1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
Tutorial: Notation
#######################
This tutorial introduces the Einstein-inspired notation that is used in einx. It is based on and
compatible with the notation used in `einops <https://github.com/arogozhnikov/einops>`_, but
introduces several new concepts such as ``[]``-bracket notation, composable ellipses and axis
concatenations. See :doc:`How is einx different from einops? </faq/einops>` for a complete list
of differences.
Introduction
------------
An einx expression provides a description of the axes of a given tensor. In the simplest case, each dimension is given a unique name (``a``, ``b``, ``c``), and the names
are listed to form an einx expression:
>>> x = np.ones((2, 3, 4))
>>> einx.matches("a b c", x) # Check whether expression matches the tensor's shape
True
>>> einx.matches("a b", x)
False
einx expressions are used to formulate tensor operations such as reshaping and permuting axes in an intuitive way. Instead of defining an
operation in classical index-based notation
>>> y = np.transpose(x, (0, 2, 1))
>>> y.shape
(2, 4, 3)
we instead provide the input and output expressions in einx notation and let einx determine the necessary operations:
>>> y = einx.rearrange("a b c -> a c b", x)
>>> y.shape
(2, 4, 3)
The purpose of :func:`einx.rearrange` is to map tensors between different einx expressions. It does not perform any computation itself,
but rather forwards the computation to the respective backend, e.g. Numpy.
To verify that the correct backend calls are made, the just-in-time compiled function that einx invokes for this expression can be printed using ``graph=True``:
>>> graph = einx.rearrange("a b c -> a c b", x, graph=True)
>>> print(graph)
import numpy as np
def op0(i0):
x0 = np.transpose(i0, (0, 2, 1))
return x0
The function shows that einx performs the expected call to ``np.transpose``.
.. note::
einx traces the backend calls made for a given operation and just-in-time compiles them into a regular Python function using Python's
`exec() <https://docs.python.org/3/library/functions.html#exec>`_. When the function is called with the same signature of arguments,
the compiled function is reused and therefore incurs no additional overhead other than for cache lookup
(see :doc:`Just-in-time compilation </more/jit>`)
.. _axiscomposition:
Axis composition
----------------
Multiple axes can be wrapped in parentheses to indicate that they represent an *axis composition*.
>>> x = np.ones((6, 4))
>>> einx.matches("(a b) c", x)
True
The composition ``(a b)`` is an axis itself and comprises the subaxes ``a`` and ``b`` which are layed out in
`row-major order <https://en.wikipedia.org/wiki/Row-_and_column-major_order>`_. This corresponds to ``a`` chunks of ``b`` elements each.
The length of the composed axis is the product of the subaxis lengths.
We can use :func:`einx.rearrange` to compose and decompose axes in a tensor by passing the respective einx expressions:
>>> # Stack 2 chunks of 3 elements into a single dimension with length 6
>>> x = np.ones((2, 3, 4))
>>> einx.rearrange("a b c -> (a b) c", x).shape
(6, 4)
>>> # Divide a dimension of length 6 into 2 chunks of 3 elements each
>>> x = np.ones((6, 4))
>>> einx.rearrange("(a b) c -> a b c", x, a=2).shape
(2, 3, 4)
Since the decomposition is ambiguous w.r.t. the values of ``a`` and ``b`` (for example ``a=2 b=3`` and ``a=1 b=6`` would be valid),
additional constraints have to be passed to find unique axis values, e.g. ``a=2`` as in the example above.
Composing and decomposing axes is a cheap operation and e.g. preferred over calling ``np.split``. The graph of these functions shows
that it uses a `np.reshape <https://numpy.org/doc/stable/reference/generated/numpy.reshape.html>`_
operation with the requested shape:
>>> print(einx.rearrange("(a b) c -> a b c", x, a=2, graph=True))
import numpy as np
def op0(i0):
x0 = np.reshape(i0, (2, 3, 4))
return x0
>>> print(einx.rearrange("a b c -> (a b) c", x, graph=True))
import numpy as np
def op0(i0):
x0 = np.reshape(i0, (6, 4))
return x0
.. note::
See `this great einops tutorial <https://nbviewer.org/github/arogozhnikov/einops/blob/master/docs/1-einops-basics.ipynb>`_ for hands-on
illustrations of axis composition using a batch of images.
Axis compositions are used for example to divide the channels of a tensor into equally sized groups (as in multi-headed attention),
or to divide an image into patches by decomposing the spatial dimensions (if the image resolution is evenly divisible by the patch size).
Ellipsis
--------
An *ellipsis* repeats the expression that appears directly in front of it:
>>> x = np.ones((2, 3, 4))
>>> einx.matches("a b...", x) # Expands to "a b.0 b.1"
True
The number of repetitions is determined from the rank of the input tensors:
>>> x = np.ones((2, 3, 4, 5))
>>> einx.matches("a b...", x) # Expands to "a b.0 b.1 b.2"
True
Using ellipses e.g. for spatial dimensions often results in simpler and more readable expressions, and allows using the same expression
for tensors with different dimensionality:
>>> # Divide an image into a list of patches with size p=8
>>> x = np.ones((256, 256, 3), dtype="uint8")
>>> einx.rearrange("(s p)... c -> (s...) p... c", x, p=8).shape
(1024, 8, 8, 3)
>>> # Divide a volume into a list of cubes with size p=8
>>> x = np.ones((256, 256, 256, 3), dtype="uint8")
>>> einx.rearrange("(s p)... c -> (s...) p... c", x, p=8).shape
(32768, 8, 8, 8, 3)
This operation requires multiple backend calls in index-based notation that might be difficult to understand on first glance.
The einx call on the other hand clearly conveys the intent of the operation and requires less code:
>>> print(einx.rearrange("(s p)... c -> (s...) p... c", x, p=8, graph=True))
import numpy as np
def op0(i0):
x0 = np.reshape(i0, (32, 8, 32, 8, 3))
x1 = np.transpose(x0, (0, 2, 1, 3, 4))
x2 = np.reshape(x1, (1024, 8, 8, 3))
return x2
In einops-style notation, an ellipsis always appears at root-level and is anonymous, i.e. does not have a preceding expression.
To be fully compatible with einops notation, einx implicitly converts anonymous ellipses by adding an axis in front:
.. code::
einx.rearrange("b ... -> ... b", x)
# same as
einx.rearrange("b _anonymous_ellipsis_axis... -> _anonymous_ellipsis_axis... b", x)
Unnamed axes
------------
An *unnamed axis* is a number in the einx expression and similar to using a new unique axis name with an additional constraint specifying its length:
>>> x = np.ones((2, 3, 4))
>>> einx.matches("2 b c", x)
True
>>> einx.matches("a b c", x, a=2)
True
>>> einx.matches("a 1 c", x)
False
Unnamed axes is used for example as an alternative to ``np.expand_dims``, ``np.squeeze``, ``np.newaxis``, ``np.broadcast_to``:
>>> x = np.ones((2, 1, 3))
>>> einx.rearrange("a 1 b -> 1 1 a b 1 5 6", x).shape
(1, 1, 2, 3, 1, 5, 6)
Since each unnamed axis is given a unique name, multiple unnamed axes do not refer to the same underlying tensor dimension. This can lead to unexpected behavior:
>>> einx.rearrange("a b c -> a c b", x).shape
(2, 4, 3)
>>> einx.rearrange("2 b c -> 2 c b", x).shape # Raises an exception
Concatenation
-------------
A *concatenation* represents an axis in einx notation along which two or more subtensors are concatenated. Using axis concatenations,
we can describe operations such as
`np.concatenate <https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html>`_,
`np.split <https://numpy.org/doc/stable/reference/generated/numpy.split.html>`_,
`np.stack <https://numpy.org/doc/stable/reference/generated/numpy.stack.html>`_,
`einops.pack and einops.unpack <https://einops.rocks/4-pack-and-unpack/>`_ in pure einx notation. A concatenation axis is marked with
``+`` and wrapped in parentheses, and its length is the sum of the subaxis lengths.
>>> x = np.ones((5, 4))
>>> einx.matches("(a + b) c", x)
True
This is used for example to concatenate tensors that do not have compatible dimensions:
>>> x = np.ones((256, 256, 3))
>>> y = np.ones((256, 256))
>>> einx.rearrange("h w c, h w -> h w (c + 1)", x, y).shape
(256, 256, 4)
The graph shows that einx first reshapes ``y`` by adding a channel dimension, and then concatenates the tensors along that axis:
>>> print(einx.rearrange("h w c, h w -> h w (c + 1)", x, y, graph=True))
import numpy as np
def op0(i0, i1):
x0 = np.reshape(i1, (256, 256, 1))
x1 = np.concatenate([i0, x0], axis=2)
return x1
Splitting is supported analogously:
>>> z = np.ones((256, 256, 4))
>>> x, y = einx.rearrange("h w (c + 1) -> h w c, h w", z)
>>> x.shape, y.shape
((256, 256, 3), (256, 256))
Unlike the index-based `np.concatenate <https://numpy.org/doc/stable/reference/generated/numpy.concatenate.html>`_, einx also broadcasts subtensors if required:
>>> # Append a number to all channels
>>> x = np.ones((256, 256, 3))
>>> einx.rearrange("... c, 1 -> ... (c + 1)", x, [42]).shape
(256, 256, 4)
Additional constraints
----------------------
einx uses a `SymPy <https://www.sympy.org/en/index.html>`_-based solver to determine the values of named axes in Einstein expressions
(see :doc:`How does einx parse expressions? </faq/solver>`).
In many cases, the shapes of the input tensors provide enough constraints to determine the values of all named axes in the solver.
For other cases, einx functions accept ``**parameters`` that are used to specify the values of some or all named axes and provide
additional constraints to the solver:
.. code::
x = np.zeros((10,))
einx.rearrange("(a b) -> a b", x) # Fails: Values of a and b cannot be determined
einx.rearrange("(a b) -> a b", x, a=5) # Succeeds: b determined by solver
einx.rearrange("(a b) -> a b", x, b=2) # Succeeds: a determined by solver
einx.rearrange("(a b) -> a b", x, a=5, b=2) # Succeeds
einx.rearrange("(a b) -> a b", x, a=5, b=5) # Fails: Conflicting constraints
.. _bracketnotation:
Bracket notation
----------------
einx introduces the ``[]``-notation to denote axes that an operation is applied to. This corresponds to the ``axis`` argument in index-based notation:
.. code::
einx.sum("a [b]", x)
# same as
np.sum(x, axis=1)
einx.sum("a [...]", x)
# same as
np.sum(x, axis=tuple(range(1, x.ndim)))
In general, brackets define which sub-tensors the given elementary operation is applied to. For example, the expression ``"a [b c] d"`` indicates
that the elementary operation ``einx.sum`` is applied to sub-tensors with shape ``b c`` and vectorized over axes ``a`` and ``d``:
.. code::
einx.sum ("a [b c] d", x)
# ^^^^^^^^ ^ ^^^^^ ^
# elementary operation vectorized axis sub-tensor axes vectorized axis
Some other examples:
.. code::
einx.flip("a [b]", x, c=2) # Flip pairs of values
einx.add("... [c]", x, b) # Add bias
einx.get_at("b [h w] c, b i [2] -> b i c", x, indices) # Gather values
einx.softmax("b q [k] h", attn) # Part of attention operation
Bracket notation is fully compatible with expression rearranging and can therefore be placed anywhere inside a nested einx expression:
>>> # Compute sum over pairs of values along the last axis
>>> x = np.ones((2, 2, 16))
>>> einx.sum("... (g [c])", x, c=2).shape
(2, 2, 8)
>>> # Mean-pooling with stride 4 (if evenly divisible)
>>> x = np.ones((4, 256, 256, 3))
>>> einx.mean("b (s [ds])... c", x, ds=4).shape
(4, 64, 64, 3)
>>> print(einx.mean("b (s [ds])... c", x, ds=4, graph=True))
import numpy as np
def op0(i0):
x0 = np.reshape(i0, (4, 64, 4, 64, 4, 3))
x1 = np.mean(x0, axis=(2, 4))
return x1
.. note::
See :doc:`How does einx handle input and output tensors? </faq/flatten>` for details on how operations are applied to tensors with nested einx expressions.
Operations are sensitive to the positioning of brackets, e.g. allowing for flexible ``keepdims=True`` behavior out-of-the-box:
>>> x = np.ones((16, 4))
>>> einx.sum("b [c]", x).shape
(16,)
>>> einx.sum("b ([c])", x).shape
(16, 1)
>>> einx.sum("b [c]", x, keepdims=True).shape
(16, 1)
In the second example, ``c`` is reduced within the composition ``(c)``, resulting in an empty composition ``()``, i.e. a trivial axis with size 1.
Composability of ``->`` and ``,``
---------------------------------
The operators ``->`` and ``,`` that delimit input and output expressions in an operation can optionally be composed with the einx expressions themselves. If
they appear within a nested expression, the expression is expanded such that ``->`` and ``,`` appear only at the root
of the expression tree. For example:
.. code::
einx.{...}("a [b -> c]", x)
# expands to
einx.{...}("a [b] -> a [c]", x)
einx.{...}("b p [i,->]", x, y)
# expands to
einx.{...}("b p [i], b p -> b p", x, y)
einx provides a wide range of elementary tensor operations that accept arguments in einx notation as described in this document.
The following tutorial gives an overview of these functions and their usage.
|