1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
# -*- coding: utf-8 -*-
# EFILTER Forensic Query Language
#
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
EFILTER abstract type system.
The type protocols defined under efilter.protocols.* provide a very thin layer
over Python's builtin types, defined as collections of related functions with
defined semantics. Each type protocol is intended to uniformly support a
specific behavior across any type that participates in the protocol.
To participate in a protocol, two things are required:
1) Implementations of each of the member functions must be provided.
2) The type must be formally added to the protocol.
In this manner, we are able to declare strict compositional types on atoms and
expressions in the EFILTER AST and allow type hierarchies external to EFILTER
(Plaso Events, Rekall Entities) to be passed to the EFILTER transforms without
casting or wrapping.
The compositional, flat nature of the type protocols makes it simple to support
basic type inference, by annotating each expression type with sets of
protocols it requires on its children and guarantees on its return type.
"""
__author__ = "Adam Sindelar <adamsh@google.com>"
import abc
import six
class AnyType(object):
"""Sentinel used to provide a default implementation of a protocol.
If you need to provide a default implementation of functions in a
protocol (for example, providing fall-through behavior for objects that
don't participate in the protocol) you may pass this type in place of
'object'. This will cause the multimethod functions to fall through to
this default implementation, but won't cause 'object' to be a subclass
of the protocol.
Example:
MyProtocol.implement(for_type=AnyType,
implementations={foo=lambda x: "foo"})
foo(5) # => "foo"
isinstance(5, MyProtocol) # => False
implements(5, MyProtocol) # => True
"""
BUILTIN_TYPES = [float, complex, type(None), AnyType, set, frozenset,
list, dict, tuple]
BUILTIN_TYPES.extend(six.integer_types)
BUILTIN_TYPES.extend(six.string_types)
def implements(obj, protocol):
"""Does the object 'obj' implement the 'prococol'?"""
if isinstance(obj, type):
raise TypeError("First argument to implements must be an instance. "
"Got %r." % obj)
return isinstance(obj, protocol) or issubclass(AnyType, protocol)
def isa(cls, protocol):
"""Does the type 'cls' participate in the 'protocol'?"""
if not isinstance(cls, type):
raise TypeError("First argument to isa must be a type. Got %s." %
repr(cls))
if not isinstance(protocol, type):
raise TypeError(("Second argument to isa must be a type or a Protocol. "
"Got an instance of %r.") % type(protocol))
return issubclass(cls, protocol) or issubclass(AnyType, protocol)
class Protocol(six.with_metaclass(abc.ABCMeta, object)):
"""Collection of related functions that operate on a type (interface)."""
_required_functions = frozenset()
_optional_functions = frozenset()
@classmethod
def required(cls):
result = set(cls._required_functions)
for scls in cls.mro():
functions = getattr(scls, "_required_functions", None)
if functions:
result.update(functions)
return result
@classmethod
def optional(cls):
result = set(cls._optional_functions)
for scls in cls.mro():
functions = getattr(scls, "_optional_functions", None)
if functions:
result.update(functions)
return result
@classmethod
def functions(cls):
return cls.required() | cls.optional()
@classmethod
def implemented(cls, for_type):
"""Assert that protocol 'cls' is implemented for type 'for_type'.
This will cause 'for_type' to be registered with the protocol 'cls'.
Subsequently, protocol.isa(for_type, cls) will return True, as will
isinstance, issubclass and others.
Raises:
TypeError if 'for_type' doesn't implement all required functions.
"""
for function in cls.required():
if not function.implemented_for_type(for_type):
raise TypeError(
"%r doesn't implement %r so it cannot participate in "
"the protocol %r." %
(for_type, function.func.__name__, cls))
cls.register(for_type)
@staticmethod
def __get_type_args(for_type=None, for_types=None):
"""Parse the arguments and return a tuple of types to implement for.
Raises:
ValueError or TypeError as appropriate.
"""
if for_type:
if for_types:
raise ValueError("Cannot pass both for_type and for_types.")
for_types = (for_type,)
elif for_types:
if not isinstance(for_types, tuple):
raise TypeError("for_types must be passed as a tuple of "
"types (classes).")
else:
raise ValueError("Must pass either for_type or for_types.")
return for_types
@classmethod
def _implement_for_type(cls, for_type, implementations):
# AnyType is a sentinel that means the multimethod function should
# just dispatch on 'object'.
dispatch_type = object if for_type is AnyType else for_type
protocol_functions = cls.functions()
remaining = set(protocol_functions)
for func, impl in six.iteritems(implementations):
if func not in protocol_functions:
func_name = getattr(func, "func_name", repr(func))
raise TypeError("Function %s is not part of the protocol %r." %
(func_name, cls))
func.implement(for_type=dispatch_type,
implementation=impl)
remaining.remove(func)
cls.implemented(for_type=for_type)
@classmethod
def implicit_static(cls, for_type=None, for_types=None):
"""Automatically generate implementations for a type.
Implement the protocol for the 'for_type' type by dispatching each
member function of the protocol to an instance method of the same name
declared on the type 'for_type'.
Arguments:
for_type: The type to implictly implement the protocol with.
Raises:
TypeError if not all implementations are provided by 'for_type'.
"""
for type_ in cls.__get_type_args(for_type, for_types):
implementations = {}
for function in cls.required():
method = getattr(type_, function.__name__, None)
if not callable(method):
raise TypeError(
"%s.implicit invokation on type %r is missing instance "
"method %r."
% (cls.__name__, type_, function.__name__))
implementations[function] = method
for function in cls.optional():
method = getattr(type_, function.__name__, None)
if callable(method):
implementations[function] = method
return cls.implement(for_type=type_,
implementations=implementations)
@staticmethod
def _build_late_dispatcher(func_name):
"""Return a function that calls method 'func_name' on objects.
This is useful for building late-bound dynamic dispatch.
Arguments:
func_name: The name of the instance method that should be called.
Returns:
A function that takes an 'obj' parameter, followed by *args and
returns the result of calling the instance method with the same
name as the contents of 'func_name' on the 'obj' object with the
arguments from *args.
"""
def _late_dynamic_dispatcher(obj, *args):
method = getattr(obj, func_name, None)
if not callable(method):
raise NotImplementedError(
"Instance method %r is not implemented by %r." % (
func_name, obj))
return method(*args)
return _late_dynamic_dispatcher
@classmethod
def implicit_dynamic(cls, for_type=None, for_types=None):
"""Automatically generate late dynamic dispatchers to type.
This is similar to 'implicit_static', except instead of binding the
instance methods, it generates a dispatcher that will call whatever
instance method of the same name happens to be available at time of
dispatch.
This has the obvious advantage of supporting arbitrary subclasses, but
can do no verification at bind time.
Arguments:
for_type: The type to implictly implement the protocol with.
"""
for type_ in cls.__get_type_args(for_type, for_types):
implementations = {}
for function in cls.functions():
implementations[function] = cls._build_late_dispatcher(
func_name=function.__name__)
cls.implement(for_type=type_, implementations=implementations)
@classmethod
def implement(cls, implementations, for_type=None, for_types=None):
"""Provide protocol implementation for a type.
Register all implementations of multimethod functions in this
protocol and add the type into the abstract base class of the
protocol.
Arguments:
implementations: A dict of (function, implementation), where each
function is multimethod and each implementation is a callable.
for_type: The concrete type implementations apply to.
for_types: Same as for_type, but takes a tuple of types.
You may not supply both for_type and for_types for obvious reasons.
Raises:
ValueError for arguments.
TypeError if not all implementations are provided or if there
are issues related to polymorphism (e.g. attempting to
implement a non-multimethod function.
"""
for type_ in cls.__get_type_args(for_type, for_types):
cls._implement_for_type(for_type=type_,
implementations=implementations)
|