1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
|
import itertools
from fractions import Fraction
from typing import Dict, List, Tuple
import numpy as np
from numpy.typing import NDArray
from ase import Atoms
def get_supercell_qpoints_along_path(
path: List[Tuple[str, str]],
coordinates: Dict[str, NDArray[float]],
primitive_cell: NDArray[float],
super_cell: NDArray[float]) -> List[NDArray[float]]:
r"""
Returns the q-points commensurate with the given supercell along the specific path.
Parameters
----------
path
list of pairs of q-point labels
coordinates
dict with q-point labels and coordinates as keys and values, respectively;
there must be one entry for each q-point label used in :attr:`path`
primitive_cell
cell metric of the primitive cell with lattice vectors as rows
super_cell
cell metric of the supercell with lattice vectors as rows
Returns
-------
supercell_paths
A list of the accessible q-point coordinates along the specified segment
Example
--------
The following example illustrates how to retrieve the q-points that
can be sampled using a supercell comprising :math:`6 \times 6 \times 6`
conventional (4-atom) unit cells of FCC Al along the path X-:math:`\Gamma`-L.
>>> import numpy as np
>>> from ase.build import bulk
>>> from dynasor.qpoints import get_supercell_qpoints_along_path
>>> prim = bulk('Al', 'fcc', a=4.0)
>>> supercell = bulk('Al', 'fcc', a=4.0, cubic=True).repeat(6)
>>> path = [('X', 'G'), ('G', 'L'), ('L', 'W')]
>>> coordinates = dict(X=[0.5, 0.5, 0], G=[0, 0, 0],
... L=[0.5, 0.5, 0.5], W=[0.5, 0.25, 0.75])
>>> qpoints = get_supercell_qpoints_along_path(path, coordinates, prim.cell, supercell.cell)
"""
from .lattice import Lattice
lat = Lattice(primitive_cell, super_cell)
for lbl in np.array(path).flatten():
if lbl not in coordinates:
raise ValueError(f'Unknown point in path: {lbl}')
# build the segments
supercell_paths = []
for k, (l1, l2) in enumerate(path):
q1 = np.array(coordinates[l1], dtype=float)
q2 = np.array(coordinates[l2], dtype=float)
dynasor_path, _ = lat.make_path(q1, q2)
supercell_paths.append(dynasor_path)
return supercell_paths
def find_on_line(start: NDArray, stop: NDArray, P: NDArray):
"""Find fractional distances between start and stop combatible with P
A supercell is defined by P @ c = S for some repetition matrix P and we
want to find fractions so that
[start + f * (stop - start)] @ P = n
Parameters
----------
start
start of line in reduced supercell coordinates
stop
end of line in reduced supercell coordinates
P
repetion matrix defining the supercell
"""
if np.allclose(start, stop):
return [Fraction(0, 1)]
start = np.array([Fraction(s).limit_denominator() for s in start])
stop = np.array([Fraction(s).limit_denominator() for s in stop])
A = start @ P
B = (stop - start) @ P
fracs = None
for a, b in zip(A, B):
fs = solve_Diophantine(a, b)
if fs is None: # "inf" solutions
continue
elif fs == []: # No solutions
return []
fracs = set(fs) if fracs is None else fracs.intersection(fs)
return sorted(fracs)
def solve_Diophantine(a: Fraction, b: Fraction) -> List[Fraction]:
"""Solve n = a + xb for all n in Z and a,b in Q such that 0 <= x <= 1"""
if b == 0:
if a.denominator == 1:
return None
else:
return []
if b < 0:
right = np.ceil(a)
left = np.floor(a + b)
else:
left = np.floor(a)
right = np.ceil(a + b)
ns = np.arange(left, right + 1)
fracs = [Fraction(n - a, b) for n in ns]
fracs = [f for f in fracs if 0 <= f <= 1]
return fracs
def det(A):
"""Determinant of an integer matrix using Laplace cofactor expansion"""
if len(A) == 2:
return A[0, 0] * A[1, 1] - A[0, 1] * A[1, 0]
d = 0
for i, B in enumerate(A[0]): # along first row
minor = np.hstack([A[1:, :i], A[1:, i+1:]])
d += (-1)**i * B * det(minor)
assert np.isclose(d, np.linalg.det(A))
return d
def inv(A):
"""Takes the inverse of an integer 3x3 matrix based on Cayley-Hamilton"""
detx2 = det(A) * 2 # Denominator "determinant times two"
# Numerator
numerator = ((np.trace(A)**2 - np.trace(A @ A)) * np.diag([1, 1, 1])
- 2 * A * np.trace(A)
+ 2 * A @ A)
# We want the sign to be in the Numerator
if detx2 < 0:
detx2 = -detx2
numerator = -numerator
inverse = numerator / detx2
assert np.allclose(inverse, np.linalg.inv(A))
# Return inverse, numerator (int matrix) and denominator (int)
return inverse, numerator, detx2
def get_P_matrix(c, S):
""" P c = S -> c.T P.T = S.T
The P matrix must be an integer matrix
"""
PT = np.linalg.solve(c.T, S.T)
P_float = PT.T
P = np.round(P_float).astype(int)
if not np.allclose(P_float, P) or not np.allclose(P @ c, S):
raise ValueError(
f'Please check that the supercell metric ({S}) is related to the'
f' the primitive cell {c} by an integer transformation matrix.')
return P
def get_commensurate_lattice_points(P: NDArray) -> NDArray:
"""Return commensurate points for a supercell defined by repetition matrix P
Finds all n such that n = f P where f is between 0 and 1
Parameters
----------
P
the repetion matrix relating the primitive and supercell
Returns
-------
lattice_points
the commensurate lattice points
"""
n_max = np.where(P > 0, P, 0).sum(axis=0) + 1
n_min = np.where(P < 0, P, 0).sum(axis=0)
ranges = [np.arange(*n) for n in zip(n_min, n_max)]
inv_P_matrix, num, den = inv(P)
lattice_points = []
for lp in itertools.product(*ranges):
s = lp @ num # here we skip the denominator to keep everything integer
# the denominator is also integer so no numerics here
if np.all(s >= 0) and np.all(s < den):
lattice_points.append(lp)
lattice_points = np.array(lattice_points)
# Begin sane checks...
# No duplicates
assert len(lattice_points) == len(np.unique(lattice_points, axis=0))
# Did we get everyone?
assert len(lattice_points) == abs(det(P))
return lattice_points
def get_index_offset(supercell: Atoms, prim: Atoms, atol=1e-3, rtol=0.0):
"""
Get the basis index and primitive cell offsets for a supercell
"""
if len(prim) > len(supercell):
raise ValueError('prim contains more atoms than supercell')
index, offset = [], []
for pos in supercell.positions:
spos = np.linalg.solve(prim.cell.T, pos)
for i, spos2 in enumerate(prim.get_scaled_positions()):
off = spos - spos2
off_round = np.round(off)
if not np.allclose(off, off_round, atol=atol, rtol=rtol):
continue
index.append(i)
off = off_round.astype(int)
assert np.allclose(off, off_round)
offset.append(off)
break
else:
raise ValueError('prim not compatible with supercell')
index, offset = np.array(index), np.array(offset)
return index, offset
|