File: test_weighting.py

package info (click to toggle)
python-dynasor 2.1-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 22,008 kB
  • sloc: python: 5,263; sh: 20; makefile: 3
file content (389 lines) | stat: -rw-r--r-- 16,401 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import numpy as np
import pytest

from dynasor.post_processing import NeutronScatteringLengths, \
        XRayFormFactors, Weights, get_weighted_sample


def test_weigting_with_unity_weights(dynamic_sample_with_incoh):
    """Set all weights to 1, should get back initial structure factors"""
    weights_coh = {'A': 1.0, 'B': 1.0}
    weights_incoh = {'A': 1.0, 'B': 1.0}
    weights = Weights(weights_coh, weights_incoh)

    sample = dynamic_sample_with_incoh
    sample_weighted = get_weighted_sample(sample, weights)

    # compare correlation functions
    for key in sample.available_correlation_functions:
        expected = sample[key]
        computed = sample_weighted[key]
        assert np.allclose(expected, computed)

    # compare simulation parameters
    assert sample.atom_types == sample_weighted.atom_types
    assert sample.pairs == sample_weighted.pairs
    assert sample.particle_counts == sample_weighted.particle_counts
    assert np.allclose(sample.cell, sample_weighted.cell)
    assert sorted(sample.meta_data.keys()) == sorted(sample_weighted.meta_data.keys())
    assert sorted(sample._data_keys) == sorted(sample_weighted._data_keys)

    # Check that initial keys (such as q_points, time and omega) are copied.
    for key in sample.dimensions:
        assert np.allclose(sample[key], sample_weighted[key])


def test_weigting_with_zero_weights(dynamic_sample_with_incoh):
    """Set all weights to 0.0, all resulting structure factors should be zero"""
    weights_coh = {'A': 0.0, 'B': 0.0}
    weights_incoh = {'A': 0.0, 'B': 0.0}
    weights = Weights(weights_coh, weights_incoh)

    sample = dynamic_sample_with_incoh
    sample_weighted = get_weighted_sample(sample, weights)

    # compare correlation functions
    for key in sample.available_correlation_functions:
        computed = sample_weighted[key]
        expected = np.zeros(computed.shape)
        assert np.allclose(expected, computed)

    # compare simulation parameters
    assert sample.atom_types == sample_weighted.atom_types
    assert sample.pairs == sample_weighted.pairs
    assert sample.particle_counts == sample_weighted.particle_counts
    assert np.allclose(sample.cell, sample_weighted.cell)
    assert sorted(sample.meta_data.keys()) == sorted(sample_weighted.meta_data.keys())
    assert sorted(sample._data_keys) == sorted(sample_weighted._data_keys)

    # Check that initial keys (such as q_points, time and omega) are copied.
    for key in sample.dimensions:
        assert np.allclose(sample[key], sample_weighted[key])


def test_weigting_with_real_weights(dynamic_sample_with_incoh):
    weights_coh = {'A': 2.792, 'B': 5.43}
    weights_incoh = {'A': 12.89, 'B': 74.222}
    weights = Weights(weights_coh, weights_incoh)

    sample = dynamic_sample_with_incoh
    sample_weighted = get_weighted_sample(sample, weights)

    # compare coherent correlation functions
    names = ['Fqt_coh', 'Sqw_coh', 'Clqt', 'Clqw', 'Ctqt', 'Ctqw']
    pairs = [('A', 'A'), ('A', 'B'), ('B', 'B')]
    for name in names:
        # check partials
        expected_total = np.zeros(sample.Fqt_coh.shape)
        for atom_type1, atom_type2 in pairs:
            key = f'{name}_{atom_type1}_{atom_type2}'
            expected = weights_coh[atom_type1] * weights_coh[atom_type2] * sample[key]
            expected_total += expected
            assert np.allclose(expected, sample_weighted[key])
        # check total
        assert np.allclose(expected_total, sample_weighted[name])

    # compare incoherent correlation functions
    names = ['Fqt_incoh', 'Sqw_incoh']
    atom_types = ['A', 'B']
    for name in names:
        # check partials
        expected_total = np.zeros(sample.Fqt_incoh.shape)
        for atom_type in atom_types:
            key = f'{name}_{atom_type}'
            expected = weights_incoh[atom_type] * sample[key]
            expected_total += expected
            assert np.allclose(expected, sample_weighted[key])
        # check total
        assert np.allclose(expected_total, sample_weighted[name])

    # compare simulation parameters
    assert sample.atom_types == sample_weighted.atom_types
    assert sample.pairs == sample_weighted.pairs
    assert sample.particle_counts == sample_weighted.particle_counts
    assert np.allclose(sample.cell, sample_weighted.cell)
    assert sorted(sample.meta_data.keys()) == sorted(sample_weighted.meta_data.keys())
    assert sorted(sample._data_keys) == sorted(sample_weighted._data_keys)

    # Check that initial keys (such as q_points, time and omega) are copied.
    for key in sample.dimensions:
        assert np.allclose(sample[key], sample_weighted[key])


def test_weigting_with_real_weights_without_incoh(dynamic_sample_without_incoh):
    weights_coh = {'A': -12.792, 'B': 45.43}
    weights = Weights(weights_coh)

    sample = dynamic_sample_without_incoh
    sample_weighted = get_weighted_sample(sample, weights)

    # compare coherent correlation functions
    names = ['Fqt_coh', 'Sqw_coh', 'Clqt', 'Clqw', 'Ctqt', 'Ctqw']
    pairs = [('A', 'A'), ('A', 'B'), ('B', 'B')]
    for name in names:
        # check partials
        expected_total = np.zeros(sample.Fqt_coh.shape)
        for atom_type1, atom_type2 in pairs:
            key = f'{name}_{atom_type1}_{atom_type2}'
            expected = weights_coh[atom_type1] * weights_coh[atom_type2] * sample[key]
            expected_total += expected
            assert np.allclose(expected, sample_weighted[key])
        # check total
        assert np.allclose(expected_total, sample_weighted[name])


def test_weighting_of_static_sample(static_sample):
    weights_coh = {'A': 22.1, 'B': 5}
    weights = Weights(weights_coh)

    sample = static_sample
    sample_weighted = get_weighted_sample(sample, weights)

    # compare partial Sq
    name = 'Sq'
    pairs = [('A', 'A'), ('A', 'B'), ('B', 'B')]
    expected_total = np.zeros(sample.Sq.shape)
    for atom_type1, atom_type2 in pairs:
        key = f'{name}_{atom_type1}_{atom_type2}'
        expected = weights_coh[atom_type1] * weights_coh[atom_type2] * sample[key]
        expected_total += expected
        assert np.allclose(expected, sample_weighted[key])

    # check total
    assert np.allclose(expected_total, sample_weighted[name])


def test_weighting_without_incoh_weights(dynamic_sample_with_incoh):
    """ check that weighting where weights does not support incoh works as expected """
    weights_coh = {'A': 2.792, 'B': 5.43}
    weights = Weights(weights_coh)

    with pytest.warns(UserWarning):
        sample_weighted = get_weighted_sample(dynamic_sample_with_incoh, weights)

    expected_keys = ['Fqt_coh', 'Fqt_coh_A_A', 'Fqt_coh_A_B', 'Fqt_coh_B_B', 'Fqt',
                     'Sqw_coh', 'Sqw_coh_A_A', 'Sqw_coh_A_B', 'Sqw_coh_B_B', 'Sqw',
                     'Clqt', 'Clqt_A_A', 'Clqt_A_B', 'Clqt_B_B',
                     'Clqw', 'Clqw_A_A', 'Clqw_A_B', 'Clqw_B_B',
                     'Ctqt', 'Ctqt_A_A', 'Ctqt_A_B', 'Ctqt_B_B',
                     'Ctqw', 'Ctqw_A_A', 'Ctqw_A_B', 'Ctqw_B_B']
    assert sorted(sample_weighted.available_correlation_functions) == sorted(expected_keys)
    assert sorted(sample_weighted.dimensions) == ['omega', 'q_points', 'time']

    keys_not_expected = ['Fqt_incoh', 'Fqt_incoh_A_A', 'Fqt_incoh_A_B', 'Fqt_incoh_B_B',
                         'Sqw_incoh', 'Sqw_incoh_A_A', 'Sqw_incoh_A_B', 'Sqw_incoh_B_B']
    for key in keys_not_expected:
        assert key not in sample_weighted.available_correlation_functions
        assert key not in sample_weighted._data_keys


def test_weighting_without_current_support(dynamic_sample_without_incoh):
    """ check that weighting where weights does not support currents works as expected """
    weights_coh = {'A': 2.792, 'B': 5.43}
    weights_incoh = {'A': 12.89, 'B': 74.222}
    weights = Weights(weights_coh, weights_incoh, supports_currents=False)

    with pytest.warns(UserWarning):
        sample_weighted = get_weighted_sample(dynamic_sample_without_incoh, weights)

    expected_keys = ['Fqt_coh', 'Fqt_coh_A_A', 'Fqt_coh_A_B', 'Fqt_coh_B_B', 'Fqt',
                     'Sqw_coh', 'Sqw_coh_A_A', 'Sqw_coh_A_B', 'Sqw_coh_B_B', 'Sqw']
    assert sorted(sample_weighted.available_correlation_functions) == sorted(expected_keys)
    assert sorted(sample_weighted.dimensions) == ['omega', 'q_points', 'time']


# Neutron weights
@pytest.mark.parametrize('species,b_coh,b_inc', [
    (['H'], {'H': -3.73904}, {'H': 25.27081**2}),
    (['C', 'O'], {'C': 6.64603, 'O': 5.80307}, {'C': (-0.00572)**2, 'O': 0.0000684**2}),
    ])
def test_neutron_scattering_lengths_isotope_average(species, b_coh, b_inc):
    """
    Ensure that the isotope average scattering lengths
    matches the NIST table:
    https://www.ncnr.nist.gov/resources/n-lengths/list.html
    """
    weights = NeutronScatteringLengths(species)

    for s in species:
        assert np.isclose(weights.get_weight_coh(s), b_coh[s])
        assert np.isclose(weights.get_weight_incoh(s), b_inc[s])


@pytest.mark.parametrize('species,b_coh,b_inc,abundance', [
    (['H'], {'H': 2.53994}, {'H': 9.16762**2}, {'H': {1: 0.33, 2: 0.30, 3: 0.37}}),
    (
        ['C', 'O'], {'C': 6.32833, 'O': 5.81575}, {'C': (-0.364)**2, 'O': 0.045**2},
        {'C': {12: 0.3, 13: 0.7}, 'O': {16: 0.25, 17: 0.25, 18: 0.5}}
     ),
    ])
def test_neutron_scattering_lengths_custom_abundance(species, b_coh, b_inc, abundance):
    """Make sure abundance weighting works as intended."""
    weights = NeutronScatteringLengths(species, abundance)

    for s in species:
        assert np.isclose(weights.get_weight_coh(s), b_coh[s])
        assert np.isclose(weights.get_weight_incoh(s), b_inc[s])

    # Fetch the abundances and make sure they match
    for species, abs in abundance.items():
        assert abs == weights.abundances[species]


@pytest.mark.parametrize('species,abundance,should_raise', [
        (['K'], None, True),
        (['K'], {'K': {39: 0.93, 40: 0, 41: 0.07}}, False)
    ])
def test_neutron_scattering_lengths_missing_in_database(species, abundance, should_raise):
    """Should throw a value error when requested species has missing data in the database."""
    if should_raise:
        with pytest.raises(ValueError) as e:
            NeutronScatteringLengths(species, abundance)
        assert 'Non-zero abundance of 40K' in str(e)
    else:
        NeutronScatteringLengths(species, abundance)


def test_neutron_scattering_lengths_invalid_total_abundance():
    """Should throw a value error when the abundances does not add up to 1.0 for each species"""
    abundance = {'O': {16: 0.3, 17: 0.8, 18: 0.0}, 'N': {14: 0.8, 15: 0.2}}
    with pytest.raises(ValueError) as e:
        NeutronScatteringLengths(['O', 'N'], abundance)
    assert 'Abundance values for O do not sum up to 1.0' in str(e)


def test_neutron_scattering_lengths_invalid_isotope_in_abundance():
    """Should throw a value error when the selected isotope does not exist"""
    abundance = {'V': {10: 1.0}}
    with pytest.raises(ValueError) as e:
        NeutronScatteringLengths(['V'], abundance)
    assert 'No match in database for V and isotope 10' in str(e)


# X-ray weights
@pytest.mark.parametrize('species,q_norm,method', [
    (['He'], np.array([1, 2, 3]), 'waasmaier-1995'),
    (['C', 'O'], np.array([1, 2, 3, 0.5999]).reshape(-1, 1), 'waasmaier-1995'),
    (['Sb3+', 'O1-'], np.array([0.1, 0.2]), 'waasmaier-1995')
    ])
def test_xray_form_factors_shapes(species, q_norm, method):
    weights = XRayFormFactors(species, method)
    for s in species:
        for q in q_norm:
            coh = weights.get_weight_coh(s, q)
            incoh = weights.get_weight_incoh(s, q)
            assert incoh is None
            assert coh.shape is not None


@pytest.mark.parametrize('species,q_norm,method,result', [
        (['He'], np.array([1, 2]), 'waasmaier-1995', [0.09539912837127983, 0.0097169894132503]),
        (['O'], np.array([1, 2]), 'waasmaier-1995', [1.3770183528975948, 0.6732633649895161]),
    ])
def test_xray_form_factors_numeric(species, q_norm, method, result):
    """
    Manually compute f0 from the given source and check that the numbers match.
    Note that this does not guarantee that no errors have been made in OCR:ing
    the tables; it just serves as a spot-check.
    """
    q_norm = np.array(q_norm)*4*np.pi  # updated the definition of s after computing ref values.
    weights = XRayFormFactors(species, method)
    for s in species:
        for q, expected in zip(q_norm, result):
            coh = weights.get_weight_coh(s, q)
            assert np.isclose(coh, expected)


@pytest.mark.parametrize('species,q_norm,method', [
    (['H+'], np.array([1, 2, 3]), 'waasmaier-1995'),
    (['C-', 'O5+'], np.array([1, 2, 3]), 'waasmaier-1995'),
    (['H+', 'C'], np.array([0.1, 0.05, 2]), 'waasmaier-1995'),
    ])
def test_xray_form_factors_invalid_species(species, q_norm, method):
    """
    Some or all of the species are missing from the requested database.
    Should raise an error when missing species are requested.
    """
    with pytest.raises(ValueError) as e:
        XRayFormFactors(species, method)
    assert f'Missing tabulated values for requested species {species[0]}' in str(e)


@pytest.mark.parametrize('species,q_norm,method', [
    (['H'], np.array([1, 2, 3]), 'waasmaier-1995'),
    (['H', 'C'], np.array([0.1, 0.05, 2]), 'waasmaier-1995'),
    ])
def test_xray_form_factors_sets_hydrogen_to_zero(species, q_norm, method):
    """
    Some or all of the species are missing from the requested database.
    Should raise an error when missing species are requested.
    """
    warning = 'No parametrization for H. Setting form factor for H to zero'
    with pytest.warns(UserWarning, match=warning):
        weights = XRayFormFactors(species, method)
    weight_H = weights.get_weight_coh(species[0], q_norm[0])
    assert weight_H == 0.0


@pytest.mark.parametrize('species,q_norm,method,error', [
    (['He'], None, 'waasmaier-1995', 'missing 1 required positional argument'),
    (['He'], np.array([100]), 'waasmaier-1995',
     'Waasmaier parametrization is not reliable')
])
def test_xray_form_factors_invalid_q_norm(species, q_norm, method, error):

    """
    Some or all of the species are missing from the requested database.
    Should raise an error when missing species are requested.
    """
    weights = XRayFormFactors(species, method)
    if q_norm is None:
        with pytest.raises(TypeError) as e:
            weights.get_weight_coh(species[0])
        assert error in str(e)
    else:
        with pytest.warns(UserWarning, match=error):
            weights.get_weight_coh(species[0], q_norm[0])


# TODO integration tests for X-rays, neutrons and electrons
@pytest.mark.parametrize('sample_with_species,probe', [
    (['He', 'C'], 'neutrons'),
    (['He', 'C'], 'xrays'),
    (['He', 'C'], 'electrons')
], indirect=['sample_with_species'])
def test_weighting_integration_test(sample_with_species, probe):
    """
    Integration test where a mock sample is weighted by actual
    probe specific weights.
    """
    species = sample_with_species.atom_types
    atom_type = species[0]
    sqw = f'Sqw_coh_{atom_type}_{atom_type}'
    unweighted = sample_with_species[sqw]
    if probe == 'neutrons':
        weights = NeutronScatteringLengths(species)
        # The quotient between the unweighted and weighted Sqw for the first
        # species should be the scattering length for that species, for all
        # q_values.
        bi = weights.get_weight_coh(atom_type)
        scattering_length = np.ones(unweighted.shape)*bi**2
        expected = scattering_length

    elif probe == 'xrays':
        weights = XRayFormFactors(species, source='waasmaier-1995')
        # The quotient now depends on the norm of q.
        # Compute q_norm, and the prepare the expected
        # form factors.
        q_norms = np.linalg.norm(sample_with_species.q_points, axis=1)
        form_factors = np.reshape([weights.get_weight_coh(atom_type, q) for q in q_norms], (-1, 1))
        expected = form_factors**2
    elif probe == 'electrons':
        # TODO
        return
    with pytest.warns(UserWarning, match='The Weights does not support'):
        weighted_sample = get_weighted_sample(sample_with_species, weights)

    weighted = weighted_sample[sqw]
    quotient = weighted / unweighted
    assert np.allclose(quotient, expected)