File: tutorial_notation.rst

package info (click to toggle)
python-einx 0.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,112 kB
  • sloc: python: 11,619; makefile: 13
file content (334 lines) | stat: -rw-r--r-- 13,115 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
Tutorial: Notation
#######################

This tutorial introduces the Einstein-inspired notation that is used in einx. It is based on and
compatible with the notation used in `einops <https://github.com/arogozhnikov/einops>`_, but
introduces several new concepts such as ``[]``-bracket notation, composable ellipses and axis
concatenations. See :doc:`How is einx different from einops? </faq/einops>` for a complete list 
of differences.

Introduction
------------

An einx expression provides a description of the axes of a given tensor. In the simplest case, each dimension is given a unique name (``a``, ``b``, ``c``), and the names
are listed to form an einx expression:

>>> x = np.ones((2, 3, 4))
>>> einx.matches("a b c", x) # Check whether expression matches the tensor's shape
True
>>> einx.matches("a b", x)
False

einx expressions are used to formulate tensor operations such as reshaping and permuting axes in an intuitive way. Instead of defining an
operation in classical index-based notation

>>> y = np.transpose(x, (0, 2, 1))
>>> y.shape
(2, 4, 3)

we instead provide the input and output expressions in einx notation and let einx determine the necessary operations:

>>> y = einx.rearrange("a b c -> a c b", x)
>>> y.shape
(2, 4, 3)

The purpose of :func:`einx.rearrange` is to map tensors between different einx expressions. It does not perform any computation itself,
but rather forwards the computation to the respective backend, e.g. Numpy.

To verify that the correct backend calls are made, the just-in-time compiled function that einx invokes for this expression can be printed using ``graph=True``:

>>> graph = einx.rearrange("a b c -> a c b", x, graph=True)
>>> print(graph)
import numpy as np
def op0(i0):
    x0 = np.transpose(i0, (0, 2, 1))
    return x0

The function shows that einx performs the expected call to ``np.transpose``.

.. note::

    einx traces the backend calls made for a given operation and just-in-time compiles them into a regular Python function using Python's
    `exec() <https://docs.python.org/3/library/functions.html#exec>`_. When the function is called with the same signature of arguments,
    the compiled function is reused and therefore incurs no additional overhead other than for cache lookup
    (see :doc:`Just-in-time compilation </more/jit>`)

.. _axiscomposition:

Axis composition
----------------

Multiple axes can be wrapped in parentheses to indicate that they represent an *axis composition*.

>>> x = np.ones((6, 4))
>>> einx.matches("(a b) c", x)
True

The composition ``(a b)`` is an axis itself and comprises the subaxes ``a`` and ``b`` which are layed out in
`row-major order <https://en.wikipedia.org/wiki/Row-_and_column-major_order>`_. This corresponds to ``a`` chunks of ``b`` elements each.
The length of the composed axis is the product of the subaxis lengths.

We can use :func:`einx.rearrange` to compose and decompose axes in a tensor by passing the respective einx expressions:

>>> # Stack 2 chunks of 3 elements into a single dimension with length 6
>>> x = np.ones((2, 3, 4))
>>> einx.rearrange("a b c -> (a b) c", x).shape
(6, 4)

>>> # Divide a dimension of length 6 into 2 chunks of 3 elements each
>>> x = np.ones((6, 4))
>>> einx.rearrange("(a b) c -> a b c", x, a=2).shape
(2, 3, 4)

Since the decomposition is ambiguous w.r.t. the values of ``a`` and ``b`` (for example ``a=2 b=3`` and ``a=1 b=6`` would be valid),
additional constraints have to be passed to find unique axis values, e.g. ``a=2`` as in the example above.

Composing and decomposing axes is a cheap operation and e.g. preferred over calling ``np.split``. The graph of these functions shows
that it uses a `np.reshape <https://numpy.org/doc/stable/reference/generated/numpy.reshape.html>`_
operation with the requested shape:

>>> print(einx.rearrange("(a b) c -> a b c", x, a=2, graph=True))
import numpy as np
def op0(i0):
    x0 = np.reshape(i0, (2, 3, 4))
    return x0

>>> print(einx.rearrange("a b c -> (a b) c", x, graph=True))
import numpy as np
def op0(i0):
    x0 = np.reshape(i0, (6, 4))
    return x0

.. note::

    See `this great einops tutorial <https://nbviewer.org/github/arogozhnikov/einops/blob/master/docs/1-einops-basics.ipynb>`_ for hands-on
    illustrations of axis composition using a batch of images.

Axis compositions are used for example to divide the channels of a tensor into equally sized groups (as in multi-headed attention),
or to divide an image into patches by decomposing the spatial dimensions (if the image resolution is evenly divisible by the patch size).

Ellipsis
--------

An *ellipsis* repeats the expression that appears directly in front of it:

>>> x = np.ones((2, 3, 4))
>>> einx.matches("a b...", x) # Expands to "a b.0 b.1"
True

The number of repetitions is determined from the rank of the input tensors: 

>>> x = np.ones((2, 3, 4, 5))
>>> einx.matches("a b...", x) # Expands to "a b.0 b.1 b.2"
True

Using ellipses e.g. for spatial dimensions often results in simpler and more readable expressions, and allows using the same expression
for tensors with different dimensionality:

>>> # Divide an image into a list of patches with size p=8
>>> x = np.ones((256, 256, 3), dtype="uint8")
>>> einx.rearrange("(s p)... c -> (s...) p... c", x, p=8).shape
(1024, 8, 8, 3)

>>> # Divide a volume into a list of cubes with size p=8
>>> x = np.ones((256, 256, 256, 3), dtype="uint8")
>>> einx.rearrange("(s p)... c -> (s...) p... c", x, p=8).shape
(32768, 8, 8, 8, 3)

This operation requires multiple backend calls in index-based notation that might be difficult to understand on first glance.
The einx call on the other hand clearly conveys the intent of the operation and requires less code:

>>> print(einx.rearrange("(s p)... c -> (s...) p... c", x, p=8, graph=True))
import numpy as np
def op0(i0):
    x0 = np.reshape(i0, (32, 8, 32, 8, 3))
    x1 = np.transpose(x0, (0, 2, 1, 3, 4))
    x2 = np.reshape(x1, (1024, 8, 8, 3))
    return x2

In einops-style notation, an ellipsis always appears at root-level and is anonymous, i.e. does not have a preceding expression.
To be fully compatible with einops notation, einx implicitly converts anonymous ellipses by adding an axis in front:

..  code::

    einx.rearrange("b ... -> ... b", x)
    # same as
    einx.rearrange("b _anonymous_ellipsis_axis... -> _anonymous_ellipsis_axis... b", x)

Unnamed axes
------------

An *unnamed axis* is a number in the einx expression and similar to using a new unique axis name with an additional constraint specifying its length:

>>> x = np.ones((2, 3, 4))
>>> einx.matches("2 b c", x)
True
>>> einx.matches("a b c", x, a=2)
True
>>> einx.matches("a 1 c", x)
False

Unnamed axes is used for example as an alternative to ``np.expand_dims``, ``np.squeeze``, ``np.newaxis``, ``np.broadcast_to``:

>>> x = np.ones((2, 1, 3))
>>> einx.rearrange("a 1 b -> 1 1 a b 1 5 6", x).shape
(1, 1, 2, 3, 1, 5, 6)

Since each unnamed axis is given a unique name, multiple unnamed axes do not refer to the same underlying tensor dimension. This can lead to unexpected behavior:

>>> einx.rearrange("a b c -> a c b", x).shape
(2, 4, 3)
>>> einx.rearrange("2 b c -> 2 c b", x).shape # Raises an exception

Concatenation
-------------

A *concatenation* represents an axis in einx notation along which two or more subtensors are concatenated. Using axis concatenations,
we can describe operations such as
`np.concatenate <https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html>`_,
`np.split <https://numpy.org/doc/stable/reference/generated/numpy.split.html>`_,
`np.stack <https://numpy.org/doc/stable/reference/generated/numpy.stack.html>`_,
`einops.pack and einops.unpack <https://einops.rocks/4-pack-and-unpack/>`_ in pure einx notation. A concatenation axis is marked with
``+`` and wrapped in parentheses, and its length is the sum of the subaxis lengths.

>>> x = np.ones((5, 4))
>>> einx.matches("(a + b) c", x)
True

This is used for example to concatenate tensors that do not have compatible dimensions:

>>> x = np.ones((256, 256, 3))
>>> y = np.ones((256, 256))
>>> einx.rearrange("h w c, h w -> h w (c + 1)", x, y).shape
(256, 256, 4)

The graph shows that einx first reshapes ``y`` by adding a channel dimension, and then concatenates the tensors along that axis:

>>> print(einx.rearrange("h w c, h w -> h w (c + 1)", x, y, graph=True))
import numpy as np
def op0(i0, i1):
    x0 = np.reshape(i1, (256, 256, 1))
    x1 = np.concatenate([i0, x0], axis=2)
    return x1

Splitting is supported analogously:

>>> z = np.ones((256, 256, 4))
>>> x, y = einx.rearrange("h w (c + 1) -> h w c, h w", z)
>>> x.shape, y.shape
((256, 256, 3), (256, 256))

Unlike the index-based `np.concatenate <https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html>`_, einx also broadcasts subtensors if required:

>>> # Append a number to all channels
>>> x = np.ones((256, 256, 3))
>>> einx.rearrange("... c, 1 -> ... (c + 1)", x, [42]).shape
(256, 256, 4)

Additional constraints
----------------------

einx uses a `SymPy <https://www.sympy.org/en/index.html>`_-based solver to determine the values of named axes in Einstein expressions
(see :doc:`How does einx parse expressions? </faq/solver>`).
In many cases, the shapes of the input tensors provide enough constraints to determine the values of all named axes in the solver.
For other cases, einx functions accept ``**parameters`` that are used to specify the values of some or all named axes and provide
additional constraints to the solver:

..  code::

    x = np.zeros((10,))
    einx.rearrange("(a b) -> a b", x)           # Fails: Values of a and b cannot be determined
    einx.rearrange("(a b) -> a b", x, a=5)      # Succeeds: b determined by solver
    einx.rearrange("(a b) -> a b", x, b=2)      # Succeeds: a determined by solver
    einx.rearrange("(a b) -> a b", x, a=5, b=2) # Succeeds
    einx.rearrange("(a b) -> a b", x, a=5, b=5) # Fails: Conflicting constraints

.. _bracketnotation:

Bracket notation
----------------

einx introduces the ``[]``-notation to denote axes that an operation is applied to. This corresponds to the ``axis`` argument in index-based notation:

..  code::

    einx.sum("a [b]", x)
    # same as
    np.sum(x, axis=1)

    einx.sum("a [...]", x)
    # same as
    np.sum(x, axis=tuple(range(1, x.ndim)))

In general, brackets define which sub-tensors the given elementary operation is applied to. For example, the expression ``"a [b c] d"`` indicates
that the elementary operation ``einx.sum`` is applied to sub-tensors with shape ``b c`` and vectorized over axes ``a`` and ``d``:

..  code::

      einx.sum              ("a                [b c]            d",              x)
    # ^^^^^^^^                ^                ^^^^^            ^
    # elementary operation    vectorized axis  sub-tensor axes  vectorized axis

Some other examples:

..  code::

    einx.flip("a [b]", x, c=2) # Flip pairs of values
    einx.add("... [c]", x, b) # Add bias
    einx.get_at("b [h w] c, b i [2] -> b i c", x, indices) # Gather values
    einx.softmax("b q [k] h", attn) # Part of attention operation

Bracket notation is fully compatible with expression rearranging and can therefore be placed anywhere inside a nested einx expression:

>>> # Compute sum over pairs of values along the last axis
>>> x = np.ones((2, 2, 16))
>>> einx.sum("... (g [c])", x, c=2).shape
(2, 2, 8)

>>> # Mean-pooling with stride 4 (if evenly divisible)
>>> x = np.ones((4, 256, 256, 3))
>>> einx.mean("b (s [ds])... c", x, ds=4).shape
(4, 64, 64, 3)

>>> print(einx.mean("b (s [ds])... c", x, ds=4, graph=True))
import numpy as np
def op0(i0):
    x0 = np.reshape(i0, (4, 64, 4, 64, 4, 3))
    x1 = np.mean(x0, axis=(2, 4))
    return x1

.. note::

    See :doc:`How does einx handle input and output tensors? </faq/flatten>` for details on how operations are applied to tensors with nested einx expressions.

Operations are sensitive to the positioning of brackets, e.g. allowing for flexible ``keepdims=True`` behavior out-of-the-box:

>>> x = np.ones((16, 4))
>>> einx.sum("b [c]", x).shape
(16,)
>>> einx.sum("b ([c])", x).shape
(16, 1)
>>> einx.sum("b [c]", x, keepdims=True).shape
(16, 1)

In the second example, ``c`` is reduced within the composition ``(c)``, resulting in an empty composition ``()``, i.e. a trivial axis with size 1.

Composability of ``->`` and ``,``
---------------------------------

The operators ``->`` and ``,`` that delimit input and output expressions in an operation can optionally be composed with the einx expressions themselves. If
they appear within a nested expression, the expression is expanded such that ``->`` and ``,`` appear only at the root
of the expression tree. For example:

.. code::

   einx.{...}("a [b -> c]", x)
   # expands to
   einx.{...}("a [b] -> a [c]", x)

   einx.{...}("b p [i,->]", x, y)
   # expands to
   einx.{...}("b p [i], b p -> b p", x, y)

einx provides a wide range of elementary tensor operations that accept arguments in einx notation as described in this document.
The following tutorial gives an overview of these functions and their usage.