1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
Tutorial: Operations
####################
einx represents tensor operations using a set of elementary operations that are vectorized according to the given einx expressions.
Internally, einx does not implement the operations from scratch, but forwards computation to the respective backend, e.g. by
calling `np.reshape <https://numpy.org/doc/stable/reference/generated/numpy.reshape.html>`_,
`np.transpose <https://numpy.org/doc/stable/reference/generated/numpy.transpose.html>`_ or
`np.sum <https://numpy.org/doc/stable/reference/generated/numpy.sum.html>`_ with the appropriate arguments.
This tutorial gives an overview of these operations and their usage. For a complete list of provided functions, see the :doc:`API reference </api>`.
Rearranging
-----------
The function :func:`einx.rearrange` transforms tensors between einx expressions by determining and applying the required backend operations. For example:
>>> x = np.ones((4, 256, 17))
>>> y, z = einx.rearrange("b (s p) (c + 1) -> (b s) p c, (b p) s 1", x, p=8)
>>> y.shape, z.shape
((128, 8, 16), (32, 32, 1))
Conceptually, this corresponds with a vectorized identity mapping. Using :func:`einx.rearrange` often produces more readable and concise code than
specifying backend operations in index-based notation directly. The index-based calls can be
inspected using the just-in-time compiled function that einx creates for this expression (see :doc:`Just-in-time compilation </more/jit>`):
>>> print(einx.rearrange("b (s p) (c + 1) -> (b s) p c, (b p) s 1", x, p=8, graph=True))
import numpy as np
def op0(i0):
x0 = np.reshape(i0, (4, 32, 8, 17))
x1 = np.reshape(x0[:, :, :, 0:16], (128, 8, 16))
x2 = np.reshape(x0[:, :, :, 16:17], (4, 32, 8))
x3 = np.transpose(x2, (0, 2, 1))
x4 = np.reshape(x3, (32, 32, 1))
return [x1, x4]
Reduction
---------
einx provides a family of elementary operations that reduce tensors along one or more axes. For example:
.. code::
einx.sum("a [b]", x)
# same as
np.sum(x, axis=1)
einx.mean("a [...]", x)
# same as
np.mean(x, axis=tuple(range(1, x.ndim)))
These functions are specializations of :func:`einx.reduce` and use backend operations like `np.sum <https://numpy.org/doc/stable/reference/generated/numpy.sum.html>`_,
`np.prod <https://numpy.org/doc/stable/reference/generated/numpy.prod.html>`_ or `np.any <https://numpy.org/doc/stable/reference/generated/numpy.any.html>`_ as the ``op`` argument:
.. code::
einx.reduce("a [b]", x, op=np.sum)
# same as
einx.sum("a [b]", x)
In ``einx.sum``, the respective backend is determined implicitly from the input tensor (see :doc:`How does einx support different tensor frameworks? </faq/backend>`).
Generally, the operation string represents both input and output expressions, and marks reduced axes using brackets:
>>> x = np.ones((16, 8, 4))
>>> einx.sum("a [b] c -> a c", x).shape
(16,)
Since the output of the elementary reduction operation is a scalar, no axis is marked in the output expression.
The following shorthand notation is supported:
* When no brackets are found, brackets are placed implicitly around all axes that do not appear in the output:
.. code::
einx.sum("a b c -> a c", x) # Expands to: "a [b] c -> a c"
* When no output is given, it is determined implicitly by removing marked subexpressions from the input:
.. code::
einx.sum("a [b] c", x) # Expands to: "a [b] c -> a c"
:func:`einx.reduce` also allows custom reduction operations that accept the ``axis`` argument similar to `np.sum <https://numpy.org/doc/stable/reference/generated/numpy.sum.html>`_:
.. code::
def custom_mean(x, axis):
return np.sum(x, axis=axis) / x.shape[axis]
einx.reduce("a [b] c", x, op=custom_mean)
:func:`einx.reduce` fully supports expression rearranging:
>>> x = np.ones((16, 8))
>>> einx.prod("a (b [c]) -> b a", x, c=2).shape
(4, 16)
Element-by-element
------------------
einx provides a family of elementary operations that apply element-by-element operations to tensors. For example:
.. code::
einx.add("a b, b -> a b", x, y)
# same as
x + y[np.newaxis, :]
einx.multiply("a, a b -> a b", x, y)
# same as
x[:, np.newaxis] * y
einx.subtract("a, (a b) -> b a", x, y)
# requires reshape and transpose in index-based notation
The elementary operations accept and return scalars and no axes are marked with ``[]``-brackets.
Internally, the inputs are rearranged such that the operation can be applied using `Numpy broadcasting rules <https://numpy.org/doc/stable/user/basics.broadcasting.html>`_.
These functions are specializations of :func:`einx.elementwise` and use backend operations like `np.add <https://numpy.org/doc/stable/reference/generated/numpy.add.html>`_,
`np.logical_and <https://numpy.org/doc/stable/reference/generated/numpy.logical_and.html>`_ and `np.where <https://numpy.org/doc/stable/reference/generated/numpy.where.html>`_
as the ``op`` argument:
.. code::
einx.elementwise("a b, b -> a b", x, y, op=np.add)
# same as
einx.add("a b, b -> a b", x, y)
Generally, the operation string of :func:`einx.elementwise` represents all input and output expressions explicitly:
>>> x = np.ones((16, 8))
>>> y = np.ones((16,))
>>> einx.add("a b, a -> a b", x, y).shape
(16, 8)
The following shorthand notation is supported:
* The output is determined implicitly if one of the input expressions contains the named axes of all other inputs and if this choice is unique:
.. code::
einx.add("a b, a", x, y) # Expands to: "a b, a -> a b"
einx.where("b a, b, a", x, y, z) # Expands to "b a, b, a -> b a"
einx.subtract("a b, b a", x, y) # Raises an exception
einx.add("a b, a b", x, y) # Expands to: "a b, a b -> a b"
* Bracket notation can be used to indicate that the second input is a subexpression of the first:
.. code::
einx.add("a [b]", x, y) # Expands to: "a b, b"
.. note::
Conceptually, a different elementary operation is used in this case which is applied to tensors of equal shape rather than just scalars.
This variant might be removed in future versions.
:func:`einx.elementwise` fully supports expression rearranging:
>>> x = np.ones((16, 16, 32))
>>> bias = np.ones((4,))
>>> einx.add("b... (g [c])", x, bias).shape
(16, 16, 32)
Indexing
--------
einx provides a family of elementary operations that perform multi-dimensional indexing and update/retrieve values from tensors at specific coordinates:
.. code::
image = np.ones((256, 256, 3))
coordinates = np.ones((100, 2), dtype=np.int32)
updates = np.ones((100, 3))
# Retrieve values at specific locations in an image
y = einx.get_at("[h w] c, i [2] -> i c", image, coordinates)
# same as
y = image[coordinates[:, 0], coordinates[:, 1]]
# Update values at specific locations in an image
y = einx.set_at("[h w] c, i [2], i c -> [h w] c", image, coordinates, updates)
# same as
image[coordinates[:, 0], coordinates[:, 1]] = updates
y = image
Brackets in the first input indicate axes that are indexed, and a single bracket in the second input indicates the coordinate axis. The length of the coordinate axis should equal
the number of indexed axes in the first input. Coordinates can also be passed in separate tensors:
.. code::
coordinates_x = np.ones((100,), dtype=np.int32)
coordinates_y = np.ones((100,), dtype=np.int32)
y = einx.get_at("[h w] c, i, i -> i c", image, coordinates_x, coordinates_y)
Indexing functions are specializations of :func:`einx.index` and fully support expression rearranging:
.. code::
einx.add_at("b ([h w]) c, ([2] b) i, c i -> c [h w] b", image, coordinates, updates)
Dot-product
-----------
The function :func:`einx.dot` computes a dot-product along the marked axes:
>>> # Matrix multiplication between x and y
>>> x = np.ones((4, 16))
>>> y = np.ones((16, 8))
>>> einx.dot("a [b], [b] c -> a c", x, y).shape
(4, 8)
While operations such as matrix multiplications are represented conceptually as a vectorized dot-products in einx, they are still implemented using
efficient matmul calls in the respective backend rather than a vectorized evaluation of the dot-product.
The interface of :func:`einx.dot` closely resembles the existing `np.einsum <https://numpy.org/doc/stable/reference/generated/numpy.einsum.html>`_
which also uses Einstein-inspired notation to express matrix multiplications. In fact, :func:`einx.dot` internally forwards computation
to the ``einsum`` implementation of the respective backend, but additionally supports rearranging of expressions:
>>> # Simple grouped linear layer
>>> x = np.ones((20, 16))
>>> w = np.ones((8, 4))
>>> print(einx.dot("b (g c1), c1 c2 -> b (g c2)", x, w, g=2, graph=True))
import numpy as np
def op0(i0, i1):
x0 = np.reshape(i0, (20, 2, 8))
x1 = np.einsum("abc,cd->abd", x0, i1)
x2 = np.reshape(x1, (20, 8))
return x2
The following shorthand notation is supported:
* When no brackets are found, brackets are placed implicitly around all axes that do not appear in the output:
.. code::
einx.dot("a b, b c -> a c", x, y) # Expands to: "a [b], [b] c -> a c"
This allows using einsum-like notation with :func:`einx.dot`.
* When given two input tensors, the expression of the second input is determined implicitly by marking
its components in the input and output expression:
.. code::
einx.dot("a [b] -> a [c]", x, y) # Expands to: "a b, b c -> a c"
.. note::
Conceptually, the elementary operation in this case is not a simple dot-product, but rather a linear map from
``b`` to ``c`` channels, which motivates the usage of bracket notation in this manner.
Axes marked multiple times appear only once in the implicit second input expression:
.. code::
einx.dot("[a b] -> [a c]", x, y) # Expands to: "a b, a b c -> a c"
Other operations: ``vmap``
--------------------------
If an operation is not provided as a separate einx API, it can still be applied in einx using :func:`einx.vmap` or :func:`einx.vmap_with_axis`.
Both functions apply the same vectorization rules as other einx functions, but accept an ``op`` argument that specifies the elementary operation to apply.
In :func:`einx.vmap`, the input and output tensors of ``op`` match the marked axes in the input and output expressions:
.. code::
# A custom operation:
def op(x):
# Input: x has shape "b c"
x = np.sum(x, axis=1)
x = np.flip(x, axis=0)
# Output: x has shape "b"
return x
einx.vmap("a [b c] -> a [b]", x, op=op)
:func:`einx.vmap` is implemented using efficient automatic vectorization in the respective backend (e.g.
`jax.vmap <https://jax.readthedocs.io/en/latest/jax-101/03-vectorization.html>`_, `torch.vmap <https://pytorch.org/docs/stable/generated/torch.vmap.html>`_).
einx also implements a simple ``vmap`` function for the Numpy backend for testing/ debugging purposes using a Python loop.
In :func:`einx.vmap_with_axis`, ``op`` is instead given an ``axis`` argument and must follow
`Numpy broadcasting rules <https://numpy.org/doc/stable/user/basics.broadcasting.html>`_:
.. code::
# A custom operation:
def op(x, axis):
# Input: x has shape "a b c", axis is (1, 2)
x = np.sum(x, axis=axis[1])
x = np.flip(x, axis=axis[0])
# Output: x has shape "b"
return x
einx.vmap_with_axis("(a [b c]) -> (a [b])", x, op=op, a=2, b=3, c=4)
Both :func:`einx.reduce` and :func:`einx.elementwise` are adaptations of :func:`einx.vmap_with_axis`.
Since most backend operations that accept an ``axis`` argument operate on the entire input tensor when ``axis`` is not given, :func:`einx.vmap_with_axis` can often
analogously be expressed using :func:`einx.vmap`:
>>> x = np.ones((4, 16))
>>> einx.vmap_with_axis("a [b] -> a", x, op=np.sum).shape
(4,)
>>> einx.vmap ("a [b] -> a", x, op=np.sum).shape
(4,)
>>> x = np.ones((4, 16))
>>> y = np.ones((4,))
>>> einx.vmap_with_axis("a b, a -> a b", x, y, op=np.add).shape
(4, 16)
>>> einx.vmap ("a b, a -> a b", x, y, op=np.add).shape
(4, 16)
:func:`einx.vmap` provides more general vectorization capabilities than :func:`einx.vmap_with_axis`, but might in some cases be slower if the latter relies on a
specialized implementation.
.. _lazytensorconstruction:
Misc: Tensor factories
----------------------------
All einx operations also accept tensor factories instead of tensors as arguments. A tensor factory is a function that accepts a ``shape``
argument and returns a tensor with that shape. This allows deferring the construction of a tensor to the point inside
an einx operation where its shape has been resolved, and avoids having to manually determine the shape in advance:
.. code::
einx.dot("b... c1, c1 c2 -> b... c2", x, lambda shape: np.random.uniform(shape), c2=32)
In this example, the shape of ``x`` is used by the expression solver to determine the values of ``b...`` and ``c1``. Since the tensor factory provides no shape
constraints to the solver, the remaining axis values have to be specified explicitly, i.e. ``c2=32``.
Tensor factories are particularly useful in the context of deep learning modules: The shapes of a layer's weights are typically chosen to align with the shapes
of the layer input and outputs (e.g. the number of input channels in a linear layer must match the corresponding axis in the layer's weight matrix).
This can be achieved implicitly by constructing layer weights using tensor factories.
The following tutorial describes in more detail how this is used in einx to implement deep learning models.
|