File: tutorial_ops.rst

package info (click to toggle)
python-einx 0.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,112 kB
  • sloc: python: 11,619; makefile: 13
file content (342 lines) | stat: -rw-r--r-- 13,642 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
Tutorial: Operations
####################

einx represents tensor operations using a set of elementary operations that are vectorized according to the given einx expressions.
Internally, einx does not implement the operations from scratch, but forwards computation to the respective backend, e.g. by
calling `np.reshape <https://numpy.org/doc/stable/reference/generated/numpy.reshape.html>`_,
`np.transpose <https://numpy.org/doc/stable/reference/generated/numpy.transpose.html>`_ or 
`np.sum <https://numpy.org/doc/stable/reference/generated/numpy.sum.html>`_ with the appropriate arguments.

This tutorial gives an overview of these operations and their usage. For a complete list of provided functions, see the :doc:`API reference </api>`.

Rearranging
-----------

The function :func:`einx.rearrange` transforms tensors between einx expressions by determining and applying the required backend operations. For example:

>>> x = np.ones((4, 256, 17))
>>> y, z = einx.rearrange("b (s p) (c + 1) -> (b s) p c, (b p) s 1", x, p=8)
>>> y.shape, z.shape
((128, 8, 16), (32, 32, 1))

Conceptually, this corresponds with a vectorized identity mapping. Using :func:`einx.rearrange` often produces more readable and concise code than
specifying backend operations in index-based notation directly. The index-based calls can be
inspected using the just-in-time compiled function that einx creates for this expression (see :doc:`Just-in-time compilation </more/jit>`):

>>> print(einx.rearrange("b (s p) (c + 1) -> (b s) p c, (b p) s 1", x, p=8, graph=True))
import numpy as np
def op0(i0):
    x0 = np.reshape(i0, (4, 32, 8, 17))
    x1 = np.reshape(x0[:, :, :, 0:16], (128, 8, 16))
    x2 = np.reshape(x0[:, :, :, 16:17], (4, 32, 8))
    x3 = np.transpose(x2, (0, 2, 1))
    x4 = np.reshape(x3, (32, 32, 1))
    return [x1, x4]

Reduction
---------

einx provides a family of elementary operations that reduce tensors along one or more axes. For example:

.. code::

   einx.sum("a [b]", x)
   # same as
   np.sum(x, axis=1)

   einx.mean("a [...]", x)
   # same as
   np.mean(x, axis=tuple(range(1, x.ndim)))

These functions are specializations of :func:`einx.reduce` and use backend operations like `np.sum <https://numpy.org/doc/stable/reference/generated/numpy.sum.html>`_,
`np.prod <https://numpy.org/doc/stable/reference/generated/numpy.prod.html>`_ or `np.any <https://numpy.org/doc/stable/reference/generated/numpy.any.html>`_ as the ``op`` argument:

.. code::

   einx.reduce("a [b]", x, op=np.sum)
   # same as
   einx.sum("a [b]", x)

In ``einx.sum``, the respective backend is determined implicitly from the input tensor (see :doc:`How does einx support different tensor frameworks? </faq/backend>`).

Generally, the operation string represents both input and output expressions, and marks reduced axes using brackets:

>>> x = np.ones((16, 8, 4))
>>> einx.sum("a [b] c -> a c", x).shape
(16,)

Since the output of the elementary reduction operation is a scalar, no axis is marked in the output expression.

The following shorthand notation is supported:

* When no brackets are found, brackets are placed implicitly around all axes that do not appear in the output:

  .. code::

     einx.sum("a b c -> a c", x) # Expands to: "a [b] c -> a c"

* When no output is given, it is determined implicitly by removing marked subexpressions from the input:

  ..  code::

     einx.sum("a [b] c", x) # Expands to: "a [b] c -> a c"

:func:`einx.reduce` also allows custom reduction operations that accept the ``axis`` argument similar to `np.sum <https://numpy.org/doc/stable/reference/generated/numpy.sum.html>`_:

.. code::

   def custom_mean(x, axis):
       return np.sum(x, axis=axis) / x.shape[axis]
   einx.reduce("a [b] c", x, op=custom_mean)

:func:`einx.reduce` fully supports expression rearranging:

>>> x = np.ones((16, 8))
>>> einx.prod("a (b [c]) -> b a", x, c=2).shape
(4, 16)

Element-by-element
------------------

einx provides a family of elementary operations that apply element-by-element operations to tensors. For example:

.. code::

   einx.add("a b, b -> a b", x, y)
   # same as
   x + y[np.newaxis, :]

   einx.multiply("a, a b -> a b", x, y)
   # same as
   x[:, np.newaxis] * y

   einx.subtract("a, (a b) -> b a", x, y)
   # requires reshape and transpose in index-based notation

The elementary operations accept and return scalars and no axes are marked with ``[]``-brackets.
Internally, the inputs are rearranged such that the operation can be applied using `Numpy broadcasting rules <https://numpy.org/doc/stable/user/basics.broadcasting.html>`_.
These functions are specializations of :func:`einx.elementwise` and use backend operations like `np.add <https://numpy.org/doc/stable/reference/generated/numpy.add.html>`_,
`np.logical_and <https://numpy.org/doc/stable/reference/generated/numpy.logical_and.html>`_ and `np.where <https://numpy.org/doc/stable/reference/generated/numpy.where.html>`_
as the ``op`` argument:

.. code::

   einx.elementwise("a b, b -> a b", x, y, op=np.add)
   # same as
   einx.add("a b, b -> a b", x, y)

Generally, the operation string of :func:`einx.elementwise` represents all input and output expressions explicitly:

>>> x = np.ones((16, 8))
>>> y = np.ones((16,))
>>> einx.add("a b, a -> a b", x, y).shape
(16, 8)

The following shorthand notation is supported:

* The output is determined implicitly if one of the input expressions contains the named axes of all other inputs and if this choice is unique:

  .. code::

     einx.add("a b, a", x, y)         # Expands to: "a b, a -> a b"

     einx.where("b a, b, a", x, y, z) # Expands to "b a, b, a -> b a"

     einx.subtract("a b, b a", x, y)  # Raises an exception

     einx.add("a b, a b", x, y)       # Expands to: "a b, a b -> a b"

* Bracket notation can be used to indicate that the second input is a subexpression of the first:

  .. code::

     einx.add("a [b]", x, y) # Expands to: "a b, b"

  .. note::

     Conceptually, a different elementary operation is used in this case which is applied to tensors of equal shape rather than just scalars.
     This variant might be removed in future versions.

:func:`einx.elementwise` fully supports expression rearranging:

>>> x = np.ones((16, 16, 32))
>>> bias = np.ones((4,))
>>> einx.add("b... (g [c])", x, bias).shape
(16, 16, 32)

Indexing
--------

einx provides a family of elementary operations that perform multi-dimensional indexing and update/retrieve values from tensors at specific coordinates:

.. code::

   image = np.ones((256, 256, 3))
   coordinates = np.ones((100, 2), dtype=np.int32)
   updates = np.ones((100, 3))

   # Retrieve values at specific locations in an image
   y = einx.get_at("[h w] c, i [2] -> i c", image, coordinates)
   # same as
   y = image[coordinates[:, 0], coordinates[:, 1]]

   # Update values at specific locations in an image
   y = einx.set_at("[h w] c, i [2], i c -> [h w] c", image, coordinates, updates)
   # same as
   image[coordinates[:, 0], coordinates[:, 1]] = updates
   y = image

Brackets in the first input indicate axes that are indexed, and a single bracket in the second input indicates the coordinate axis. The length of the coordinate axis should equal
the number of indexed axes in the first input. Coordinates can also be passed in separate tensors:

.. code::

   coordinates_x = np.ones((100,), dtype=np.int32)
   coordinates_y = np.ones((100,), dtype=np.int32)

   y = einx.get_at("[h w] c, i, i -> i c", image, coordinates_x, coordinates_y)

Indexing functions are specializations of :func:`einx.index` and fully support expression rearranging:

.. code::

   einx.add_at("b ([h w]) c, ([2] b) i, c i -> c [h w] b", image, coordinates, updates)

Dot-product
-----------

The function :func:`einx.dot` computes a dot-product along the marked axes:

>>> # Matrix multiplication between x and y
>>> x = np.ones((4, 16))
>>> y = np.ones((16, 8))
>>> einx.dot("a [b], [b] c -> a c", x, y).shape
(4, 8)

While operations such as matrix multiplications are represented conceptually as a vectorized dot-products in einx, they are still implemented using
efficient matmul calls in the respective backend rather than a vectorized evaluation of the dot-product.

The interface of :func:`einx.dot` closely resembles the existing `np.einsum <https://numpy.org/doc/stable/reference/generated/numpy.einsum.html>`_
which also uses Einstein-inspired notation to express matrix multiplications. In fact, :func:`einx.dot` internally forwards computation
to the ``einsum`` implementation of the respective backend, but additionally supports rearranging of expressions:

>>> # Simple grouped linear layer
>>> x = np.ones((20, 16))
>>> w = np.ones((8, 4))
>>> print(einx.dot("b (g c1), c1 c2 -> b (g c2)", x, w, g=2, graph=True))
import numpy as np
def op0(i0, i1):
    x0 = np.reshape(i0, (20, 2, 8))
    x1 = np.einsum("abc,cd->abd", x0, i1)
    x2 = np.reshape(x1, (20, 8))
    return x2

The following shorthand notation is supported:

* When no brackets are found, brackets are placed implicitly around all axes that do not appear in the output:

  .. code::

     einx.dot("a b, b c -> a c", x, y) # Expands to: "a [b], [b] c -> a c"

  This allows using einsum-like notation with :func:`einx.dot`.

* When given two input tensors, the expression of the second input is determined implicitly by marking
  its components in the input and output expression:

  .. code::

     einx.dot("a [b] -> a [c]", x, y) # Expands to: "a b, b c -> a c"

  .. note::

     Conceptually, the elementary operation in this case is not a simple dot-product, but rather a linear map from
     ``b`` to ``c`` channels, which motivates the usage of bracket notation in this manner.

  Axes marked multiple times appear only once in the implicit second input expression:

  .. code::

     einx.dot("[a b] -> [a c]", x, y) # Expands to: "a b, a b c -> a c"

Other operations: ``vmap``
--------------------------

If an operation is not provided as a separate einx API, it can still be applied in einx using :func:`einx.vmap` or :func:`einx.vmap_with_axis`.
Both functions apply the same vectorization rules as other einx functions, but accept an ``op`` argument that specifies the elementary operation to apply.

In :func:`einx.vmap`, the input and output tensors of ``op`` match the marked axes in the input and output expressions:

.. code::

   # A custom operation:
   def op(x):
       # Input: x has shape "b c"
       x = np.sum(x, axis=1)
       x = np.flip(x, axis=0)
       # Output: x has shape "b"
       return x

   einx.vmap("a [b c] -> a [b]", x, op=op)

:func:`einx.vmap` is implemented using efficient automatic vectorization in the respective backend (e.g. 
`jax.vmap <https://jax.readthedocs.io/en/latest/jax-101/03-vectorization.html>`_, `torch.vmap <https://pytorch.org/docs/stable/generated/torch.vmap.html>`_). 
einx also implements a simple ``vmap`` function for the Numpy backend for testing/ debugging purposes using a Python loop.

In :func:`einx.vmap_with_axis`, ``op`` is instead given an ``axis`` argument and must follow
`Numpy broadcasting rules <https://numpy.org/doc/stable/user/basics.broadcasting.html>`_:

.. code::

   # A custom operation:
   def op(x, axis):
       # Input: x has shape "a b c", axis is (1, 2)
       x = np.sum(x, axis=axis[1])
       x = np.flip(x, axis=axis[0])
       # Output: x has shape "b"
       return x

   einx.vmap_with_axis("(a [b c]) -> (a [b])", x, op=op, a=2, b=3, c=4)

Both :func:`einx.reduce` and :func:`einx.elementwise` are adaptations of :func:`einx.vmap_with_axis`.

Since most backend operations that accept an ``axis`` argument operate on the entire input tensor when ``axis`` is not given, :func:`einx.vmap_with_axis` can often
analogously be expressed using :func:`einx.vmap`:

>>> x = np.ones((4, 16))
>>> einx.vmap_with_axis("a [b] -> a", x, op=np.sum).shape
(4,)
>>> einx.vmap          ("a [b] -> a", x, op=np.sum).shape
(4,)

>>> x = np.ones((4, 16))
>>> y = np.ones((4,))
>>> einx.vmap_with_axis("a b, a -> a b", x, y, op=np.add).shape
(4, 16)
>>> einx.vmap          ("a b, a -> a b", x, y, op=np.add).shape
(4, 16)

:func:`einx.vmap` provides more general vectorization capabilities than :func:`einx.vmap_with_axis`, but might in some cases be slower if the latter relies on a
specialized implementation.

.. _lazytensorconstruction:

Misc: Tensor factories
----------------------------

All einx operations also accept tensor factories instead of tensors as arguments. A tensor factory is a function that accepts a ``shape``
argument and returns a tensor with that shape. This allows deferring the construction of a tensor to the point inside
an einx operation where its shape has been resolved, and avoids having to manually determine the shape in advance:

..  code::

    einx.dot("b... c1, c1 c2 -> b... c2", x, lambda shape: np.random.uniform(shape), c2=32)

In this example, the shape of ``x`` is used by the expression solver to determine the values of ``b...`` and ``c1``. Since the tensor factory provides no shape
constraints to the solver, the remaining axis values have to be specified explicitly, i.e. ``c2=32``.

Tensor factories are particularly useful in the context of deep learning modules: The shapes of a layer's weights are typically chosen to align with the shapes
of the layer input and outputs (e.g. the number of input channels in a linear layer must match the corresponding axis in the layer's weight matrix).
This can be achieved implicitly by constructing layer weights using tensor factories.

The following tutorial describes in more detail how this is used in einx to implement deep learning models.