1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
|
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta property="og:title" content="Writing better code with pytorch and einops">
<meta property="og:description" content="Learning by example: rewriting and fixing popular code fragments">
<meta property="og:image" content="http://arogozhnikov.github.io/images/einops/einops_video.gif">
<meta property="og:video" content="http://arogozhnikov.github.io/images/einops/einops_video.mp4" />
<meta property="og:url" content="https://arogozhnikov.github.io/einops/pytorch-examples.html">
<meta name="twitter:card" content="summary_large_image">
<!-- Non-Essential, But Recommended -->
<meta property="og:site_name" content="Writing better code with pytorch and einops">
<meta name="twitter:image:alt" content="Learning by example: rewriting and fixing popular code fragments">
<title>Writing better code with pytorch+einops</title>
<style>.highlight .hll { background-color: #ffffcc }
.highlight { background: #f8f8f8; }
.highlight .c { color: #408080; font-style: italic } /* Comment */
.highlight .err { border: 1px solid #FF0000 } /* Error */
.highlight .k { color: #008000; font-weight: bold } /* Keyword */
.highlight .o { color: #666666 } /* Operator */
.highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */
.highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */
.highlight .cp { color: #BC7A00 } /* Comment.Preproc */
.highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */
.highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */
.highlight .cs { color: #408080; font-style: italic } /* Comment.Special */
.highlight .gd { color: #A00000 } /* Generic.Deleted */
.highlight .ge { font-style: italic } /* Generic.Emph */
.highlight .gr { color: #FF0000 } /* Generic.Error */
.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */
.highlight .gi { color: #00A000 } /* Generic.Inserted */
.highlight .go { color: #888888 } /* Generic.Output */
.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */
.highlight .gs { font-weight: bold } /* Generic.Strong */
.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */
.highlight .gt { color: #0044DD } /* Generic.Traceback */
.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */
.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */
.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */
.highlight .kp { color: #008000 } /* Keyword.Pseudo */
.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */
.highlight .kt { color: #B00040 } /* Keyword.Type */
.highlight .m { color: #666666 } /* Literal.Number */
.highlight .s { color: #BA2121 } /* Literal.String */
.highlight .na { color: #7D9029 } /* Name.Attribute */
.highlight .nb { color: #008000 } /* Name.Builtin */
.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */
.highlight .no { color: #880000 } /* Name.Constant */
.highlight .nd { color: #AA22FF } /* Name.Decorator */
.highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */
.highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */
.highlight .nf { color: #0000FF } /* Name.Function */
.highlight .nl { color: #A0A000 } /* Name.Label */
.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */
.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */
.highlight .nv { color: #19177C } /* Name.Variable */
.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */
.highlight .w { color: #bbbbbb } /* Text.Whitespace */
.highlight .mb { color: #666666 } /* Literal.Number.Bin */
.highlight .mf { color: #666666 } /* Literal.Number.Float */
.highlight .mh { color: #666666 } /* Literal.Number.Hex */
.highlight .mi { color: #666666 } /* Literal.Number.Integer */
.highlight .mo { color: #666666 } /* Literal.Number.Oct */
.highlight .sa { color: #BA2121 } /* Literal.String.Affix */
.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */
.highlight .sc { color: #BA2121 } /* Literal.String.Char */
.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */
.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */
.highlight .s2 { color: #BA2121 } /* Literal.String.Double */
.highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */
.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */
.highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */
.highlight .sx { color: #008000 } /* Literal.String.Other */
.highlight .sr { color: #BB6688 } /* Literal.String.Regex */
.highlight .s1 { color: #BA2121 } /* Literal.String.Single */
.highlight .ss { color: #19177C } /* Literal.String.Symbol */
.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */
.highlight .fm { color: #0000FF } /* Name.Function.Magic */
.highlight .vc { color: #19177C } /* Name.Variable.Class */
.highlight .vg { color: #19177C } /* Name.Variable.Global */
.highlight .vi { color: #19177C } /* Name.Variable.Instance */
.highlight .vm { color: #19177C } /* Name.Variable.Magic */
.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */
body {
padding: 50px 10px;
}
.leftright-wrapper {
text-align: center;
overflow-x: auto;
}
.leftright-cells {
display: inline-flex;
text-align: left;
}
.leftright-cells > div {
padding: 0px 10px;
min-width: 350px;
}
.markdown-cell{
max-width: 700px;
margin: 0px auto;
}
h1 {
text-align: center;
padding: 10px 0px 0px;
}
</style>
</head>
<body>
<a href="https://github.com/arogozhnikov/einops" class="github-corner" aria-label="View source on GitHub">
<svg width="80" height="80" viewBox="0 0 250 250" style="fill:#151513; color:#fff; position: absolute; top: 0; border: 0; right: 0;" aria-hidden="true">
<path d="M0,0 L115,115 L130,115 L142,142 L250,250 L250,0 Z"></path><path d="M128.3,109.0 C113.8,99.7 119.0,89.6 119.0,89.6 C122.0,82.7 120.5,78.6 120.5,78.6 C119.2,72.0 123.4,76.3 123.4,76.3 C127.3,80.9 125.5,87.3 125.5,87.3 C122.9,97.6 130.6,101.9 134.4,103.2" fill="currentColor" style="transform-origin: 130px 106px;" class="octo-arm"></path>
<path d="M115.0,115.0 C114.9,115.1 118.7,116.5 119.8,115.4 L133.7,101.6 C136.9,99.2 139.9,98.4 142.2,98.6 C133.8,88.0 127.5,74.4 143.8,58.0 C148.5,53.4 154.0,51.2 159.7,51.0 C160.3,49.4 163.2,43.6 171.4,40.1 C171.4,40.1 176.1,42.5 178.8,56.2 C183.1,58.6 187.2,61.8 190.9,65.4 C194.5,69.0 197.7,73.2 200.1,77.6 C213.8,80.2 216.3,84.9 216.3,84.9 C212.7,93.1 206.9,96.0 205.4,96.6 C205.1,102.4 203.0,107.8 198.3,112.5 C181.9,128.9 168.3,122.5 157.7,114.1 C157.9,116.9 156.7,120.9 152.7,124.9 L141.0,136.5 C139.8,137.7 141.6,141.9 141.8,141.8 Z" fill="currentColor" class="octo-body"></path>
</svg></a>
<style>.github-corner:hover .octo-arm{animation:octocat-wave 560ms ease-in-out}@keyframes octocat-wave{0%,100%{transform:rotate(0)}20%,60%{transform:rotate(-25deg)}40%,80%{transform:rotate(10deg)}}@media (max-width:500px){.github-corner:hover .octo-arm{animation:none}.github-corner .octo-arm{animation:octocat-wave 560ms ease-in-out}}</style>
<div class='markdown-cell'><div align="center">
<a href="https://github.com/arogozhnikov/einops">
<img src="http://arogozhnikov.github.io/images/einops/einops_logo_350x350.png" alt="einops package logo" width="150" height="150" style='padding: 50px 50px 25px;' />
</a>
<div>
<a href="https://github.com/arogozhnikov/einops">[github]</a>,
tutorials
<a href="https://github.com/arogozhnikov/einops/blob/main/docs/1-einops-basics.ipynb">[1]</a> and
<a href="https://github.com/arogozhnikov/einops/blob/main/docs/2-einops-for-deep-learning.ipynb">[2]</a>
<br />
<br />
</div>
</div>
<h1>Writing a better code with pytorch and einops</h1>
<p><br /><br /></p>
<h2>Rewriting building blocks of deep learning</h2>
<p>Now let's get to examples from real world.
These code fragments taken from official tutorials and popular repositories.</p>
<p>Learn how to improve code and how <code>einops</code> can help you.</p>
<p><strong>Left</strong>: as it was, <strong>Right</strong>: improved version</p></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="c1"># start from importing some stuff</span>
<span class="kn">import</span> <span class="nn">torch</span>
<span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
<span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
<span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">import</span> <span class="nn">math</span>
<span class="kn">from</span> <span class="nn">einops</span> <span class="kn">import</span> <span class="n">rearrange</span><span class="p">,</span> <span class="n">reduce</span><span class="p">,</span> <span class="n">asnumpy</span><span class="p">,</span> <span class="n">parse_shape</span>
<span class="kn">from</span> <span class="nn">einops.layers.torch</span> <span class="kn">import</span> <span class="n">Rearrange</span><span class="p">,</span> <span class="n">Reduce</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><h1>Simple ConvNet</h1></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Net</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Net</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2_drop</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout2d</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">320</span><span class="p">,</span> <span class="mi">50</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">50</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2_drop</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">x</span><span class="p">)),</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">320</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc1</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">training</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">training</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">log_softmax</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">conv_net_old</span> <span class="o">=</span> <span class="n">Net</span><span class="p">()</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="n">conv_net_new</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">5</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">10</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">5</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Dropout2d</span><span class="p">(),</span>
<span class="n">Rearrange</span><span class="p">(</span><span class="s1">'b c h w -> b (c h w)'</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">320</span><span class="p">,</span> <span class="mi">50</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">50</span><span class="p">,</span> <span class="mi">10</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">LogSoftmax</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="p">)</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><p>Reasons to prefer new implementation:</p>
<ul>
<li>in the original code (to the left) if input size is changed and batch size is divisible by 16 (that's usually so), we'll get something senseless after reshaping<ul>
<li>new code will explicitly raise an error in this case</li>
</ul>
</li>
<li>we won't forget to use dropout with flag self.training with new version</li>
<li>code is straightforward to read and analyze</li>
<li>sequential makes printing / saving / passing trivial. And there is no need in your code to load a model (which also has a number of benefits)</li>
<li>don't need logsoftmax? Now you can use <code>conv_net_new[:-1]</code>. One more reason to prefer <code>nn.Sequential</code></li>
<li>... and we could also add inplace for ReLU</li>
</ul></div><div class='markdown-cell'><h1>Super-resolution</h1>
<!-- minified https://github.com/pytorch/examples/tree/master/super_resolution, withour initialization --></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">SuperResolutionNetOld</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">upscale_factor</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SuperResolutionNetOld</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="p">(</span><span class="mi">5</span><span class="p">,</span> <span class="mi">5</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv3</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv4</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="n">upscale_factor</span> <span class="o">**</span> <span class="mi">2</span><span class="p">,</span> <span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pixel_shuffle</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">PixelShuffle</span><span class="p">(</span><span class="n">upscale_factor</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv3</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pixel_shuffle</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv4</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="k">return</span> <span class="n">x</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">SuperResolutionNetNew</span><span class="p">(</span><span class="n">upscale_factor</span><span class="p">):</span>
<span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">5</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="mi">32</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="n">upscale_factor</span> <span class="o">**</span> <span class="mi">2</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">Rearrange</span><span class="p">(</span><span class="s1">'b (h2 w2) h w -> b (h h2) (w w2)'</span><span class="p">,</span> <span class="n">h2</span><span class="o">=</span><span class="n">upscale_factor</span><span class="p">,</span> <span class="n">w2</span><span class="o">=</span><span class="n">upscale_factor</span><span class="p">),</span>
<span class="p">)</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><p>Here is the difference:</p>
<ul>
<li>no need in special instruction pixel_shuffle (and result is transferrable between frameworks)</li>
<li>output doesn't contain a fake axis (and we could do the same for the input)</li>
<li>inplace ReLU used now, for high resolution pictures that becomes critical and saves us much memory</li>
<li>and all the benefits of nn.Sequential again</li>
</ul></div><div class='markdown-cell'><h1>Restyling Gram matrix for style transfer</h1></div><div class='markdown-cell'><!-- from https://github.com/pytorch/examples/blob/29c2ed8ca6dc36fc78a3e74a5908615619987863/fast_neural_style/neural_style/utils.py#L21-L26 -->
<p>Original code is already good - first line shows what kind of input is expected</p>
<ul>
<li>einsum operation should be read like:</li>
<li>for each batch and for each pair of channels, we sum over h and w.</li>
<li>I've also changed normalization, because that's how Gram matrix is defined, otherwise we should call it normalized Gram matrix or alike</li>
</ul></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">gram_matrix_old</span><span class="p">(</span><span class="n">y</span><span class="p">):</span>
<span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">ch</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="n">w</span><span class="p">)</span> <span class="o">=</span> <span class="n">y</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="n">features</span> <span class="o">=</span> <span class="n">y</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">b</span><span class="p">,</span> <span class="n">ch</span><span class="p">,</span> <span class="n">w</span> <span class="o">*</span> <span class="n">h</span><span class="p">)</span>
<span class="n">features_t</span> <span class="o">=</span> <span class="n">features</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">gram</span> <span class="o">=</span> <span class="n">features</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">features_t</span><span class="p">)</span> <span class="o">/</span> <span class="p">(</span><span class="n">ch</span> <span class="o">*</span> <span class="n">h</span> <span class="o">*</span> <span class="n">w</span><span class="p">)</span>
<span class="k">return</span> <span class="n">gram</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">gram_matrix_new</span><span class="p">(</span><span class="n">y</span><span class="p">):</span>
<span class="n">b</span><span class="p">,</span> <span class="n">ch</span><span class="p">,</span> <span class="n">h</span><span class="p">,</span> <span class="n">w</span> <span class="o">=</span> <span class="n">y</span><span class="o">.</span><span class="n">shape</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="s1">'bchw,bdhw->bcd'</span><span class="p">,</span> <span class="p">[</span><span class="n">y</span><span class="p">,</span> <span class="n">y</span><span class="p">])</span> <span class="o">/</span> <span class="p">(</span><span class="n">h</span> <span class="o">*</span> <span class="n">w</span><span class="p">)</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><p>It would be great to use just <code>'b c1 h w,b c2 h w->b c1 c2'</code>, but einsum supports only one-letter axes</p></div><div class='markdown-cell'><h1>Recurrent model</h1>
<p>All we did here is just made information about shapes explicit to skip deciphering</p>
<!-- simplified version of https://github.com/pytorch/examples/blob/master/word_language_model/model.py --></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">RNNModelOld</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">"""Container module with an encoder, a recurrent module, and a decoder."""</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ntoken</span><span class="p">,</span> <span class="n">ninp</span><span class="p">,</span> <span class="n">nhid</span><span class="p">,</span> <span class="n">nlayers</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="mf">0.5</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">RNNModel</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">drop</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">dropout</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">encoder</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Embedding</span><span class="p">(</span><span class="n">ntoken</span><span class="p">,</span> <span class="n">ninp</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rnn</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LSTM</span><span class="p">(</span><span class="n">ninp</span><span class="p">,</span> <span class="n">nhid</span><span class="p">,</span> <span class="n">nlayers</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="n">dropout</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">decoder</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">nhid</span><span class="p">,</span> <span class="n">ntoken</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">,</span> <span class="n">hidden</span><span class="p">):</span>
<span class="n">emb</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">encoder</span><span class="p">(</span><span class="nb">input</span><span class="p">))</span>
<span class="n">output</span><span class="p">,</span> <span class="n">hidden</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rnn</span><span class="p">(</span><span class="n">emb</span><span class="p">,</span> <span class="n">hidden</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="n">output</span><span class="p">)</span>
<span class="n">decoded</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">decoder</span><span class="p">(</span><span class="n">output</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">output</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span><span class="o">*</span><span class="n">output</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="n">output</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">2</span><span class="p">)))</span>
<span class="k">return</span> <span class="n">decoded</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">output</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="n">output</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="n">decoded</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">)),</span> <span class="n">hidden</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">RNNModelNew</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">"""Container module with an encoder, a recurrent module, and a decoder."""</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">ntoken</span><span class="p">,</span> <span class="n">ninp</span><span class="p">,</span> <span class="n">nhid</span><span class="p">,</span> <span class="n">nlayers</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="mf">0.5</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">RNNModel</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">drop</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="n">dropout</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">encoder</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Embedding</span><span class="p">(</span><span class="n">ntoken</span><span class="p">,</span> <span class="n">ninp</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rnn</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LSTM</span><span class="p">(</span><span class="n">ninp</span><span class="p">,</span> <span class="n">nhid</span><span class="p">,</span> <span class="n">nlayers</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="n">dropout</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">decoder</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">nhid</span><span class="p">,</span> <span class="n">ntoken</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">,</span> <span class="n">hidden</span><span class="p">):</span>
<span class="n">t</span><span class="p">,</span> <span class="n">b</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">shape</span>
<span class="n">emb</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">encoder</span><span class="p">(</span><span class="nb">input</span><span class="p">))</span>
<span class="n">output</span><span class="p">,</span> <span class="n">hidden</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rnn</span><span class="p">(</span><span class="n">emb</span><span class="p">,</span> <span class="n">hidden</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">drop</span><span class="p">(</span><span class="n">output</span><span class="p">),</span> <span class="s1">'t b nhid -> (t b) nhid'</span><span class="p">)</span>
<span class="n">decoded</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">decoder</span><span class="p">(</span><span class="n">output</span><span class="p">),</span> <span class="s1">'(t b) token -> t b token'</span><span class="p">,</span> <span class="n">t</span><span class="o">=</span><span class="n">t</span><span class="p">,</span> <span class="n">b</span><span class="o">=</span><span class="n">b</span><span class="p">)</span>
<span class="k">return</span> <span class="n">decoded</span><span class="p">,</span> <span class="n">hidden</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><h1>Channel shuffle (from shufflenet)</h1>
<!-- from https://github.com/jaxony/ShuffleNet/blob/master/model.py --></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">channel_shuffle_old</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">groups</span><span class="p">):</span>
<span class="n">batchsize</span><span class="p">,</span> <span class="n">num_channels</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="n">channels_per_group</span> <span class="o">=</span> <span class="n">num_channels</span> <span class="o">//</span> <span class="n">groups</span>
<span class="c1"># reshape</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">batchsize</span><span class="p">,</span> <span class="n">groups</span><span class="p">,</span>
<span class="n">channels_per_group</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">)</span>
<span class="c1"># transpose</span>
<span class="c1"># - contiguous() required if transpose() is used before view().</span>
<span class="c1"># See https://github.com/pytorch/pytorch/issues/764</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="c1"># flatten</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">batchsize</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">channel_shuffle_new</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">groups</span><span class="p">):</span>
<span class="k">return</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">'b (c1 c2) h w -> b (c2 c1) h w'</span><span class="p">,</span> <span class="n">c1</span><span class="o">=</span><span class="n">groups</span><span class="p">)</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><p>While progress is obvious, this is not the limit. As you'll see below, we don't even need to write these couple of lines.</p></div><div class='markdown-cell'><h1>Shufflenet</h1></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">OrderedDict</span>
<span class="k">def</span> <span class="nf">channel_shuffle</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">groups</span><span class="p">):</span>
<span class="n">batchsize</span><span class="p">,</span> <span class="n">num_channels</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="n">channels_per_group</span> <span class="o">=</span> <span class="n">num_channels</span> <span class="o">//</span> <span class="n">groups</span>
<span class="c1"># reshape</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">batchsize</span><span class="p">,</span> <span class="n">groups</span><span class="p">,</span>
<span class="n">channels_per_group</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">)</span>
<span class="c1"># transpose</span>
<span class="c1"># - contiguous() required if transpose() is used before view().</span>
<span class="c1"># See https://github.com/pytorch/pytorch/issues/764</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="c1"># flatten</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">batchsize</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">height</span><span class="p">,</span> <span class="n">width</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
<span class="k">class</span> <span class="nc">ShuffleUnitOld</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="n">grouped_conv</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">combine</span><span class="o">=</span><span class="s1">'add'</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ShuffleUnitOld</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">in_channels</span> <span class="o">=</span> <span class="n">in_channels</span>
<span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span> <span class="o">=</span> <span class="n">out_channels</span>
<span class="bp">self</span><span class="o">.</span><span class="n">grouped_conv</span> <span class="o">=</span> <span class="n">grouped_conv</span>
<span class="bp">self</span><span class="o">.</span><span class="n">combine</span> <span class="o">=</span> <span class="n">combine</span>
<span class="bp">self</span><span class="o">.</span><span class="n">groups</span> <span class="o">=</span> <span class="n">groups</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bottleneck_channels</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span> <span class="o">//</span> <span class="mi">4</span>
<span class="c1"># define the type of ShuffleUnit</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">combine</span> <span class="o">==</span> <span class="s1">'add'</span><span class="p">:</span>
<span class="c1"># ShuffleUnit Figure 2b</span>
<span class="bp">self</span><span class="o">.</span><span class="n">depthwise_stride</span> <span class="o">=</span> <span class="mi">1</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_combine_func</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_add</span>
<span class="k">elif</span> <span class="bp">self</span><span class="o">.</span><span class="n">combine</span> <span class="o">==</span> <span class="s1">'concat'</span><span class="p">:</span>
<span class="c1"># ShuffleUnit Figure 2c</span>
<span class="bp">self</span><span class="o">.</span><span class="n">depthwise_stride</span> <span class="o">=</span> <span class="mi">2</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_combine_func</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_concat</span>
<span class="c1"># ensure output of concat has the same channels as </span>
<span class="c1"># original output channels.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span> <span class="o">-=</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_channels</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">"Cannot combine tensors with </span><span class="se">\"</span><span class="si">{}</span><span class="se">\"</span><span class="s2">"</span> \
<span class="s2">"Only </span><span class="se">\"</span><span class="s2">add</span><span class="se">\"</span><span class="s2"> and </span><span class="se">\"</span><span class="s2">concat</span><span class="se">\"</span><span class="s2"> are"</span> \
<span class="s2">"supported"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">combine</span><span class="p">))</span>
<span class="c1"># Use a 1x1 grouped or non-grouped convolution to reduce input channels</span>
<span class="c1"># to bottleneck channels, as in a ResNet bottleneck module.</span>
<span class="c1"># NOTE: Do not use group convolution for the first conv1x1 in Stage 2.</span>
<span class="bp">self</span><span class="o">.</span><span class="n">first_1x1_groups</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">groups</span> <span class="k">if</span> <span class="n">grouped_conv</span> <span class="k">else</span> <span class="mi">1</span>
<span class="bp">self</span><span class="o">.</span><span class="n">g_conv_1x1_compress</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_grouped_conv1x1</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">in_channels</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bottleneck_channels</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">first_1x1_groups</span><span class="p">,</span>
<span class="n">batch_norm</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">relu</span><span class="o">=</span><span class="kc">True</span>
<span class="p">)</span>
<span class="c1"># 3x3 depthwise convolution followed by batch normalization</span>
<span class="bp">self</span><span class="o">.</span><span class="n">depthwise_conv3x3</span> <span class="o">=</span> <span class="n">conv3x3</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bottleneck_channels</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">bottleneck_channels</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">depthwise_stride</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">bottleneck_channels</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn_after_depthwise</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bottleneck_channels</span><span class="p">)</span>
<span class="c1"># Use 1x1 grouped convolution to expand from </span>
<span class="c1"># bottleneck_channels to out_channels</span>
<span class="bp">self</span><span class="o">.</span><span class="n">g_conv_1x1_expand</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_grouped_conv1x1</span><span class="p">(</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bottleneck_channels</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">out_channels</span><span class="p">,</span>
<span class="bp">self</span><span class="o">.</span><span class="n">groups</span><span class="p">,</span>
<span class="n">batch_norm</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="n">relu</span><span class="o">=</span><span class="kc">False</span>
<span class="p">)</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">_add</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">out</span><span class="p">):</span>
<span class="c1"># residual connection</span>
<span class="k">return</span> <span class="n">x</span> <span class="o">+</span> <span class="n">out</span>
<span class="nd">@staticmethod</span>
<span class="k">def</span> <span class="nf">_concat</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">out</span><span class="p">):</span>
<span class="c1"># concatenate along channel axis</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">x</span><span class="p">,</span> <span class="n">out</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">_make_grouped_conv1x1</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">groups</span><span class="p">,</span>
<span class="n">batch_norm</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">relu</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="n">modules</span> <span class="o">=</span> <span class="n">OrderedDict</span><span class="p">()</span>
<span class="n">conv</span> <span class="o">=</span> <span class="n">conv1x1</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">)</span>
<span class="n">modules</span><span class="p">[</span><span class="s1">'conv1x1'</span><span class="p">]</span> <span class="o">=</span> <span class="n">conv</span>
<span class="k">if</span> <span class="n">batch_norm</span><span class="p">:</span>
<span class="n">modules</span><span class="p">[</span><span class="s1">'batch_norm'</span><span class="p">]</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">out_channels</span><span class="p">)</span>
<span class="k">if</span> <span class="n">relu</span><span class="p">:</span>
<span class="n">modules</span><span class="p">[</span><span class="s1">'relu'</span><span class="p">]</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">()</span>
<span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">modules</span><span class="p">)</span> <span class="o">></span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="n">modules</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">conv</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1"># save for combining later with output</span>
<span class="n">residual</span> <span class="o">=</span> <span class="n">x</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">combine</span> <span class="o">==</span> <span class="s1">'concat'</span><span class="p">:</span>
<span class="n">residual</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">avg_pool2d</span><span class="p">(</span><span class="n">residual</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">g_conv_1x1_compress</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">channel_shuffle</span><span class="p">(</span><span class="n">out</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">groups</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depthwise_conv3x3</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn_after_depthwise</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">g_conv_1x1_expand</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_combine_func</span><span class="p">(</span><span class="n">residual</span><span class="p">,</span> <span class="n">out</span><span class="p">)</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">out</span><span class="p">)</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">ShuffleUnitNew</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="n">grouped_conv</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">combine</span><span class="o">=</span><span class="s1">'add'</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="n">first_1x1_groups</span> <span class="o">=</span> <span class="n">groups</span> <span class="k">if</span> <span class="n">grouped_conv</span> <span class="k">else</span> <span class="mi">1</span>
<span class="n">bottleneck_channels</span> <span class="o">=</span> <span class="n">out_channels</span> <span class="o">//</span> <span class="mi">4</span>
<span class="bp">self</span><span class="o">.</span><span class="n">combine</span> <span class="o">=</span> <span class="n">combine</span>
<span class="k">if</span> <span class="n">combine</span> <span class="o">==</span> <span class="s1">'add'</span><span class="p">:</span>
<span class="c1"># ShuffleUnit Figure 2b</span>
<span class="bp">self</span><span class="o">.</span><span class="n">left</span> <span class="o">=</span> <span class="n">Rearrange</span><span class="p">(</span><span class="s1">'...->...'</span><span class="p">)</span> <span class="c1"># identity</span>
<span class="n">depthwise_stride</span> <span class="o">=</span> <span class="mi">1</span>
<span class="k">else</span><span class="p">:</span>
<span class="c1"># ShuffleUnit Figure 2c</span>
<span class="bp">self</span><span class="o">.</span><span class="n">left</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">AvgPool2d</span><span class="p">(</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">depthwise_stride</span> <span class="o">=</span> <span class="mi">2</span>
<span class="c1"># ensure output of concat has the same channels as original output channels.</span>
<span class="n">out_channels</span> <span class="o">-=</span> <span class="n">in_channels</span>
<span class="k">assert</span> <span class="n">out_channels</span> <span class="o">></span> <span class="mi">0</span>
<span class="bp">self</span><span class="o">.</span><span class="n">right</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="c1"># Use a 1x1 grouped or non-grouped convolution to reduce input channels</span>
<span class="c1"># to bottleneck channels, as in a ResNet bottleneck module.</span>
<span class="n">conv1x1</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">bottleneck_channels</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">first_1x1_groups</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">bottleneck_channels</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
<span class="c1"># channel shuffle</span>
<span class="n">Rearrange</span><span class="p">(</span><span class="s1">'b (c1 c2) h w -> b (c2 c1) h w'</span><span class="p">,</span> <span class="n">c1</span><span class="o">=</span><span class="n">groups</span><span class="p">),</span>
<span class="c1"># 3x3 depthwise convolution followed by batch </span>
<span class="n">conv3x3</span><span class="p">(</span><span class="n">bottleneck_channels</span><span class="p">,</span> <span class="n">bottleneck_channels</span><span class="p">,</span>
<span class="n">stride</span><span class="o">=</span><span class="n">depthwise_stride</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">bottleneck_channels</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">bottleneck_channels</span><span class="p">),</span>
<span class="c1"># Use 1x1 grouped convolution to expand from </span>
<span class="c1"># bottleneck_channels to out_channels</span>
<span class="n">conv1x1</span><span class="p">(</span><span class="n">bottleneck_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">,</span> <span class="n">groups</span><span class="o">=</span><span class="n">groups</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">out_channels</span><span class="p">),</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">combine</span> <span class="o">==</span> <span class="s1">'add'</span><span class="p">:</span>
<span class="n">combined</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">left</span><span class="p">(</span><span class="n">x</span><span class="p">)</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">right</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">else</span><span class="p">:</span>
<span class="n">combined</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">([</span><span class="bp">self</span><span class="o">.</span><span class="n">left</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="bp">self</span><span class="o">.</span><span class="n">right</span><span class="p">(</span><span class="n">x</span><span class="p">)],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">combined</span><span class="p">,</span> <span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><p>Rewriting the code helped to identify:</p>
<ul>
<li>There is no sense in doing reshuffling and not using groups in the first convolution
(indeed, in the paper it is not so). However, result is an equivalent model.</li>
<li>It is also strange that the first convolution may be not grouped, while the last convolution is always grouped
(and that is different from the paper)</li>
</ul>
<p>Other comments:</p>
<ul>
<li>There is an identity layer for pytorch introduced here</li>
<li>The last thing left is get rid of conv1x1 and conv3x3 in the code - those are not better than standard</li>
</ul></div><div class='markdown-cell'><h1>Simplifying ResNet</h1></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">ResNetOld</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">block</span><span class="p">,</span> <span class="n">layers</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="mi">1000</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span> <span class="o">=</span> <span class="mi">64</span>
<span class="nb">super</span><span class="p">(</span><span class="n">ResNetOld</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">7</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span>
<span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">bn1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">64</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">maxpool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer1</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">block</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">layers</span><span class="p">[</span><span class="mi">0</span><span class="p">])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">block</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="n">layers</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer3</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">block</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="n">layers</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer4</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">_make_layer</span><span class="p">(</span><span class="n">block</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="n">layers</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">avgpool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">AvgPool2d</span><span class="p">(</span><span class="mi">7</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">512</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)</span>
<span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">modules</span><span class="p">():</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">):</span>
<span class="n">n</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">kernel_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">m</span><span class="o">.</span><span class="n">kernel_size</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">m</span><span class="o">.</span><span class="n">out_channels</span>
<span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mf">2.</span> <span class="o">/</span> <span class="n">n</span><span class="p">))</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">):</span>
<span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">fill_</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">m</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">zero_</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">_make_layer</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">block</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">blocks</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
<span class="n">downsample</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">stride</span> <span class="o">!=</span> <span class="mi">1</span> <span class="ow">or</span> <span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span> <span class="o">!=</span> <span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">:</span>
<span class="n">downsample</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">,</span>
<span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">),</span>
<span class="p">)</span>
<span class="n">layers</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">block</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="n">downsample</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span> <span class="o">=</span> <span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">blocks</span><span class="p">):</span>
<span class="n">layers</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">block</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span><span class="p">))</span>
<span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="o">*</span><span class="n">layers</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">maxpool</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer3</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer4</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">avgpool</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">make_layer</span><span class="p">(</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">block</span><span class="p">,</span> <span class="n">n_blocks</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">):</span>
<span class="n">downsample</span> <span class="o">=</span> <span class="kc">None</span>
<span class="k">if</span> <span class="n">stride</span> <span class="o">!=</span> <span class="mi">1</span> <span class="ow">or</span> <span class="n">inplanes</span> <span class="o">!=</span> <span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">:</span>
<span class="c1"># output size won't match input, so adjust residual</span>
<span class="n">downsample</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">,</span>
<span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="n">stride</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">),</span>
<span class="p">)</span>
<span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">block</span><span class="p">(</span><span class="n">inplanes</span><span class="p">,</span> <span class="n">planes</span><span class="p">,</span> <span class="n">stride</span><span class="p">,</span> <span class="n">downsample</span><span class="p">),</span>
<span class="o">*</span><span class="p">[</span><span class="n">block</span><span class="p">(</span><span class="n">planes</span> <span class="o">*</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span><span class="p">,</span> <span class="n">planes</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">n_blocks</span><span class="p">)]</span>
<span class="p">)</span>
<span class="k">def</span> <span class="nf">ResNetNew</span><span class="p">(</span><span class="n">block</span><span class="p">,</span> <span class="n">layers</span><span class="p">,</span> <span class="n">num_classes</span><span class="o">=</span><span class="mi">1000</span><span class="p">):</span>
<span class="n">e</span> <span class="o">=</span> <span class="n">block</span><span class="o">.</span><span class="n">expansion</span>
<span class="n">resnet</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">Rearrange</span><span class="p">(</span><span class="s1">'b c h w -> b c h w'</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">h</span><span class="o">=</span><span class="mi">224</span><span class="p">,</span> <span class="n">w</span><span class="o">=</span><span class="mi">224</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">3</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">7</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="mi">64</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="n">inplace</span><span class="o">=</span><span class="kc">True</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">make_layer</span><span class="p">(</span><span class="mi">64</span><span class="p">,</span> <span class="mi">64</span><span class="p">,</span> <span class="n">block</span><span class="p">,</span> <span class="n">layers</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">),</span>
<span class="n">make_layer</span><span class="p">(</span><span class="mi">64</span> <span class="o">*</span> <span class="n">e</span><span class="p">,</span> <span class="mi">128</span><span class="p">,</span> <span class="n">block</span><span class="p">,</span> <span class="n">layers</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span>
<span class="n">make_layer</span><span class="p">(</span><span class="mi">128</span> <span class="o">*</span> <span class="n">e</span><span class="p">,</span> <span class="mi">256</span><span class="p">,</span> <span class="n">block</span><span class="p">,</span> <span class="n">layers</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span>
<span class="n">make_layer</span><span class="p">(</span><span class="mi">256</span> <span class="o">*</span> <span class="n">e</span><span class="p">,</span> <span class="mi">512</span><span class="p">,</span> <span class="n">block</span><span class="p">,</span> <span class="n">layers</span><span class="p">[</span><span class="mi">3</span><span class="p">],</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span>
<span class="c1"># combined AvgPool and view in one averaging operation</span>
<span class="n">Reduce</span><span class="p">(</span><span class="s1">'b c h w -> b c'</span><span class="p">,</span> <span class="s1">'mean'</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">512</span> <span class="o">*</span> <span class="n">e</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">),</span>
<span class="p">)</span>
<span class="c1"># initialization</span>
<span class="k">for</span> <span class="n">m</span> <span class="ow">in</span> <span class="n">resnet</span><span class="o">.</span><span class="n">modules</span><span class="p">():</span>
<span class="k">if</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">):</span>
<span class="n">n</span> <span class="o">=</span> <span class="n">m</span><span class="o">.</span><span class="n">kernel_size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">*</span> <span class="n">m</span><span class="o">.</span><span class="n">kernel_size</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">*</span> <span class="n">m</span><span class="o">.</span><span class="n">out_channels</span>
<span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">math</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mf">2.</span> <span class="o">/</span> <span class="n">n</span><span class="p">))</span>
<span class="k">elif</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">m</span><span class="p">,</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">):</span>
<span class="n">m</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">fill_</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="n">m</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">zero_</span><span class="p">()</span>
<span class="k">return</span> <span class="n">resnet</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><p>Changes:</p>
<ul>
<li>explicit check for input shape</li>
<li>no views and simple sequential structure, output is just nn.Sequential, so can always be saved/passed/etc</li>
<li>no need in AvgPool and additional views, this place is much clearer now</li>
<li><code>make_layer</code> doesn't use internal state (that's quite faulty place)</li>
</ul></div><div class='markdown-cell'><h1>Improving RNN language modelling</h1></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">RNNOld</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">,</span> <span class="n">n_layers</span><span class="p">,</span> <span class="n">bidirectional</span><span class="p">,</span> <span class="n">dropout</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Embedding</span><span class="p">(</span><span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rnn</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LSTM</span><span class="p">(</span><span class="n">embedding_dim</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">,</span> <span class="n">num_layers</span><span class="o">=</span><span class="n">n_layers</span><span class="p">,</span>
<span class="n">bidirectional</span><span class="o">=</span><span class="n">bidirectional</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="n">dropout</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">hidden_dim</span><span class="o">*</span><span class="mi">2</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dropout</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">dropout</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1">#x = [sent len, batch size]</span>
<span class="n">embedded</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="c1">#embedded = [sent len, batch size, emb dim]</span>
<span class="n">output</span><span class="p">,</span> <span class="p">(</span><span class="n">hidden</span><span class="p">,</span> <span class="n">cell</span><span class="p">)</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rnn</span><span class="p">(</span><span class="n">embedded</span><span class="p">)</span>
<span class="c1">#output = [sent len, batch size, hid dim * num directions]</span>
<span class="c1">#hidden = [num layers * num directions, batch size, hid dim]</span>
<span class="c1">#cell = [num layers * num directions, batch size, hid dim]</span>
<span class="c1">#concat the final forward (hidden[-2,:,:]) and backward (hidden[-1,:,:]) hidden layers</span>
<span class="c1">#and apply dropout</span>
<span class="n">hidden</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">hidden</span><span class="p">[</span><span class="o">-</span><span class="mi">2</span><span class="p">,:,:],</span> <span class="n">hidden</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,:,:]),</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span>
<span class="c1">#hidden = [batch size, hid dim * num directions]</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">hidden</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="mi">0</span><span class="p">))</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">RNNNew</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">,</span> <span class="n">n_layers</span><span class="p">,</span> <span class="n">bidirectional</span><span class="p">,</span> <span class="n">dropout</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Embedding</span><span class="p">(</span><span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">rnn</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LSTM</span><span class="p">(</span><span class="n">embedding_dim</span><span class="p">,</span> <span class="n">hidden_dim</span><span class="p">,</span> <span class="n">num_layers</span><span class="o">=</span><span class="n">n_layers</span><span class="p">,</span>
<span class="n">bidirectional</span><span class="o">=</span><span class="n">bidirectional</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="n">dropout</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dropout</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">dropout</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">directions</span> <span class="o">=</span> <span class="mi">2</span> <span class="k">if</span> <span class="n">bidirectional</span> <span class="k">else</span> <span class="mi">1</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">hidden_dim</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">directions</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1">#x = [sent len, batch size] </span>
<span class="n">embedded</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="c1">#embedded = [sent len, batch size, emb dim]</span>
<span class="n">output</span><span class="p">,</span> <span class="p">(</span><span class="n">hidden</span><span class="p">,</span> <span class="n">cell</span><span class="p">)</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">rnn</span><span class="p">(</span><span class="n">embedded</span><span class="p">)</span>
<span class="n">hidden</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">hidden</span><span class="p">,</span> <span class="s1">'(layer dir) b c -> layer b (dir c)'</span><span class="p">,</span>
<span class="nb">dir</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">directions</span><span class="p">)</span>
<span class="c1"># take the final layer's hidden</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="n">hidden</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]))</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><ul>
<li>original code misbehaves for non-bidirectional models</li>
<li>... and fails when bidirectional = False, and there is only one layer</li>
<li>modification of the code shows both how hidden is structured and how it is modified</li>
</ul></div><div class='markdown-cell'><h1>Writing FastText faster</h1>
<!-- from # https://github.com/bentrevett/pytorch-sentiment-analysis/blob/master/3%20-%20Faster%20Sentiment%20Analysis.ipynb --></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">FastTextOld</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Embedding</span><span class="p">(</span><span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">embedding_dim</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1">#x = [sent len, batch size]</span>
<span class="n">embedded</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1">#embedded = [sent len, batch size, emb dim]</span>
<span class="n">embedded</span> <span class="o">=</span> <span class="n">embedded</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="c1">#embedded = [batch size, sent len, emb dim]</span>
<span class="n">pooled</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">avg_pool2d</span><span class="p">(</span><span class="n">embedded</span><span class="p">,</span> <span class="p">(</span><span class="n">embedded</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="mi">1</span><span class="p">))</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="c1">#pooled = [batch size, embedding_dim]</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">pooled</span><span class="p">)</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">FastTextNew</span><span class="p">(</span><span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">):</span>
<span class="k">return</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">Rearrange</span><span class="p">(</span><span class="s1">'t b -> t b'</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Embedding</span><span class="p">(</span><span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">),</span>
<span class="n">Reduce</span><span class="p">(</span><span class="s1">'t b c -> b c'</span><span class="p">,</span> <span class="s1">'mean'</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">embedding_dim</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">),</span>
<span class="n">Rearrange</span><span class="p">(</span><span class="s1">'b c -> b c'</span><span class="p">),</span>
<span class="p">)</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><p>Some comments on new code:</p>
<ul>
<li>first and last operations do nothing and can be removed<ul>
<li>but were added to explicitly show expected input and output</li>
</ul>
</li>
<li>this also gives you a flexibility of changing interface by editing a single line. Should you need to accept inputs as (batch, time),
you just change first line to <code>Rearrange('b t -> t b'),</code></li>
</ul></div><div class='markdown-cell'><h1>CNNs for text classification</h1></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">CNNOld</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">,</span> <span class="n">n_filters</span><span class="p">,</span> <span class="n">filter_sizes</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">,</span> <span class="n">dropout</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Embedding</span><span class="p">(</span><span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv_0</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">n_filters</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="p">(</span><span class="n">filter_sizes</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span><span class="n">embedding_dim</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv_1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">n_filters</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="p">(</span><span class="n">filter_sizes</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span><span class="n">embedding_dim</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv_2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">n_filters</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="p">(</span><span class="n">filter_sizes</span><span class="p">[</span><span class="mi">2</span><span class="p">],</span><span class="n">embedding_dim</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">filter_sizes</span><span class="p">)</span><span class="o">*</span><span class="n">n_filters</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dropout</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">dropout</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="c1">#x = [sent len, batch size]</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span>
<span class="c1">#x = [batch size, sent len]</span>
<span class="n">embedded</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1">#embedded = [batch size, sent len, emb dim]</span>
<span class="n">embedded</span> <span class="o">=</span> <span class="n">embedded</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<span class="c1">#embedded = [batch size, 1, sent len, emb dim]</span>
<span class="n">conved_0</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv_0</span><span class="p">(</span><span class="n">embedded</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="mi">3</span><span class="p">))</span>
<span class="n">conved_1</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv_1</span><span class="p">(</span><span class="n">embedded</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="mi">3</span><span class="p">))</span>
<span class="n">conved_2</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv_2</span><span class="p">(</span><span class="n">embedded</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="mi">3</span><span class="p">))</span>
<span class="c1">#conv_n = [batch size, n_filters, sent len - filter_sizes[n]]</span>
<span class="n">pooled_0</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool1d</span><span class="p">(</span><span class="n">conved_0</span><span class="p">,</span> <span class="n">conved_0</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="n">pooled_1</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool1d</span><span class="p">(</span><span class="n">conved_1</span><span class="p">,</span> <span class="n">conved_1</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="n">pooled_2</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool1d</span><span class="p">(</span><span class="n">conved_2</span><span class="p">,</span> <span class="n">conved_2</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">2</span><span class="p">])</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="c1">#pooled_n = [batch size, n_filters]</span>
<span class="n">cat</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">pooled_0</span><span class="p">,</span> <span class="n">pooled_1</span><span class="p">,</span> <span class="n">pooled_2</span><span class="p">),</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span>
<span class="c1">#cat = [batch size, n_filters * len(filter_sizes)]</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">cat</span><span class="p">)</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">CNNNew</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">,</span> <span class="n">n_filters</span><span class="p">,</span> <span class="n">filter_sizes</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">,</span> <span class="n">dropout</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">embedding</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Embedding</span><span class="p">(</span><span class="n">vocab_size</span><span class="p">,</span> <span class="n">embedding_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">convs</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">([</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv1d</span><span class="p">(</span><span class="n">embedding_dim</span><span class="p">,</span> <span class="n">n_filters</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">size</span><span class="p">)</span> <span class="k">for</span> <span class="n">size</span> <span class="ow">in</span> <span class="n">filter_sizes</span>
<span class="p">])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">filter_sizes</span><span class="p">)</span> <span class="o">*</span> <span class="n">n_filters</span><span class="p">,</span> <span class="n">output_dim</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dropout</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">dropout</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">'t b -> t b'</span><span class="p">)</span>
<span class="n">emb</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">embedding</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="s1">'t b c -> b c t'</span><span class="p">)</span>
<span class="n">pooled</span> <span class="o">=</span> <span class="p">[</span><span class="n">reduce</span><span class="p">(</span><span class="n">conv</span><span class="p">(</span><span class="n">emb</span><span class="p">),</span> <span class="s1">'b c t -> b c'</span><span class="p">,</span> <span class="s1">'max'</span><span class="p">)</span> <span class="k">for</span> <span class="n">conv</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">convs</span><span class="p">]</span>
<span class="n">concatenated</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">pooled</span><span class="p">,</span> <span class="s1">'filter b c -> b (filter c)'</span><span class="p">)</span>
<span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="n">concatenated</span><span class="p">)))</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><ul>
<li>Original code misuses Conv2d, while Conv1d is the right choice</li>
<li>Fixed code can work with any number of filter_sizes (and won't fail)</li>
<li>First line in new code does nothing, but was added for simplicity</li>
</ul></div><div class='markdown-cell'><h1>Highway convolutions</h1>
<ul>
<li>Highway convolutions are common in TTS systems. Code below makes splitting a bit more explicit.</li>
<li>Splitting policy may eventually turn out to be important if input had previously groups over channel axes (group convolutions or bidirectional LSTMs/GRUs)</li>
<li>Same applies to GLU and gated units in general</li>
</ul></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">HighwayConv1dOld</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Conv1d</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">):</span>
<span class="n">L</span> <span class="o">=</span> <span class="nb">super</span><span class="p">(</span><span class="n">HighwayConv1dOld</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>
<span class="n">H1</span><span class="p">,</span> <span class="n">H2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># chunk at the feature dim</span>
<span class="n">torch</span><span class="o">.</span><span class="n">sigmoid_</span><span class="p">(</span><span class="n">H1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">H1</span> <span class="o">*</span> <span class="n">H2</span> <span class="o">+</span> <span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">H1</span><span class="p">)</span> <span class="o">*</span> <span class="n">inputs</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">HighwayConv1dNew</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Conv1d</span><span class="p">):</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">):</span>
<span class="n">L</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">forward</span><span class="p">(</span><span class="n">inputs</span><span class="p">)</span>
<span class="n">H1</span><span class="p">,</span> <span class="n">H2</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">L</span><span class="p">,</span> <span class="s1">'b (split c) t -> split b c t'</span><span class="p">,</span> <span class="n">split</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">torch</span><span class="o">.</span><span class="n">sigmoid_</span><span class="p">(</span><span class="n">H1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">H1</span> <span class="o">*</span> <span class="n">H2</span> <span class="o">+</span> <span class="p">(</span><span class="mf">1.0</span> <span class="o">-</span> <span class="n">H1</span><span class="p">)</span> <span class="o">*</span> <span class="n">inputs</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><h1>Tacotron's CBHG module</h1>
<!-- https://github.com/r9y9/tacotron_pytorch/blob/master/tacotron_pytorch/tacotron.py --></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">CBHG_Old</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">"""CBHG module: a recurrent neural network composed of:</span>
<span class="sd"> - 1-d convolution banks</span>
<span class="sd"> - Highway networks + residual connections</span>
<span class="sd"> - Bidirectional gated recurrent units</span>
<span class="sd"> """</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_dim</span><span class="p">,</span> <span class="n">K</span><span class="o">=</span><span class="mi">16</span><span class="p">,</span> <span class="n">projections</span><span class="o">=</span><span class="p">[</span><span class="mi">128</span><span class="p">,</span> <span class="mi">128</span><span class="p">]):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">CBHG</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">in_dim</span> <span class="o">=</span> <span class="n">in_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">relu</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv1d_banks</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">(</span>
<span class="p">[</span><span class="n">BatchNormConv1d</span><span class="p">(</span><span class="n">in_dim</span><span class="p">,</span> <span class="n">in_dim</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">k</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">padding</span><span class="o">=</span><span class="n">k</span> <span class="o">//</span> <span class="mi">2</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">)</span>
<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">K</span> <span class="o">+</span> <span class="mi">1</span><span class="p">)])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">max_pool1d</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">MaxPool1d</span><span class="p">(</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="n">in_sizes</span> <span class="o">=</span> <span class="p">[</span><span class="n">K</span> <span class="o">*</span> <span class="n">in_dim</span><span class="p">]</span> <span class="o">+</span> <span class="n">projections</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
<span class="n">activations</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">relu</span><span class="p">]</span> <span class="o">*</span> <span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">projections</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">+</span> <span class="p">[</span><span class="kc">None</span><span class="p">]</span>
<span class="bp">self</span><span class="o">.</span><span class="n">conv1d_projections</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">(</span>
<span class="p">[</span><span class="n">BatchNormConv1d</span><span class="p">(</span><span class="n">in_size</span><span class="p">,</span> <span class="n">out_size</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span>
<span class="n">padding</span><span class="o">=</span><span class="mi">1</span><span class="p">,</span> <span class="n">activation</span><span class="o">=</span><span class="n">ac</span><span class="p">)</span>
<span class="k">for</span> <span class="p">(</span><span class="n">in_size</span><span class="p">,</span> <span class="n">out_size</span><span class="p">,</span> <span class="n">ac</span><span class="p">)</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span>
<span class="n">in_sizes</span><span class="p">,</span> <span class="n">projections</span><span class="p">,</span> <span class="n">activations</span><span class="p">)])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">pre_highway</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">projections</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">in_dim</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">highways</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">ModuleList</span><span class="p">(</span>
<span class="p">[</span><span class="n">Highway</span><span class="p">(</span><span class="n">in_dim</span><span class="p">,</span> <span class="n">in_dim</span><span class="p">)</span> <span class="k">for</span> <span class="n">_</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">4</span><span class="p">)])</span>
<span class="bp">self</span><span class="o">.</span><span class="n">gru</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">GRU</span><span class="p">(</span>
<span class="n">in_dim</span><span class="p">,</span> <span class="n">in_dim</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">batch_first</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">bidirectional</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
</pre></div>
</div></div></div> <div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">forward_old</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">):</span>
<span class="c1"># (B, T_in, in_dim)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">inputs</span>
<span class="c1"># Needed to perform conv1d on time-axis</span>
<span class="c1"># (B, in_dim, T_in)</span>
<span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">==</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_dim</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="n">T</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="c1"># (B, in_dim*K, T_in)</span>
<span class="c1"># Concat conv1d bank outputs</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">([</span><span class="n">conv1d</span><span class="p">(</span><span class="n">x</span><span class="p">)[:,</span> <span class="p">:,</span> <span class="p">:</span><span class="n">T</span><span class="p">]</span> <span class="k">for</span> <span class="n">conv1d</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv1d_banks</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="k">assert</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span> <span class="o">==</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_dim</span> <span class="o">*</span> <span class="nb">len</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1d_banks</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_pool1d</span><span class="p">(</span><span class="n">x</span><span class="p">)[:,</span> <span class="p">:,</span> <span class="p">:</span><span class="n">T</span><span class="p">]</span>
<span class="k">for</span> <span class="n">conv1d</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv1d_projections</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">conv1d</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># (B, T_in, in_dim)</span>
<span class="c1"># Back to the original shape</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
<span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_dim</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pre_highway</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># Residual connection</span>
<span class="n">x</span> <span class="o">+=</span> <span class="n">inputs</span>
<span class="k">for</span> <span class="n">highway</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">highways</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">highway</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># (B, T_in, in_dim*2)</span>
<span class="n">outputs</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">gru</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="k">return</span> <span class="n">outputs</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">forward_new</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">inputs</span><span class="p">,</span> <span class="n">input_lengths</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">inputs</span><span class="p">,</span> <span class="s1">'b t c -> b c t'</span><span class="p">)</span>
<span class="n">_</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">T</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span>
<span class="c1"># Concat conv1d bank outputs</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">([</span><span class="n">conv1d</span><span class="p">(</span><span class="n">x</span><span class="p">)[:,</span> <span class="p">:,</span> <span class="p">:</span><span class="n">T</span><span class="p">]</span> <span class="k">for</span> <span class="n">conv1d</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv1d_banks</span><span class="p">],</span>
<span class="s1">'bank b c t -> b (bank c) t'</span><span class="p">,</span> <span class="n">c</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">in_dim</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">max_pool1d</span><span class="p">(</span><span class="n">x</span><span class="p">)[:,</span> <span class="p">:,</span> <span class="p">:</span><span class="n">T</span><span class="p">]</span>
<span class="k">for</span> <span class="n">conv1d</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv1d_projections</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">conv1d</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">'b c t -> b t c'</span><span class="p">)</span>
<span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="o">!=</span> <span class="bp">self</span><span class="o">.</span><span class="n">in_dim</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pre_highway</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># Residual connection</span>
<span class="n">x</span> <span class="o">+=</span> <span class="n">inputs</span>
<span class="k">for</span> <span class="n">highway</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">highways</span><span class="p">:</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">highway</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="c1"># (B, T_in, in_dim*2)</span>
<span class="n">outputs</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">gru</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">highways</span><span class="p">(</span><span class="n">x</span><span class="p">))</span>
<span class="k">return</span> <span class="n">outputs</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><p>There is still a large room for improvements, but in this example only forward function was changed</p></div><div class='markdown-cell'><h1>Simple attention</h1>
<p>Good news: there is no more need to guess order of dimensions. Neither for inputs nor for outputs</p></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Attention</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Attention</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">K</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">Q</span><span class="p">):</span>
<span class="n">A</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">K</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">),</span> <span class="n">Q</span><span class="p">)</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">Q</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">])</span>
<span class="n">A</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">R</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">V</span><span class="p">,</span> <span class="n">A</span><span class="p">)</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">R</span><span class="p">,</span> <span class="n">Q</span><span class="p">),</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">attention</span><span class="p">(</span><span class="n">K</span><span class="p">,</span> <span class="n">V</span><span class="p">,</span> <span class="n">Q</span><span class="p">):</span>
<span class="n">_</span><span class="p">,</span> <span class="n">n_channels</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">K</span><span class="o">.</span><span class="n">shape</span>
<span class="n">A</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="s1">'bct,bcl->btl'</span><span class="p">,</span> <span class="p">[</span><span class="n">K</span><span class="p">,</span> <span class="n">Q</span><span class="p">])</span>
<span class="n">A</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">A</span> <span class="o">*</span> <span class="n">n_channels</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="mf">0.5</span><span class="p">),</span> <span class="mi">1</span><span class="p">)</span>
<span class="n">R</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="s1">'bct,btl->bcl'</span><span class="p">,</span> <span class="p">[</span><span class="n">V</span><span class="p">,</span> <span class="n">A</span><span class="p">])</span>
<span class="k">return</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">R</span><span class="p">,</span> <span class="n">Q</span><span class="p">),</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><h1>Transformer's attention needs more attention</h1></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">ScaledDotProductAttention</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">''' Scaled Dot-Product Attention '''</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">temperature</span><span class="p">,</span> <span class="n">attn_dropout</span><span class="o">=</span><span class="mf">0.1</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">temperature</span> <span class="o">=</span> <span class="n">temperature</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dropout</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">attn_dropout</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">softmax</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Softmax</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">q</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">attn</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">q</span><span class="p">,</span> <span class="n">k</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">))</span>
<span class="n">attn</span> <span class="o">=</span> <span class="n">attn</span> <span class="o">/</span> <span class="bp">self</span><span class="o">.</span><span class="n">temperature</span>
<span class="k">if</span> <span class="n">mask</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">attn</span> <span class="o">=</span> <span class="n">attn</span><span class="o">.</span><span class="n">masked_fill</span><span class="p">(</span><span class="n">mask</span><span class="p">,</span> <span class="o">-</span><span class="n">np</span><span class="o">.</span><span class="n">inf</span><span class="p">)</span>
<span class="n">attn</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">attn</span><span class="p">)</span>
<span class="n">attn</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="n">attn</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">attn</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>
<span class="k">return</span> <span class="n">output</span><span class="p">,</span> <span class="n">attn</span>
<span class="k">class</span> <span class="nc">MultiHeadAttentionOld</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">''' Multi-Head Attention module '''</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_head</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span> <span class="n">d_k</span><span class="p">,</span> <span class="n">d_v</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="mf">0.1</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">n_head</span> <span class="o">=</span> <span class="n">n_head</span>
<span class="bp">self</span><span class="o">.</span><span class="n">d_k</span> <span class="o">=</span> <span class="n">d_k</span>
<span class="bp">self</span><span class="o">.</span><span class="n">d_v</span> <span class="o">=</span> <span class="n">d_v</span>
<span class="bp">self</span><span class="o">.</span><span class="n">w_qs</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">n_head</span> <span class="o">*</span> <span class="n">d_k</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">w_ks</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">n_head</span> <span class="o">*</span> <span class="n">d_k</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">w_vs</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">n_head</span> <span class="o">*</span> <span class="n">d_v</span><span class="p">)</span>
<span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">w_qs</span><span class="o">.</span><span class="n">weight</span><span class="p">,</span> <span class="n">mean</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">std</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mf">2.0</span> <span class="o">/</span> <span class="p">(</span><span class="n">d_model</span> <span class="o">+</span> <span class="n">d_k</span><span class="p">)))</span>
<span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">w_ks</span><span class="o">.</span><span class="n">weight</span><span class="p">,</span> <span class="n">mean</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">std</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mf">2.0</span> <span class="o">/</span> <span class="p">(</span><span class="n">d_model</span> <span class="o">+</span> <span class="n">d_k</span><span class="p">)))</span>
<span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">w_vs</span><span class="o">.</span><span class="n">weight</span><span class="p">,</span> <span class="n">mean</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">std</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mf">2.0</span> <span class="o">/</span> <span class="p">(</span><span class="n">d_model</span> <span class="o">+</span> <span class="n">d_v</span><span class="p">)))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">attention</span> <span class="o">=</span> <span class="n">ScaledDotProductAttention</span><span class="p">(</span><span class="n">temperature</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">power</span><span class="p">(</span><span class="n">d_k</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer_norm</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LayerNorm</span><span class="p">(</span><span class="n">d_model</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">n_head</span> <span class="o">*</span> <span class="n">d_v</span><span class="p">,</span> <span class="n">d_model</span><span class="p">)</span>
<span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">xavier_normal_</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">weight</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dropout</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">dropout</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">q</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">d_k</span><span class="p">,</span> <span class="n">d_v</span><span class="p">,</span> <span class="n">n_head</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">d_k</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">d_v</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">n_head</span>
<span class="n">sz_b</span><span class="p">,</span> <span class="n">len_q</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">q</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="n">sz_b</span><span class="p">,</span> <span class="n">len_k</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">k</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="n">sz_b</span><span class="p">,</span> <span class="n">len_v</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">v</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="n">residual</span> <span class="o">=</span> <span class="n">q</span>
<span class="n">q</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">w_qs</span><span class="p">(</span><span class="n">q</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">sz_b</span><span class="p">,</span> <span class="n">len_q</span><span class="p">,</span> <span class="n">n_head</span><span class="p">,</span> <span class="n">d_k</span><span class="p">)</span>
<span class="n">k</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">w_ks</span><span class="p">(</span><span class="n">k</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">sz_b</span><span class="p">,</span> <span class="n">len_k</span><span class="p">,</span> <span class="n">n_head</span><span class="p">,</span> <span class="n">d_k</span><span class="p">)</span>
<span class="n">v</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">w_vs</span><span class="p">(</span><span class="n">v</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">sz_b</span><span class="p">,</span> <span class="n">len_v</span><span class="p">,</span> <span class="n">n_head</span><span class="p">,</span> <span class="n">d_v</span><span class="p">)</span>
<span class="n">q</span> <span class="o">=</span> <span class="n">q</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">len_q</span><span class="p">,</span> <span class="n">d_k</span><span class="p">)</span> <span class="c1"># (n*b) x lq x dk</span>
<span class="n">k</span> <span class="o">=</span> <span class="n">k</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">len_k</span><span class="p">,</span> <span class="n">d_k</span><span class="p">)</span> <span class="c1"># (n*b) x lk x dk</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">v</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">len_v</span><span class="p">,</span> <span class="n">d_v</span><span class="p">)</span> <span class="c1"># (n*b) x lv x dv</span>
<span class="n">mask</span> <span class="o">=</span> <span class="n">mask</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="n">n_head</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="c1"># (n*b) x .. x ..</span>
<span class="n">output</span><span class="p">,</span> <span class="n">attn</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">attention</span><span class="p">(</span><span class="n">q</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="n">mask</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">n_head</span><span class="p">,</span> <span class="n">sz_b</span><span class="p">,</span> <span class="n">len_q</span><span class="p">,</span> <span class="n">d_v</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">sz_b</span><span class="p">,</span> <span class="n">len_q</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span> <span class="c1"># b x lq x (n*dv)</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">output</span><span class="p">))</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer_norm</span><span class="p">(</span><span class="n">output</span> <span class="o">+</span> <span class="n">residual</span><span class="p">)</span>
<span class="k">return</span> <span class="n">output</span><span class="p">,</span> <span class="n">attn</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">MultiHeadAttentionNew</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">n_head</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span> <span class="n">d_k</span><span class="p">,</span> <span class="n">d_v</span><span class="p">,</span> <span class="n">dropout</span><span class="o">=</span><span class="mf">0.1</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">n_head</span> <span class="o">=</span> <span class="n">n_head</span>
<span class="bp">self</span><span class="o">.</span><span class="n">w_qs</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">n_head</span> <span class="o">*</span> <span class="n">d_k</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">w_ks</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">n_head</span> <span class="o">*</span> <span class="n">d_k</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">w_vs</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">n_head</span> <span class="o">*</span> <span class="n">d_v</span><span class="p">)</span>
<span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">w_qs</span><span class="o">.</span><span class="n">weight</span><span class="p">,</span> <span class="n">mean</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">std</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mf">2.0</span> <span class="o">/</span> <span class="p">(</span><span class="n">d_model</span> <span class="o">+</span> <span class="n">d_k</span><span class="p">)))</span>
<span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">w_ks</span><span class="o">.</span><span class="n">weight</span><span class="p">,</span> <span class="n">mean</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">std</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mf">2.0</span> <span class="o">/</span> <span class="p">(</span><span class="n">d_model</span> <span class="o">+</span> <span class="n">d_k</span><span class="p">)))</span>
<span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">normal_</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">w_vs</span><span class="o">.</span><span class="n">weight</span><span class="p">,</span> <span class="n">mean</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">std</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="mf">2.0</span> <span class="o">/</span> <span class="p">(</span><span class="n">d_model</span> <span class="o">+</span> <span class="n">d_v</span><span class="p">)))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">n_head</span> <span class="o">*</span> <span class="n">d_v</span><span class="p">,</span> <span class="n">d_model</span><span class="p">)</span>
<span class="n">nn</span><span class="o">.</span><span class="n">init</span><span class="o">.</span><span class="n">xavier_normal_</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="o">.</span><span class="n">weight</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">dropout</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Dropout</span><span class="p">(</span><span class="n">p</span><span class="o">=</span><span class="n">dropout</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">layer_norm</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LayerNorm</span><span class="p">(</span><span class="n">d_model</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">q</span><span class="p">,</span> <span class="n">k</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">mask</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
<span class="n">residual</span> <span class="o">=</span> <span class="n">q</span>
<span class="n">q</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">w_qs</span><span class="p">(</span><span class="n">q</span><span class="p">),</span> <span class="s1">'b l (head k) -> head b l k'</span><span class="p">,</span> <span class="n">head</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">n_head</span><span class="p">)</span>
<span class="n">k</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">w_ks</span><span class="p">(</span><span class="n">k</span><span class="p">),</span> <span class="s1">'b t (head k) -> head b t k'</span><span class="p">,</span> <span class="n">head</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">n_head</span><span class="p">)</span>
<span class="n">v</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">w_vs</span><span class="p">(</span><span class="n">v</span><span class="p">),</span> <span class="s1">'b t (head v) -> head b t v'</span><span class="p">,</span> <span class="n">head</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">n_head</span><span class="p">)</span>
<span class="n">attn</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="s1">'hblk,hbtk->hblt'</span><span class="p">,</span> <span class="p">[</span><span class="n">q</span><span class="p">,</span> <span class="n">k</span><span class="p">])</span> <span class="o">/</span> <span class="n">np</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">q</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">])</span>
<span class="k">if</span> <span class="n">mask</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
<span class="n">attn</span> <span class="o">=</span> <span class="n">attn</span><span class="o">.</span><span class="n">masked_fill</span><span class="p">(</span><span class="n">mask</span><span class="p">[</span><span class="kc">None</span><span class="p">],</span> <span class="o">-</span><span class="n">np</span><span class="o">.</span><span class="n">inf</span><span class="p">)</span>
<span class="n">attn</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">attn</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">einsum</span><span class="p">(</span><span class="s1">'hblt,hbtv->hblv'</span><span class="p">,</span> <span class="p">[</span><span class="n">attn</span><span class="p">,</span> <span class="n">v</span><span class="p">])</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="s1">'head b l v -> b l (head v)'</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">dropout</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">output</span><span class="p">))</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layer_norm</span><span class="p">(</span><span class="n">output</span> <span class="o">+</span> <span class="n">residual</span><span class="p">)</span>
<span class="k">return</span> <span class="n">output</span><span class="p">,</span> <span class="n">attn</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><p>Benefits of new implementation</p>
<ul>
<li>we have one module, not two</li>
<li>now code does not fail for None mask</li>
<li>the amount of caveats in the original code that we removed is huge.
Try erasing comments and deciphering what happens there</li>
</ul></div><div class='markdown-cell'><h1>Self-attention GANs</h1>
<p>SAGANs are currently SotA for image generation, and can be simplified using same tricks.
<!-- If torch.einsum supported non-one letter axes, we could improve this solution further. --></p>
<!-- from https://github.com/heykeetae/Self-Attention-GAN/blob/master/sagan_models.py --></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Self_Attn_Old</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">""" Self attention Layer"""</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span><span class="n">in_dim</span><span class="p">,</span><span class="n">activation</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Self_Attn_Old</span><span class="p">,</span><span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">chanel_in</span> <span class="o">=</span> <span class="n">in_dim</span>
<span class="bp">self</span><span class="o">.</span><span class="n">activation</span> <span class="o">=</span> <span class="n">activation</span>
<span class="bp">self</span><span class="o">.</span><span class="n">query_conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span> <span class="o">=</span> <span class="n">in_dim</span> <span class="p">,</span> <span class="n">out_channels</span> <span class="o">=</span> <span class="n">in_dim</span><span class="o">//</span><span class="mi">8</span> <span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">key_conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span> <span class="o">=</span> <span class="n">in_dim</span> <span class="p">,</span> <span class="n">out_channels</span> <span class="o">=</span> <span class="n">in_dim</span><span class="o">//</span><span class="mi">8</span> <span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">value_conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span> <span class="o">=</span> <span class="n">in_dim</span> <span class="p">,</span> <span class="n">out_channels</span> <span class="o">=</span> <span class="n">in_dim</span> <span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span> <span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">1</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">softmax</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Softmax</span><span class="p">(</span><span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span> <span class="c1">#</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="sd">"""</span>
<span class="sd"> inputs :</span>
<span class="sd"> x : input feature maps( B X C X W X H)</span>
<span class="sd"> returns :</span>
<span class="sd"> out : self attention value + input feature </span>
<span class="sd"> attention: B X N X N (N is Width*Height)</span>
<span class="sd"> """</span>
<span class="n">m_batchsize</span><span class="p">,</span><span class="n">C</span><span class="p">,</span><span class="n">width</span> <span class="p">,</span><span class="n">height</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="n">proj_query</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">query_conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">m_batchsize</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> <span class="c1"># B X CX(N)</span>
<span class="n">proj_key</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">key_conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">m_batchsize</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">)</span> <span class="c1"># B X C x (*W*H)</span>
<span class="n">energy</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">proj_query</span><span class="p">,</span><span class="n">proj_key</span><span class="p">)</span> <span class="c1"># transpose check</span>
<span class="n">attention</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">energy</span><span class="p">)</span> <span class="c1"># BX (N) X (N) </span>
<span class="n">proj_value</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">value_conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">m_batchsize</span><span class="p">,</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span><span class="n">width</span><span class="o">*</span><span class="n">height</span><span class="p">)</span> <span class="c1"># B X C X N</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">proj_value</span><span class="p">,</span><span class="n">attention</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">1</span><span class="p">)</span> <span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">out</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">m_batchsize</span><span class="p">,</span><span class="n">C</span><span class="p">,</span><span class="n">width</span><span class="p">,</span><span class="n">height</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span><span class="o">*</span><span class="n">out</span> <span class="o">+</span> <span class="n">x</span>
<span class="k">return</span> <span class="n">out</span><span class="p">,</span><span class="n">attention</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">Self_Attn_New</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="sd">""" Self attention Layer"""</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_dim</span><span class="p">):</span>
<span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">query_conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_dim</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">in_dim</span><span class="o">//</span><span class="mi">8</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">key_conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_dim</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">in_dim</span><span class="o">//</span><span class="mi">8</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">value_conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_dim</span><span class="p">,</span> <span class="n">out_channels</span><span class="o">=</span><span class="n">in_dim</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">([</span><span class="mi">1</span><span class="p">]))</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">proj_query</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">query_conv</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="s1">'b c h w -> b (h w) c'</span><span class="p">)</span>
<span class="n">proj_key</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">key_conv</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="s1">'b c h w -> b c (h w)'</span><span class="p">)</span>
<span class="n">proj_value</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">value_conv</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="s1">'b c h w -> b (h w) c'</span><span class="p">)</span>
<span class="n">energy</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">proj_query</span><span class="p">,</span> <span class="n">proj_key</span><span class="p">)</span>
<span class="n">attention</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">softmax</span><span class="p">(</span><span class="n">energy</span><span class="p">,</span> <span class="n">dim</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">bmm</span><span class="p">(</span><span class="n">attention</span><span class="p">,</span> <span class="n">proj_value</span><span class="p">)</span>
<span class="n">out</span> <span class="o">=</span> <span class="n">x</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">gamma</span> <span class="o">*</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">out</span><span class="p">,</span> <span class="s1">'b (h w) c -> b c h w'</span><span class="p">,</span>
<span class="o">**</span><span class="n">parse_shape</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="s1">'b c h w'</span><span class="p">))</span>
<span class="k">return</span> <span class="n">out</span><span class="p">,</span> <span class="n">attention</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><h1>Improving time sequence prediction</h1>
<!-- https://github.com/pytorch/examples/blob/master/time_sequence_prediction/train.py -->
<p>While this example was considered to be simplistic, I had to analyze surrounding code to understand what kind of input was expected.
You can try yourself. </p>
<p>Additionally now the code works with any dtype, not only double; and new code supports using GPU.</p></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">SequencePredictionOld</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SequencePredictionOld</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lstm1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LSTMCell</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">51</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lstm2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LSTMCell</span><span class="p">(</span><span class="mi">51</span><span class="p">,</span> <span class="mi">51</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">linear</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">51</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">,</span> <span class="n">future</span> <span class="o">=</span> <span class="mi">0</span><span class="p">):</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="n">h_t</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="mi">51</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">double</span><span class="p">)</span>
<span class="n">c_t</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="mi">51</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">double</span><span class="p">)</span>
<span class="n">h_t2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="mi">51</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">double</span><span class="p">)</span>
<span class="n">c_t2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">),</span> <span class="mi">51</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">double</span><span class="p">)</span>
<span class="k">for</span> <span class="n">i</span><span class="p">,</span> <span class="n">input_t</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">chunk</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">1</span><span class="p">),</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)):</span>
<span class="n">h_t</span><span class="p">,</span> <span class="n">c_t</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">lstm1</span><span class="p">(</span><span class="n">input_t</span><span class="p">,</span> <span class="p">(</span><span class="n">h_t</span><span class="p">,</span> <span class="n">c_t</span><span class="p">))</span>
<span class="n">h_t2</span><span class="p">,</span> <span class="n">c_t2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">lstm2</span><span class="p">(</span><span class="n">h_t</span><span class="p">,</span> <span class="p">(</span><span class="n">h_t2</span><span class="p">,</span> <span class="n">c_t2</span><span class="p">))</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear</span><span class="p">(</span><span class="n">h_t2</span><span class="p">)</span>
<span class="n">outputs</span> <span class="o">+=</span> <span class="p">[</span><span class="n">output</span><span class="p">]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">future</span><span class="p">):</span><span class="c1"># if we should predict the future</span>
<span class="n">h_t</span><span class="p">,</span> <span class="n">c_t</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">lstm1</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="p">(</span><span class="n">h_t</span><span class="p">,</span> <span class="n">c_t</span><span class="p">))</span>
<span class="n">h_t2</span><span class="p">,</span> <span class="n">c_t2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">lstm2</span><span class="p">(</span><span class="n">h_t</span><span class="p">,</span> <span class="p">(</span><span class="n">h_t2</span><span class="p">,</span> <span class="n">c_t2</span><span class="p">))</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear</span><span class="p">(</span><span class="n">h_t2</span><span class="p">)</span>
<span class="n">outputs</span> <span class="o">+=</span> <span class="p">[</span><span class="n">output</span><span class="p">]</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="k">return</span> <span class="n">outputs</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">SequencePredictionNew</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">SequencePredictionNew</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lstm1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LSTMCell</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">51</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">lstm2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">LSTMCell</span><span class="p">(</span><span class="mi">51</span><span class="p">,</span> <span class="mi">51</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">linear</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">51</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="nb">input</span><span class="p">,</span> <span class="n">future</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
<span class="n">b</span><span class="p">,</span> <span class="n">t</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">shape</span>
<span class="n">h_t</span><span class="p">,</span> <span class="n">c_t</span><span class="p">,</span> <span class="n">h_t2</span><span class="p">,</span> <span class="n">c_t2</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="mi">4</span><span class="p">,</span> <span class="n">b</span><span class="p">,</span> <span class="mi">51</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">linear</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">dtype</span><span class="p">,</span>
<span class="n">device</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">linear</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">outputs</span> <span class="o">=</span> <span class="p">[]</span>
<span class="k">for</span> <span class="n">input_t</span> <span class="ow">in</span> <span class="n">rearrange</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="s1">'b t -> t b ()'</span><span class="p">):</span>
<span class="n">h_t</span><span class="p">,</span> <span class="n">c_t</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">lstm1</span><span class="p">(</span><span class="n">input_t</span><span class="p">,</span> <span class="p">(</span><span class="n">h_t</span><span class="p">,</span> <span class="n">c_t</span><span class="p">))</span>
<span class="n">h_t2</span><span class="p">,</span> <span class="n">c_t2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">lstm2</span><span class="p">(</span><span class="n">h_t</span><span class="p">,</span> <span class="p">(</span><span class="n">h_t2</span><span class="p">,</span> <span class="n">c_t2</span><span class="p">))</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear</span><span class="p">(</span><span class="n">h_t2</span><span class="p">)</span>
<span class="n">outputs</span> <span class="o">+=</span> <span class="p">[</span><span class="n">output</span><span class="p">]</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">future</span><span class="p">):</span> <span class="c1"># if we should predict the future</span>
<span class="n">h_t</span><span class="p">,</span> <span class="n">c_t</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">lstm1</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="p">(</span><span class="n">h_t</span><span class="p">,</span> <span class="n">c_t</span><span class="p">))</span>
<span class="n">h_t2</span><span class="p">,</span> <span class="n">c_t2</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">lstm2</span><span class="p">(</span><span class="n">h_t</span><span class="p">,</span> <span class="p">(</span><span class="n">h_t2</span><span class="p">,</span> <span class="n">c_t2</span><span class="p">))</span>
<span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear</span><span class="p">(</span><span class="n">h_t2</span><span class="p">)</span>
<span class="n">outputs</span> <span class="o">+=</span> <span class="p">[</span><span class="n">output</span><span class="p">]</span>
<span class="k">return</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">outputs</span><span class="p">,</span> <span class="s1">'t b () -> b t'</span><span class="p">)</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><h1>Transforming spacial transformer network (STN)</h1>
<!-- modified version of https://pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html --></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">SpacialTransformOld</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Net</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="c1"># Spatial transformer localization-network</span>
<span class="bp">self</span><span class="o">.</span><span class="n">localization</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">7</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">5</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">)</span>
<span class="p">)</span>
<span class="c1"># Regressor for the 3 * 2 affine matrix</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc_loc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">10</span> <span class="o">*</span> <span class="mi">3</span> <span class="o">*</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">32</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="mi">3</span> <span class="o">*</span> <span class="mi">2</span><span class="p">)</span>
<span class="p">)</span>
<span class="c1"># Initialize the weights/bias with identity transformation</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc_loc</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">zero_</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">fc_loc</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">copy_</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">))</span>
<span class="c1"># Spatial transformer network forward function</span>
<span class="k">def</span> <span class="nf">stn</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">xs</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">localization</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="n">xs</span> <span class="o">=</span> <span class="n">xs</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">10</span> <span class="o">*</span> <span class="mi">3</span> <span class="o">*</span> <span class="mi">3</span><span class="p">)</span>
<span class="n">theta</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc_loc</span><span class="p">(</span><span class="n">xs</span><span class="p">)</span>
<span class="n">theta</span> <span class="o">=</span> <span class="n">theta</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
<span class="n">grid</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">affine_grid</span><span class="p">(</span><span class="n">theta</span><span class="p">,</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">())</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">grid_sample</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">grid</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">class</span> <span class="nc">SpacialTransformNew</span><span class="p">(</span><span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">):</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="nb">super</span><span class="p">(</span><span class="n">Net</span><span class="p">,</span> <span class="bp">self</span><span class="p">)</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
<span class="c1"># Spatial transformer localization-network</span>
<span class="n">linear</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="mi">3</span> <span class="o">*</span> <span class="mi">2</span><span class="p">)</span>
<span class="c1"># Initialize the weights/bias with identity transformation</span>
<span class="n">linear</span><span class="o">.</span><span class="n">weight</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">zero_</span><span class="p">()</span>
<span class="n">linear</span><span class="o">.</span><span class="n">bias</span><span class="o">.</span><span class="n">data</span><span class="o">.</span><span class="n">copy_</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">))</span>
<span class="bp">self</span><span class="o">.</span><span class="n">compute_theta</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">8</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">7</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">8</span><span class="p">,</span> <span class="mi">10</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">5</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">),</span>
<span class="n">Rearrange</span><span class="p">(</span><span class="s1">'b c h w -> b (c h w)'</span><span class="p">,</span> <span class="n">h</span><span class="o">=</span><span class="mi">3</span><span class="p">,</span> <span class="n">w</span><span class="o">=</span><span class="mi">3</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">10</span> <span class="o">*</span> <span class="mi">3</span> <span class="o">*</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">32</span><span class="p">),</span>
<span class="n">nn</span><span class="o">.</span><span class="n">ReLU</span><span class="p">(</span><span class="kc">True</span><span class="p">),</span>
<span class="n">linear</span><span class="p">,</span>
<span class="n">Rearrange</span><span class="p">(</span><span class="s1">'b (row col) -> b row col'</span><span class="p">,</span> <span class="n">row</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">col</span><span class="o">=</span><span class="mi">3</span><span class="p">),</span>
<span class="p">)</span>
<span class="c1"># Spatial transformer network forward function</span>
<span class="k">def</span> <span class="nf">stn</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">):</span>
<span class="n">grid</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">affine_grid</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">compute_theta</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="n">x</span><span class="o">.</span><span class="n">size</span><span class="p">())</span>
<span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">grid_sample</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="n">grid</span><span class="p">)</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><ul>
<li>new code will give reasonable errors when passed image size is different from expected</li>
<li>if batch size is divisible by 18, whatever you input in the old code, it'll fail no sooner than affine_grid.</li>
</ul></div><div class='markdown-cell'><h1>Improving GLOW</h1>
<p>That's a good old depth-to-space written manually!</p>
<p>Since GLOW is revertible, it will frequently rely on <code>rearrange</code>-like operations.</p>
<!-- from https://github.com/chaiyujin/glow-pytorch/blob/master/glow/modules.py --></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">unsqueeze2d_old</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">factor</span><span class="o">=</span><span class="mi">2</span><span class="p">):</span>
<span class="k">assert</span> <span class="n">factor</span> <span class="o">>=</span> <span class="mi">1</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">factor</span><span class="p">,</span> <span class="nb">int</span><span class="p">)</span>
<span class="n">factor2</span> <span class="o">=</span> <span class="n">factor</span> <span class="o">**</span> <span class="mi">2</span>
<span class="k">if</span> <span class="n">factor</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="nb">input</span>
<span class="n">size</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="n">B</span> <span class="o">=</span> <span class="n">size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">C</span> <span class="o">=</span> <span class="n">size</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="n">H</span> <span class="o">=</span> <span class="n">size</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">size</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span>
<span class="k">assert</span> <span class="n">C</span> <span class="o">%</span> <span class="p">(</span><span class="n">factor2</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="s2">"</span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">(</span><span class="n">C</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">B</span><span class="p">,</span> <span class="n">C</span> <span class="o">//</span> <span class="n">factor2</span><span class="p">,</span> <span class="n">factor</span><span class="p">,</span> <span class="n">factor</span><span class="p">,</span> <span class="n">H</span><span class="p">,</span> <span class="n">W</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">B</span><span class="p">,</span> <span class="n">C</span> <span class="o">//</span> <span class="p">(</span><span class="n">factor2</span><span class="p">),</span> <span class="n">H</span> <span class="o">*</span> <span class="n">factor</span><span class="p">,</span> <span class="n">W</span> <span class="o">*</span> <span class="n">factor</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
<span class="k">def</span> <span class="nf">squeeze2d_old</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">factor</span><span class="o">=</span><span class="mi">2</span><span class="p">):</span>
<span class="k">assert</span> <span class="n">factor</span> <span class="o">>=</span> <span class="mi">1</span> <span class="ow">and</span> <span class="nb">isinstance</span><span class="p">(</span><span class="n">factor</span><span class="p">,</span> <span class="nb">int</span><span class="p">)</span>
<span class="k">if</span> <span class="n">factor</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
<span class="k">return</span> <span class="nb">input</span>
<span class="n">size</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">()</span>
<span class="n">B</span> <span class="o">=</span> <span class="n">size</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span>
<span class="n">C</span> <span class="o">=</span> <span class="n">size</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span>
<span class="n">H</span> <span class="o">=</span> <span class="n">size</span><span class="p">[</span><span class="mi">2</span><span class="p">]</span>
<span class="n">W</span> <span class="o">=</span> <span class="n">size</span><span class="p">[</span><span class="mi">3</span><span class="p">]</span>
<span class="k">assert</span> <span class="n">H</span> <span class="o">%</span> <span class="n">factor</span> <span class="o">==</span> <span class="mi">0</span> <span class="ow">and</span> <span class="n">W</span> <span class="o">%</span> <span class="n">factor</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="s2">"</span><span class="si">{}</span><span class="s2">"</span><span class="o">.</span><span class="n">format</span><span class="p">((</span><span class="n">H</span><span class="p">,</span> <span class="n">W</span><span class="p">))</span>
<span class="n">x</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">B</span><span class="p">,</span> <span class="n">C</span><span class="p">,</span> <span class="n">H</span> <span class="o">//</span> <span class="n">factor</span><span class="p">,</span> <span class="n">factor</span><span class="p">,</span> <span class="n">W</span> <span class="o">//</span> <span class="n">factor</span><span class="p">,</span> <span class="n">factor</span><span class="p">)</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">B</span><span class="p">,</span> <span class="n">C</span> <span class="o">*</span> <span class="n">factor</span> <span class="o">*</span> <span class="n">factor</span><span class="p">,</span> <span class="n">H</span> <span class="o">//</span> <span class="n">factor</span><span class="p">,</span> <span class="n">W</span> <span class="o">//</span> <span class="n">factor</span><span class="p">)</span>
<span class="k">return</span> <span class="n">x</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">unsqueeze2d_new</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">factor</span><span class="o">=</span><span class="mi">2</span><span class="p">):</span>
<span class="k">return</span> <span class="n">rearrange</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="s1">'b (c h2 w2) h w -> b c (h h2) (w w2)'</span><span class="p">,</span> <span class="n">h2</span><span class="o">=</span><span class="n">factor</span><span class="p">,</span> <span class="n">w2</span><span class="o">=</span><span class="n">factor</span><span class="p">)</span>
<span class="k">def</span> <span class="nf">squeeze2d_new</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">factor</span><span class="o">=</span><span class="mi">2</span><span class="p">):</span>
<span class="k">return</span> <span class="n">rearrange</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="s1">'b c (h h2) (w w2) -> b (c h2 w2) h w'</span><span class="p">,</span> <span class="n">h2</span><span class="o">=</span><span class="n">factor</span><span class="p">,</span> <span class="n">w2</span><span class="o">=</span><span class="n">factor</span><span class="p">)</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><ul>
<li>term <code>squeeze</code> isn't very helpful: which dimension is squeezed? There is <code>torch.squeeze</code>, but it's very different.</li>
<li>in fact, we could skip creating functions completely - it is a single call to <code>einops</code> anyway</li>
</ul></div><div class='markdown-cell'><h1>Detecting problems in YOLO detection</h1>
<!-- mixture of
# https://github.com/BobLiu20/YOLOv3_PyTorch/blob/c6b483743598b5f64d520d81e7e5f47ba936d4c9/nets/yolo_loss.py#L28-L44
# https://github.com/BobLiu20/YOLOv3_PyTorch/blob/c6b483743598b5f64d520d81e7e5f47ba936d4c9/nets/yolo_loss.py#L70-L92
--></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">YOLO_prediction_old</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">num_anchors</span><span class="p">,</span> <span class="n">anchors</span><span class="p">,</span> <span class="n">stride_h</span><span class="p">,</span> <span class="n">stride_w</span><span class="p">):</span>
<span class="n">bs</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">in_h</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<span class="n">in_w</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">size</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<span class="n">scaled_anchors</span> <span class="o">=</span> <span class="p">[(</span><span class="n">a_w</span> <span class="o">/</span> <span class="n">stride_w</span><span class="p">,</span> <span class="n">a_h</span> <span class="o">/</span> <span class="n">stride_h</span><span class="p">)</span> <span class="k">for</span> <span class="n">a_w</span><span class="p">,</span> <span class="n">a_h</span> <span class="ow">in</span> <span class="n">anchors</span><span class="p">]</span>
<span class="n">prediction</span> <span class="o">=</span> <span class="nb">input</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">bs</span><span class="p">,</span> <span class="n">num_anchors</span><span class="p">,</span>
<span class="mi">5</span> <span class="o">+</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">in_h</span><span class="p">,</span> <span class="n">in_w</span><span class="p">)</span><span class="o">.</span><span class="n">permute</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">contiguous</span><span class="p">()</span>
<span class="c1"># Get outputs</span>
<span class="n">x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span> <span class="c1"># Center x</span>
<span class="n">y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span> <span class="c1"># Center y</span>
<span class="n">w</span> <span class="o">=</span> <span class="n">prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span> <span class="c1"># Width</span>
<span class="n">h</span> <span class="o">=</span> <span class="n">prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> <span class="c1"># Height</span>
<span class="n">conf</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">4</span><span class="p">])</span> <span class="c1"># Conf</span>
<span class="n">pred_cls</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">(</span><span class="n">prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">5</span><span class="p">:])</span> <span class="c1"># Cls pred.</span>
<span class="n">FloatTensor</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">FloatTensor</span> <span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">is_cuda</span> <span class="k">else</span> <span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span>
<span class="n">LongTensor</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cuda</span><span class="o">.</span><span class="n">LongTensor</span> <span class="k">if</span> <span class="n">x</span><span class="o">.</span><span class="n">is_cuda</span> <span class="k">else</span> <span class="n">torch</span><span class="o">.</span><span class="n">LongTensor</span>
<span class="c1"># Calculate offsets for each grid</span>
<span class="n">grid_x</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">in_w</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">in_w</span><span class="p">)</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="n">in_w</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span>
<span class="n">bs</span> <span class="o">*</span> <span class="n">num_anchors</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">FloatTensor</span><span class="p">)</span>
<span class="n">grid_y</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">linspace</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="n">in_h</span> <span class="o">-</span> <span class="mi">1</span><span class="p">,</span> <span class="n">in_h</span><span class="p">)</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="n">in_h</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">t</span><span class="p">()</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span>
<span class="n">bs</span> <span class="o">*</span> <span class="n">num_anchors</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">y</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">FloatTensor</span><span class="p">)</span>
<span class="c1"># Calculate anchor w, h</span>
<span class="n">anchor_w</span> <span class="o">=</span> <span class="n">FloatTensor</span><span class="p">(</span><span class="n">scaled_anchors</span><span class="p">)</span><span class="o">.</span><span class="n">index_select</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">LongTensor</span><span class="p">([</span><span class="mi">0</span><span class="p">]))</span>
<span class="n">anchor_h</span> <span class="o">=</span> <span class="n">FloatTensor</span><span class="p">(</span><span class="n">scaled_anchors</span><span class="p">)</span><span class="o">.</span><span class="n">index_select</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="n">LongTensor</span><span class="p">([</span><span class="mi">1</span><span class="p">]))</span>
<span class="n">anchor_w</span> <span class="o">=</span> <span class="n">anchor_w</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="n">bs</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">in_h</span> <span class="o">*</span> <span class="n">in_w</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">w</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="n">anchor_h</span> <span class="o">=</span> <span class="n">anchor_h</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="n">bs</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">repeat</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">in_h</span> <span class="o">*</span> <span class="n">in_w</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">h</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="c1"># Add offset and scale with anchors</span>
<span class="n">pred_boxes</span> <span class="o">=</span> <span class="n">FloatTensor</span><span class="p">(</span><span class="n">prediction</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="p">:</span><span class="mi">4</span><span class="p">]</span><span class="o">.</span><span class="n">shape</span><span class="p">)</span>
<span class="n">pred_boxes</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">data</span> <span class="o">+</span> <span class="n">grid_x</span>
<span class="n">pred_boxes</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="n">y</span><span class="o">.</span><span class="n">data</span> <span class="o">+</span> <span class="n">grid_y</span>
<span class="n">pred_boxes</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">2</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">w</span><span class="o">.</span><span class="n">data</span><span class="p">)</span> <span class="o">*</span> <span class="n">anchor_w</span>
<span class="n">pred_boxes</span><span class="p">[</span><span class="o">...</span><span class="p">,</span> <span class="mi">3</span><span class="p">]</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">exp</span><span class="p">(</span><span class="n">h</span><span class="o">.</span><span class="n">data</span><span class="p">)</span> <span class="o">*</span> <span class="n">anchor_h</span>
<span class="c1"># Results</span>
<span class="n">_scale</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">([</span><span class="n">stride_w</span><span class="p">,</span> <span class="n">stride_h</span><span class="p">]</span> <span class="o">*</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">type</span><span class="p">(</span><span class="n">FloatTensor</span><span class="p">)</span>
<span class="n">output</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">cat</span><span class="p">((</span><span class="n">pred_boxes</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">bs</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span> <span class="o">*</span> <span class="n">_scale</span><span class="p">,</span>
<span class="n">conf</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">bs</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">),</span> <span class="n">pred_cls</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">bs</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">)),</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<span class="k">return</span> <span class="n">output</span>
</pre></div>
</div><div><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">YOLO_prediction_new</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="n">num_classes</span><span class="p">,</span> <span class="n">num_anchors</span><span class="p">,</span> <span class="n">anchors</span><span class="p">,</span> <span class="n">stride_h</span><span class="p">,</span> <span class="n">stride_w</span><span class="p">):</span>
<span class="n">raw_predictions</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="nb">input</span><span class="p">,</span> <span class="s1">'b (anchor prediction) h w -> prediction b anchor h w'</span><span class="p">,</span>
<span class="n">anchor</span><span class="o">=</span><span class="n">num_anchors</span><span class="p">,</span> <span class="n">prediction</span><span class="o">=</span><span class="mi">5</span> <span class="o">+</span> <span class="n">num_classes</span><span class="p">)</span>
<span class="n">anchors</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">FloatTensor</span><span class="p">(</span><span class="n">anchors</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">anchor_sizes</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">anchors</span><span class="p">,</span> <span class="s1">'anchor dim -> dim () anchor () ()'</span><span class="p">)</span>
<span class="n">_</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">in_h</span><span class="p">,</span> <span class="n">in_w</span> <span class="o">=</span> <span class="n">raw_predictions</span><span class="o">.</span><span class="n">shape</span>
<span class="n">grid_h</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">in_h</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">(),</span> <span class="s1">'h -> () () h ()'</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">grid_w</span> <span class="o">=</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">in_w</span><span class="p">)</span><span class="o">.</span><span class="n">float</span><span class="p">(),</span> <span class="s1">'w -> () () () w'</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="nb">input</span><span class="o">.</span><span class="n">device</span><span class="p">)</span>
<span class="n">predicted_bboxes</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros_like</span><span class="p">(</span><span class="n">raw_predictions</span><span class="p">)</span>
<span class="n">predicted_bboxes</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">raw_predictions</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">()</span> <span class="o">+</span> <span class="n">grid_w</span><span class="p">)</span> <span class="o">*</span> <span class="n">stride_w</span> <span class="c1"># center x</span>
<span class="n">predicted_bboxes</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">raw_predictions</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">()</span> <span class="o">+</span> <span class="n">grid_h</span><span class="p">)</span> <span class="o">*</span> <span class="n">stride_h</span> <span class="c1"># center y</span>
<span class="n">predicted_bboxes</span><span class="p">[</span><span class="mi">2</span><span class="p">:</span><span class="mi">4</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">raw_predictions</span><span class="p">[</span><span class="mi">2</span><span class="p">:</span><span class="mi">4</span><span class="p">]</span><span class="o">.</span><span class="n">exp</span><span class="p">())</span> <span class="o">*</span> <span class="n">anchor_sizes</span> <span class="c1"># bbox width and height</span>
<span class="n">predicted_bboxes</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span> <span class="o">=</span> <span class="n">raw_predictions</span><span class="p">[</span><span class="mi">4</span><span class="p">]</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">()</span> <span class="c1"># confidence</span>
<span class="n">predicted_bboxes</span><span class="p">[</span><span class="mi">5</span><span class="p">:]</span> <span class="o">=</span> <span class="n">raw_predictions</span><span class="p">[</span><span class="mi">5</span><span class="p">:]</span><span class="o">.</span><span class="n">sigmoid</span><span class="p">()</span> <span class="c1"># class predictions</span>
<span class="c1"># merging all predicted bboxes for each image</span>
<span class="k">return</span> <span class="n">rearrange</span><span class="p">(</span><span class="n">predicted_bboxes</span><span class="p">,</span> <span class="s1">'prediction b anchor h w -> b (anchor h w) prediction'</span><span class="p">)</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><p>We changed and fixed a lot:</p>
<ul>
<li>new code won't fail if input is not on the first GPU</li>
<li>old code has wrong grid_x and grid_y for non-square images</li>
<li>new code doesn't use replication when broadcasting is sufficient</li>
<li>old code strangely sometimes takes <code>.data</code>, but this has no real effect, as some branches preserve gradient till the end<ul>
<li>if gradients not needed, torch.no_grad should be used, so it's redundant</li>
</ul>
</li>
</ul></div><div class='markdown-cell'><h1>Simpler output for a bunch of pictures</h1>
<p>Next time you need to output drawings of you generative models, you can use this trick</p>
<!-- # from https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html --></div><div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="n">device</span> <span class="o">=</span> <span class="s1">'cpu'</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">transpose</span><span class="p">(</span><span class="n">vutils</span><span class="o">.</span><span class="n">make_grid</span><span class="p">(</span><span class="n">fake_batch</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">device</span><span class="p">)[:</span><span class="mi">64</span><span class="p">],</span> <span class="n">padding</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">normalize</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span><span class="o">.</span><span class="n">cpu</span><span class="p">(),(</span><span class="mi">1</span><span class="p">,</span><span class="mi">2</span><span class="p">,</span><span class="mi">0</span><span class="p">)))</span>
</pre></div>
</div></div></div> <div class='leftright-wrapper'><div class='leftright-cells'><div><div class="highlight"><pre><span></span><span class="n">padded</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">pad</span><span class="p">(</span><span class="n">fake_batch</span><span class="p">[:</span><span class="mi">64</span><span class="p">],</span> <span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">])</span>
<span class="n">plt</span><span class="o">.</span><span class="n">imshow</span><span class="p">(</span><span class="n">rearrange</span><span class="p">(</span><span class="n">padded</span><span class="p">,</span> <span class="s1">'(b1 b2) c h w -> (b1 h) (b2 w) c'</span><span class="p">,</span> <span class="n">b1</span><span class="o">=</span><span class="mi">8</span><span class="p">)</span><span class="o">.</span><span class="n">cpu</span><span class="p">())</span>
</pre></div>
</div></div></div> <div class='markdown-cell'><h1>Instead of conclusion</h1>
<p>Better code is a vague term; to be specific, code is expected to be:</p>
<ul>
<li>reliable: does what expected and does not fail. Explicitly fails for wrong inputs</li>
<li>maintainable and modifiable</li>
<li>reusable: understanding and modifying code should be easier than writing from scratch</li>
<li>fast: in my measurements, proposed versions have speed similar to the original code</li>
<li>readability counts, as a mean to achieve previous goals</li>
</ul>
<p>Provided examples show how to improve these criteria for deep learning code. And <code>einops</code> helps a lot.</p></div><div class='markdown-cell'><h1>Links</h1>
<ul>
<li><a href="http://github.com/pytorch/pytorch">pytorch</a> and <a href="https://github.com/arogozhnikov/einops">einops</a></li>
<li>significant part of the code was taken from the official <a href="https://github.com/pytorch/examples">examples</a> and <a href="https://github.com/pytorch/tutorials">tutorials</a>. All code fragments were taken for educational purpose.</li>
<li>(references for other code are given in source of this html)</li>
<li>einops has a <a href="https://github.com/arogozhnikov/einops/tree/master/docs">tutorial</a> for a more gentle introduction</li>
</ul></div>
</body>
</html>
|