1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
# EFILTER Forensic Query Language
#
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
(EXPERIMENTAL) EFILTER stdlib - math module.
"""
__author__ = "Adam Sindelar <adamsh@google.com>"
import six
from six.moves import xrange
from efilter.protocols import counted
from efilter.protocols import number
from efilter.stdlib import core
# Analytical functions:
class LevenshteinDistance(core.TypedFunction):
"""Compute Levenshtein distance between 'x' and 'y'.
Levenshtein distance is, informally, the number of insert/delete/substitute
operations needed to transform 'x' to 'y'. Computing the distance takes
O(N * M) steps using the bottom-up dynamic programming approach below.
See: https://en.wikipedia.org/wiki/Levenshtein_distance.
"""
name = "levenshtein"
def __call__(self, x, y):
lx = len(x)
ly = len(y)
# Base cases:
if not lx:
return ly
if not ly:
return lx
if lx > ly:
# This saves space, because the rows are shorter.
return self(y, x)
# Conceptually, this is a matrix of edit distances between prefixes of
# x and y, arranged so that every coordinate pair into the matrix is
# the levenshtein distance between the first 'i' characters of 'x' and
# first 'j' characters of 'y'. To compute the distance from x to y we
# need all intermediate results, but only the last two rows at a time.
# The first row of edit distances: an empty string can be transformed
# into a string of length N in N steps.
current_row = list(xrange(lx))
for i in xrange(1, ly):
previous_row = current_row
current_row = [0] * lx
current_row[0] = i
for j in xrange(1, lx):
if x[j - 1] == y[i - 1]:
substitution_cost = 0
else:
substitution_cost = 1
# One of three operations will have to lowest cost. They are,
# in order, substitution (or nop), deletion and insertion.
current_row[j] = min(
previous_row[j - 1] + substitution_cost,
previous_row[j] + 1,
current_row[j - 1] + 1)
return current_row[-1]
@classmethod
def reflect_static_args(cls):
return (six.string_types[0], six.string_types[0])
@classmethod
def reflect_static_return(cls):
return int
# Aggregate functions (reducers):
class Mean(core.TypedReducer):
"""(EXPERIMENTAL) Computes the mean."""
name = "mean"
def fold(self, chunk):
return (sum(chunk), counted.count(chunk))
def merge(self, left, right):
return (left[0] + right[0], left[1] + right[1])
def finalize(self, intermediate):
total, count = intermediate
return float(total) / count
@classmethod
def reflect_static_return(cls):
return int
class Sum(core.TypedReducer):
"""(EXPERIMENTAL) Computes a sum of numbers."""
name = "sum"
def fold(self, chunk):
return sum(chunk)
def merge(self, left, right):
return left + right
def finalize(self, intermediate):
return intermediate
@classmethod
def reflect_static_return(cls):
return number.INumber
class VectorSum(core.TypedReducer):
"""(EXPERIMENTAL) Computes a sum of vectors of numbers of constant size."""
name = "vector_sum"
def fold(self, chunk):
iterator = iter(chunk)
running_sum = list(next(chunk))
expected_len = len(running_sum)
for row in iterator:
if len(row) != expected_len:
raise ValueError(
"vector_sum can only add up vectors of same size.")
for idx, col in enumerate(row):
running_sum[idx] += col
def merge(self, left, right):
return self.fold([left, right])
def finalize(self, intermediate):
return intermediate
@classmethod
def reflect_static_return(cls):
return list
MODULE = core.LibraryModule(
name="stdmath",
vars={
Mean.name: Mean(),
Sum.name: Sum(),
LevenshteinDistance.name: LevenshteinDistance()
}
)
|