()
@functools.total_ordering
class DeadlineEntry:
"""A entry for one Deadline in the Scheduler's priority queue.
This follows the implementation notes in the stdlib heapq docs:
https://docs.python.org/3/library/heapq.html#priority-queue-implementation-notes
Attributes:
task: The task associated with this deadline.
deadline: Absolute time when the deadline will elapse.
count: Monotonically-increasing counter to preserve creation order when
comparing entries with the same deadline.
valid: Flag indicating whether the deadline is still valid. If the task
exits its scope before the deadline elapses, we mark the deadline as
invalid but leave it in the scheduler's priority queue since removal
would require an O(n) scan. The scheduler ignores invalid deadlines
when they elapse.
"""
_counter = itertools.count()
def __init__(self, task: Task, deadline: float, timeout_error: TimeoutError):
self.task = task
self.deadline = deadline
self.timeout_error = timeout_error
self.count = next(self._counter)
self._cmp_val = (deadline, self.count)
self.valid = True
def __eq__(self, other: Any) -> bool:
if not isinstance(other, DeadlineEntry):
return NotImplemented
return self._cmp_val == other._cmp_val
def __lt__(self, other: Any) -> bool:
if not isinstance(other, DeadlineEntry):
return NotImplemented
return self._cmp_val < other._cmp_val
def __repr__(self) -> str:
return f"DeadlineEntry({self.task}, {self.deadline}, {self.count})"
class Scheduler:
def __init__(self) -> None:
self.active_tasks: Set[Task] = set()
self._ready_tasks = ReadySet()
self._prev_signal: Optional[Callable] = None
self._interrupted = False
self._deadlines: List[DeadlineEntry] = []
def spawn(self, awaitable: Awaitable[Any], main_task: Optional[Task] = None) -> Task:
"""Spawns a new Task to run an awaitable in this Scheduler.
Note that the task will not be advanced until the next scheduler tick.
Also, note that this function is safe to call from sync code (such as
duet.run) or async code (such as within a scope).
Args:
func: The async function to run.
*args: Args for func.
**kwds: Keyword args for func.
Returns:
A Task to run the given awaitable.
"""
task = Task(awaitable, scheduler=self, main_task=main_task)
self.active_tasks.add(task)
self._ready_tasks.register(task)
return task
def time(self) -> float:
return time.time()
def add_deadline(self, entry: DeadlineEntry) -> None:
heapq.heappush(self._deadlines, entry)
def get_next_deadline(self) -> Optional[float]:
while self._deadlines:
if not self._deadlines[0].valid:
heapq.heappop(self._deadlines)
continue
return self._deadlines[0].deadline
return None
def get_deadline_entries(self, deadline: float) -> Iterator[DeadlineEntry]:
while self._deadlines and self._deadlines[0].deadline <= deadline:
entry = heapq.heappop(self._deadlines)
if entry.valid:
yield entry
def tick(self):
"""Runs the scheduler ahead by one tick.
This waits for at least one active task to complete, then advances all
ready tasks and sets up a new future to be notified later by tasks that
are still active (or yet to be spawned). Raises a RuntimeError if there
are no currently active tasks.
"""
if not self.active_tasks:
raise RuntimeError("tick called with no active tasks")
if self._interrupted:
task = next(iter(self.active_tasks))
task.interrupt(task, KeyboardInterrupt)
self._interrupted = False
deadline = self.get_next_deadline()
if deadline is None:
ready_tasks = self._ready_tasks.get_all(None)
else:
ready_tasks: List[Task] = []
for i in itertools.count():
timeout = deadline - self.time()
if i and timeout < 0:
break
try:
ready_tasks = self._ready_tasks.get_all(
max(0, min(timeout, threading.TIMEOUT_MAX))
)
break
except TimeoutError:
pass
if not ready_tasks:
for entry in self.get_deadline_entries(deadline):
entry.task.interrupt(entry.task, entry.timeout_error)
ready_tasks = self._ready_tasks.get_all(None)
for task in ready_tasks:
try:
task.advance()
finally:
if task.done:
task.close()
self.active_tasks.discard(task)
else:
self._ready_tasks.register(task)
def _interrupt(self, signum: int, frame: Optional[Any]) -> None:
"""Interrupt signal handler used while this scheduler is running.
This is inspired by trio's interrupt handling, described here:
https://vorpus.org/blog/control-c-handling-in-python-and-trio/
If the interrupted frame is inside a running task, which we detect by
looking for a special local variable inserted into the task coroutine,
we simply raise a KeyboardInterrupt as usual. Otherwise we set a flag
which will get checked on the next tick() and cause a task to be
interrupted.
One important difference from trio is that duet is reentrant, so when
detecting whether we are in a task we have to check whether the task's
scheduler is self. If the interrupted frame is running in a task of a
different scheduler, that should not raise KeyboardInterrupt directly.
"""
if self._in_task(frame):
raise KeyboardInterrupt
else:
self._interrupted = True
self._ready_tasks.interrupt()
def _in_task(self, frame) -> bool:
while frame is not None:
if frame.f_locals.get(LOCALS_TASK_SCHEDULER, None) is self:
return True
frame = frame.f_back
return False
def init_signals(self):
if (
threading.current_thread() == threading.main_thread()
and signal.getsignal(signal.SIGINT) == signal.default_int_handler
):
self._prev_signal = signal.signal(signal.SIGINT, self._interrupt)
def cleanup_signals(self):
if self._prev_signal:
signal.signal(signal.SIGINT, self._prev_signal)
|