File: _tensorflow.py

package info (click to toggle)
python-einx 0.3.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,112 kB
  • sloc: python: 11,619; makefile: 13
file content (275 lines) | stat: -rw-r--r-- 10,706 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
from .base import *
import einx.tracer as tracer
from einx.tracer.tensor import op
import einx, types
from functools import partial


def create():
    import tensorflow as tf
    import tensorflow.experimental.numpy as tnp

    ttf = tracer.import_("tensorflow", "tf")
    ttnp = tracer.import_("tensorflow.experimental.numpy", "tnp")

    def _broadcast_static_shape(shape1, shape2):
        assert len(shape1) == len(shape2) and all(
            s1 == s2 or s1 == 1 or s2 == 1 for s1, s2 in zip(shape1, shape2)
        )
        return tuple(max(s1, s2) for s1, s2 in zip(shape1, shape2))

    class tensorflow(Backend):
        name = "tensorflow"
        tensor_types = [tf.Tensor]

        @staticmethod
        @einx.trace
        def to_tensor(tensor, shape):
            return einx.tracer.apply(
                ttf.convert_to_tensor,
                args=[tensor],
                output=einx.tracer.Tensor(shape),
            )

        reshape = op.reshape(ttnp.reshape)
        transpose = op.transpose(ttnp.transpose)
        broadcast_to = op.broadcast_to(ttnp.broadcast_to)

        @staticmethod
        @einx.trace
        def einsum(equation, *tensors):
            return op.einsum(ttnp.einsum)(equation, *tensors, optimize="optimal")

        arange = op.arange(ttnp.arange)

        stack = op.stack(ttnp.stack)
        concatenate = op.concatenate(ttnp.concatenate)

        add = associative_binary_to_nary(op.elementwise(ttnp.add))
        subtract = op.elementwise(ttnp.subtract)
        multiply = associative_binary_to_nary(op.elementwise(ttnp.multiply))
        true_divide = op.elementwise(ttnp.true_divide)
        floor_divide = op.elementwise(ttnp.floor_divide)
        divide = op.elementwise(ttnp.divide)
        logical_and = associative_binary_to_nary(op.elementwise(ttnp.logical_and))
        logical_or = associative_binary_to_nary(op.elementwise(ttnp.logical_or))
        where = op.elementwise(ttnp.where)
        less = op.elementwise(ttnp.less)
        less_equal = op.elementwise(ttnp.less_equal)
        greater = op.elementwise(ttnp.greater)
        greater_equal = op.elementwise(ttnp.greater_equal)
        equal = op.elementwise(ttnp.equal)
        not_equal = op.elementwise(ttnp.not_equal)
        maximum = associative_binary_to_nary(op.elementwise(ttnp.maximum))
        minimum = associative_binary_to_nary(op.elementwise(ttnp.minimum))

        sum = op.reduce(ttnp.sum)
        mean = op.reduce(ttnp.mean)
        var = op.reduce(ttnp.var)
        std = op.reduce(ttnp.std)
        prod = op.reduce(ttnp.prod)
        count_nonzero = op.reduce(ttnp.count_nonzero)
        any = op.reduce(ttnp.any)
        all = op.reduce(ttnp.all)
        min = op.reduce(ttnp.min)
        max = op.reduce(ttnp.max)
        logsumexp = op.reduce(ttf.math.reduce_logsumexp)

        log = op.elementwise(ttnp.log)
        exp = op.elementwise(ttnp.exp)
        sqrt = op.elementwise(ttnp.sqrt)
        rsqrt = op.elementwise(ttf.math.rsqrt)
        square = op.elementwise(ttnp.square)

        @classmethod
        @einx.trace
        def get_at(backend, tensor, coordinates):
            coordinates, _ = backend._prepare_coordinates_and_update(coordinates, None)
            if isinstance(coordinates, tuple):
                out_shape = coordinates[0].shape
                coordinates = ttf.stack(coordinates, axis=-1)
            else:
                out_shape = coordinates.shape[:-1]
            return einx.tracer.apply(
                ttf.gather_nd,
                args=[tensor, coordinates],
                output=einx.tracer.Tensor(out_shape),
            )

        @classmethod
        @einx.trace
        def _prepare_coordinates_and_update(backend, coordinates, updates):
            assert updates is None or isinstance(updates, einx.tracer.Tensor)
            if isinstance(coordinates, tuple):
                assert all(isinstance(c, einx.tracer.Tensor) for c in coordinates)
                shape = coordinates[0].shape
                for c in coordinates[1:]:
                    shape = _broadcast_static_shape(shape, c.shape)
                coordinates = [backend.broadcast_to(c, shape) for c in coordinates]
                coordinates = backend.stack(coordinates, axis=-1)
            else:
                assert isinstance(coordinates, einx.tracer.Tensor)
                coordinates = coordinates[(slice(None),) * (coordinates.ndim - 1) + (None,)]
                coordinates = coordinates[..., None]

            assert updates is None or updates.ndim + 1 == coordinates.ndim

            # Broadcast to common shape
            if updates is None:
                shape = coordinates.shape[:-1]
            else:
                shape = _broadcast_static_shape(updates.shape, coordinates.shape[:-1])
            coordinates = backend.broadcast_to(coordinates, shape + coordinates.shape[-1:])
            if updates is not None:
                updates = backend.broadcast_to(updates, shape)

            return coordinates, updates

        @classmethod
        @einx.trace
        def set_at(backend, tensor, coordinates, updates):
            coordinates, updates = backend._prepare_coordinates_and_update(coordinates, updates)
            return einx.tracer.apply(
                ttf.tensor_scatter_nd_update,
                args=[tensor, coordinates, updates],
                output=einx.tracer.Tensor(tensor.shape),
            )

        @classmethod
        @einx.trace
        def add_at(backend, tensor, coordinates, updates):
            coordinates, updates = backend._prepare_coordinates_and_update(coordinates, updates)
            return einx.tracer.apply(
                ttf.tensor_scatter_nd_add,
                args=[tensor, coordinates, updates],
                output=einx.tracer.Tensor(tensor.shape),
            )

        @classmethod
        @einx.trace
        def subtract_at(backend, tensor, coordinates, updates):
            coordinates, updates = backend._prepare_coordinates_and_update(coordinates, updates)
            return einx.tracer.apply(
                ttf.tensor_scatter_nd_sub,
                args=[tensor, coordinates, updates],
                output=einx.tracer.Tensor(tensor.shape),
            )

        @staticmethod
        @einx.trace
        def flip(x, axis):
            if isinstance(axis, int):
                axis = [axis]
            return op.keep_shape(ttf.reverse)(x, axis)

        @staticmethod
        @einx.trace
        def roll(x, axis, shift):
            if isinstance(axis, int):
                axis = [axis]
            if isinstance(shift, int):
                shift = [shift]
            return op.keep_shape(ttf.roll)(x, tuple(shift), axis=tuple(axis))

        @staticmethod
        @einx.trace
        def softmax(x, axis):
            if isinstance(axis, (list, tuple)):
                if len(axis) != 1:
                    raise ValueError(
                        "Tensorflow only supports softmax along a single axis, "
                        f"got {len(axis)} axes"
                    )
                axis = axis[0]
            return op.keep_shape(ttf.nn.softmax)(x, axis=axis)

        @staticmethod
        @einx.trace
        def log_softmax(x, axis):
            if isinstance(axis, (list, tuple)):
                if len(axis) != 1:
                    raise ValueError(
                        "Tensorflow only supports log_softmax along a single axis, "
                        f"got {len(axis)} axes"
                    )
                axis = axis[0]
            return op.keep_shape(ttf.nn.log_softmax)(x, axis=axis)

        sqrt = op.keep_shape(ttf.math.sqrt)
        rsqrt = op.keep_shape(ttf.math.rsqrt)
        square = op.keep_shape(ttnp.square)

        stop_gradient = op.keep_shape(ttf.stop_gradient)

        @staticmethod
        def vmap(op, in_axes, out_axes, input_shapes, output_shapes):
            @einx.trace
            def inner(*args):
                # TODO: suboptimal (?) implementation of vmap in tensorflow that transposes the
                # vmapped axis to the front and calls tf.vectorized_map. Possible optimization:
                # Transpose only once for multiple vmaps?
                if len(args) != len(in_axes):
                    raise ValueError(f"Expected {len(in_axes)} arguments, got {len(args)}")
                value = {arg.shape[axis] for arg, axis in zip(args, in_axes) if axis is not None}
                if len(value) != 1:
                    raise ValueError(
                        f"Expected all arguments to have same size along vmap axis, got {value}"
                    )
                value = value.pop()

                # Move vmapped axes to front
                xs = []
                for arg, axis in zip(args, in_axes):
                    if axis is not None:
                        if axis != 0:
                            perm = [axis] + [a for a in range(len(arg.shape)) if a != axis]
                            arg = einx.tracer.op.transpose(ttnp.transpose)(arg, perm)
                    else:
                        arg = arg[tf.newaxis]
                    xs.append(arg)

                op2 = einx.trace(
                    lambda xs: op(*xs), args=[[einx.tracer.Tensor(x.shape[1:]) for x in xs]]
                )

                xs = einx.tracer.apply(
                    ttf.vectorized_map,
                    args=[op2, xs],
                    output=[einx.tracer.Tensor(shape) for shape in output_shapes],
                )

                if len(xs) != len(out_axes):
                    raise ValueError(
                        f"Expected {len(out_axes)} arguments from vmapped function, got {len(xs)}"
                    )

                # Move vmapped axis to out_axis
                xs = [
                    einx.tracer.op.transpose(ttnp.transpose)(
                        x,
                        [
                            (a + 1 if a < out_axis else (0 if a == out_axis else a))
                            for a in range(len(x.shape))
                        ],
                    )
                    for x, out_axis in zip(xs, out_axes)
                ]

                return tuple(xs)

            return inner

        class random:
            @einx.trace
            def bernoulli(rng, p, shape):
                return (
                    einx.tracer.apply(
                        ttf.random.uniform,
                        args=[shape],
                        kwargs={"minval": 0.0, "maxval": 1.0, "dtype": "float32", "seed": rng},
                        output=einx.tracer.Tensor(shape),
                    )
                    <= p
                )

    return tensorflow()