File: _utils.py

package info (click to toggle)
python-ecs-logging 2.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 344 kB
  • sloc: python: 1,116; sh: 30; makefile: 7
file content (163 lines) | stat: -rw-r--r-- 5,524 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# Licensed to Elasticsearch B.V. under one or more contributor
# license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright
# ownership. Elasticsearch B.V. licenses this file to you under
# the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import collections.abc
import json
import functools
from typing import Any, Dict, Mapping


__all__ = [
    "normalize_dict",
    "de_dot",
    "merge_dicts",
    "json_dumps",
]


def flatten_dict(value: Mapping[str, Any]) -> Dict[str, Any]:
    """Adds dots to all nested fields in dictionaries.
    Raises an error if there are entries which are represented
    with different forms of nesting. (ie {"a": {"b": 1}, "a.b": 2})
    """
    top_level = {}
    for key, val in value.items():
        if not isinstance(val, collections.abc.Mapping):
            if key in top_level:
                raise ValueError(f"Duplicate entry for '{key}' with different nesting")
            top_level[key] = val
        else:
            val = flatten_dict(val)
            for vkey, vval in val.items():
                vkey = f"{key}.{vkey}"
                if vkey in top_level:
                    raise ValueError(
                        f"Duplicate entry for '{vkey}' with different nesting"
                    )
                top_level[vkey] = vval

    return top_level


def normalize_dict(value: Dict[str, Any]) -> Dict[str, Any]:
    """Expands all dotted names to nested dictionaries"""
    if not isinstance(value, dict):
        return value
    keys = list(value.keys())
    for key in keys:
        if "." in key:
            merge_dicts(de_dot(key, value.pop(key)), value)
    for key, val in value.items():
        if isinstance(val, dict):
            normalize_dict(val)
        elif isinstance(val, list):
            val[:] = [normalize_dict(x) for x in val]
    return value


def de_dot(dot_string: str, msg: Any) -> Dict[str, Any]:
    """Turn value and dotted string key into a nested dictionary"""
    arr = dot_string.split(".")
    ret = {arr[-1]: msg}
    for i in range(len(arr) - 2, -1, -1):
        ret = {arr[i]: ret}
    return ret


def merge_dicts(from_: Dict[Any, Any], into: Dict[Any, Any]) -> Dict[Any, Any]:
    """Merge deeply nested dictionary structures.
    When called has side-effects within 'destination'.
    """
    for key, value in from_.items():
        into.setdefault(key, {})
        if isinstance(value, dict) and isinstance(into[key], dict):
            merge_dicts(value, into[key])
        elif into[key] != {}:
            raise TypeError(
                "Type mismatch at key `{}`: merging dicts would replace value `{}` with `{}`. This is likely due to "
                "dotted keys in the event dict being turned into nested dictionaries, causing a conflict.".format(
                    key, into[key], value
                )
            )
        else:
            into[key] = value
    return into


def json_dumps(value: Dict[str, Any], ensure_ascii: bool = True) -> str:

    # Ensure that the first three fields are '@timestamp',
    # 'log.level', and 'message' per ECS spec
    ordered_fields = []
    try:
        ordered_fields.append(("@timestamp", value.pop("@timestamp")))
    except KeyError:
        pass

    # log.level can either be nested or not nested so we have to try both
    try:
        ordered_fields.append(("log.level", value["log"].pop("level")))
        if not value["log"]:  # Remove the 'log' dictionary if it's now empty
            value.pop("log", None)
    except KeyError:
        try:
            ordered_fields.append(("log.level", value.pop("log.level")))
        except KeyError:
            pass
    try:
        ordered_fields.append(("message", value.pop("message")))
    except KeyError:
        pass

    json_dumps = functools.partial(
        json.dumps,
        sort_keys=True,
        separators=(",", ":"),
        default=_json_dumps_fallback,
        ensure_ascii=ensure_ascii,
    )

    # Because we want to use 'sorted_keys=True' we manually build
    # the first three keys and then build the rest with json.dumps()
    if ordered_fields:
        # Need to call json.dumps() on values just in
        # case the given values aren't strings (even though
        # they should be according to the spec)
        ordered_json = ",".join(f'"{k}":{json_dumps(v)}' for k, v in ordered_fields)
        if value:
            return "{{{},{}".format(
                ordered_json,
                json_dumps(value)[1:],
            )
        else:
            return "{%s}" % ordered_json
    # If there are no fields with ordering requirements we
    # pass everything into json.dumps()
    else:
        return json_dumps(value)


def _json_dumps_fallback(value: Any) -> Any:
    """
    Fallback handler for json.dumps to handle objects json doesn't know how to
    serialize.
    """
    try:
        # This is what structlog's json fallback does
        return value.__structlog__()
    except AttributeError:
        return repr(value)