File: filon.py

package info (click to toggle)
python-dynasor 2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 22,008 kB
  • sloc: python: 5,263; sh: 20; makefile: 3
file content (148 lines) | stat: -rw-r--r-- 4,278 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
"""
This module provides an implementation of Filon's integration formula.
For information about Filon's formula, see e.g.
`Abramowitz and Stegun, Handbook of Mathematical Functions,
section 25 <http://mathworld.wolfram.com/FilonsIntegrationFormula.html>`_ or
Allen and Tildesley, *Computer Simulation of Liquids*, Appendix D :cite:`AllTil87`.

Due to the algorithm the number of time samples must be odd i.e. t = dt * [0, ..., 2n]

for some angular frequency w

integral = f(x) @ (+[b/2, g, b, ..., b, g, b/2] * cos(w x)
                   +[-a,  0, 0, ..., 0, 0, a]   * sin(w x))

or

integral =
+ f[0   ] * (b/2 * cos(w x[0]) - a sin(w x[0]))
+ f[1   ] * (g   * cos(w x[1]))
+ f[2   ] * (b   * cos(w x[2]))
+ ...
+ f[2n-2] * (b   * cos(w x[2n-2]))
+ f[2n-1] * (g   * cos(w x[2n-1]))
+ f[2n  ] * (b/2 * cos(w x[2n]) - a sin(w x[2n]))

"""


import numpy as np
import numba
from numpy.typing import NDArray
from typing import Tuple


def fourier_cos_filon(f: NDArray[float],
                      dt: float) -> Tuple[NDArray[float], NDArray[float]]:
    r"""Calculates the direct Fourier cosine transform :math:`F(w)` of a
    function :math:`f(t)` using Filon's integration method.

    Parameters
    ----------
    f
        function values as a 2D array. second axis will be transformed.
        must contain an odd number of elements along second axis.
    dt
        spacing of t-axis (:math:`\Delta t`)

    Returns
    -------
    w
        w containes values in the interval [0, pi/dt).
        length of w is f.shape[1] // 2 + 1.
        These frequencies corresponds to the frequencies from an fft.
        w == 2*np.pi*np.fft.rfftfreq(f.shape[1], dt)
    F
        transform of f along second axis.
        equivalent to np.fft.rfft(f, axis=1).real

    Example
    -------
    A common use case is

    .. code-block:: python

        w, F = fourier_cos_filon(f, dt)
    """

    if f.ndim != 2:
        raise ValueError('f must be 2D and last axis corresponding to integration variable')

    if f.shape[1] % 2 == 0:  # Filon only works for odd N
        raise ValueError('f must contain an odd number of elements along second axis.')

    if f.shape[1] < 2:  # Time signal must be atleast three long
        raise ValueError('f must contain atleast 3 elements along second axis.')

    w = np.linspace(0, 2 * np.pi / (2 * dt), f.shape[1])

    return w, 2 * filon_2D(f, dt)


@numba.njit(fastmath=True, parallel=True)
def filon_2D(f: NDArray[float], dt: float) -> NDArray:
    """Calculates the fourier transform over the last axis using filons method"""

    N_rows, Nt = f.shape

    assert Nt % 2 == 1 and Nt > 1  # Filon only works for odd N

    dw = np.pi / ((Nt - 1) * dt)

    Nw = Nt

    filon_wr = np.zeros((Nw, N_rows), dtype=np.float64)

    for wi in numba.prange(Nw):
        w = wi * dw
        filon_wr[wi] = filon_2D_inner(f, dt, w)

    filon_wr *= dt

    return filon_wr.T.copy()


@numba.njit(fastmath=True)
def filon_2D_inner(f, dt, w):
    """Calculates the transform of 1D f"""

    N_rows, Nt = f.shape

    alpha, beta, gamma = _alpha_beta_gamma_single(dt * w)

    t_arr = np.arange(Nt) * dt

    phase = np.cos(w * t_arr)  # phase = np.sin(w * t_arr)  # for sin transform

    phase[::2] *= beta  # all evens get multiplied with beta
    phase[1:-1:2] *= gamma  # all odds get multiplied with gamma

    # The enpoints (even index) get an extra factor of 1/2
    phase[0] *= 0.5
    phase[-1] *= 0.5

    # The endpoints must also get an extra term
    phase[0] -= alpha * np.sin(w * t_arr[0])  # phase[0] += alpha * np.cos(w * t_arr[0])
    phase[-1] += alpha * np.sin(w * t_arr[-1])  # phase[-1] -= alpha * np.cos(w * t_arr[-1])

    filon = np.zeros(N_rows, dtype=np.float64)

    for r in range(N_rows):
        for t in range(Nt):
            filon[r] += f[r, t] * phase[t]

    return filon


@numba.njit(fastmath=False)
def _alpha_beta_gamma_single(t: float):
    # From theta (t), calculate alpha, beta, and gamma

    if t == 0:
        alpha, beta, gamma = 0.0, 2/3, 4/3
    else:
        alpha = (t**2 + t * np.sin(t) * np.cos(t) - 2 * np.sin(t)**2) / t**3
        beta = 2 * (t * (1 + np.cos(t)**2) - 2 * np.sin(t) * np.cos(t)) / t**3
        gamma = 4 * (np.sin(t) - t * np.cos(t)) / t**3

    return alpha, beta, gamma