File: test_spherical_average.py

package info (click to toggle)
python-dynasor 2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 22,008 kB
  • sloc: python: 5,263; sh: 20; makefile: 3
file content (109 lines) | stat: -rw-r--r-- 4,147 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import pytest
import numpy as np
from dynasor.post_processing.spherical_average import _get_bin_average, _gaussian
from dynasor.post_processing import get_spherically_averaged_sample_smearing
from dynasor.post_processing import get_spherically_averaged_sample_binned
from dynasor.sample import DynamicSample, StaticSample


def test_spherical_averaging():
    N_q = 100
    N_t = 8
    qbins = 20

    np.random.seed(42)
    data = np.random.random((N_q, N_t))
    q_points = np.random.random((N_q, 3))

    q_bincenters, bin_counts, averaged_data = _get_bin_average(q_points, data, qbins)
    assert len(q_bincenters) == qbins
    assert averaged_data.shape == (qbins, N_t)

    # check q_bincenters
    q_min = np.min(np.linalg.norm(q_points, axis=1))
    q_max = np.max(np.linalg.norm(q_points, axis=1))
    assert np.isclose(q_bincenters[0], q_min)
    assert np.isclose(q_bincenters[-1], q_max)

    # check bin counts
    bin_counts_target = np.array([2, 2, 3, 1, 4, 0, 5, 10, 9, 16, 7, 11, 5, 6, 8, 4, 5, 0, 1, 1])
    assert np.allclose(bin_counts, bin_counts_target)

    # check for Nans for empty bins
    for bin_index in np.where(bin_counts == 0)[0]:
        assert np.all(np.isnan(averaged_data[bin_index]))

    # check averaged data
    target_average = np.array([0.59242063, 0.44607297, 0.45898736, 0.64679424, 0.66729803,
                               0.45030113, 0.417301, 0.59437702])
    assert np.allclose(averaged_data[10], target_average)


def test_spherical_averaging_of_dynamic_sample(dynamic_sample_with_incoh):
    # binning average
    q_bins = 14
    sample_res = get_spherically_averaged_sample_binned(dynamic_sample_with_incoh, q_bins)
    assert isinstance(sample_res, DynamicSample)
    for key in sample_res.available_correlation_functions:
        assert sample_res[key].shape == (q_bins, dynamic_sample_with_incoh[key].shape[1])

    # gaussian average
    q_norms = np.linspace(0, 1.5, 100)
    q_width = 0.1
    sample_res = get_spherically_averaged_sample_smearing(
        dynamic_sample_with_incoh, q_norms=q_norms, q_width=q_width)
    assert isinstance(sample_res, DynamicSample)
    for key in sample_res.available_correlation_functions:
        assert sample_res[key].shape == (len(q_norms), dynamic_sample_with_incoh[key].shape[1])


def test_spherical_averaging_of_samples(static_sample):
    # binning
    q_bins = 14
    sample_res = get_spherically_averaged_sample_binned(static_sample, q_bins)
    assert isinstance(sample_res, StaticSample)
    for key in sample_res.available_correlation_functions:
        assert sample_res[key].shape == (q_bins, static_sample[key].shape[1])

    # gaussian
    q_norms = np.linspace(0, 1.5, 100)
    q_width = 0.1
    sample_res = get_spherically_averaged_sample_smearing(
        static_sample, q_norms=q_norms, q_width=q_width)
    assert isinstance(sample_res, StaticSample)
    for key in sample_res.available_correlation_functions:
        assert sample_res[key].shape == (len(q_norms), static_sample[key].shape[1])


def test_raises_error_with_invalid_inputs(dynamic_sample_with_incoh):

    q_bins = 14
    q_norms = np.linspace(0, 1.5, 100)
    q_width = 0.1

    # invalid sample
    bad_sample = np.random.random((10, 20, 3))
    with pytest.raises(ValueError):
        get_spherically_averaged_sample_binned(bad_sample, q_bins)
    with pytest.raises(ValueError):
        get_spherically_averaged_sample_smearing(bad_sample, q_norms=q_norms, q_width=q_width)

    # invalid q-points shape
    qpts = dynamic_sample_with_incoh.q_points
    dynamic_sample_with_incoh.q_points = np.hstack((qpts, np.ones((qpts.shape[0], 1))))
    with pytest.raises(ValueError):
        get_spherically_averaged_sample_binned(dynamic_sample_with_incoh, q_bins)
    with pytest.raises(ValueError):
        get_spherically_averaged_sample_smearing(
            dynamic_sample_with_incoh, q_norms=q_norms, q_width=q_width)


def test_gaussian():
    x = np.array([1.0, 2.0, 0.0, 2.23])
    x0 = 1.0
    sigma = 1.2

    f = _gaussian(x, x0, sigma)
    f_target = 1/(sigma * np.sqrt(2*np.pi)) * np.exp(-1/2 * (x-x0)**2 / sigma**2)

    assert np.allclose(f, f_target)